Publications by    
Page 1 of 3:  1  2 3  >> Next  (53 Items)

Polarization-free GaN emitters in the ultraviolet and visible spectra via heterointegration on CMOS-compatible Si (100)
Polarization-free GaN emitters in the ultraviolet and visible spectra via heterointegration on CMOS-compatible Si (100)
C. Bayram, J. Ott, K. T. Shiu, C. W. Cheng, Y. Zhu, J. Kim, D. K. Sadana, M. Razeghi
Proc. SPIE 9370, Quantum Sensing and Nanophotonic Devices XII, 93702F (February 8, 2015); -- February 8, 2015
This work presents a new type of polarization-free GaN emitter. The unique aspect of this work is that the ultraviolet and visible emission originates from the cubic phase GaN and the cubic phase InGaN/GaN multi-quantum-wells, respectively. Conventionally, GaN emitters (e.g. light emitting diodes, laser diodes) are wurtzite phase thus strong polarization fields exist across the structure contributing to the “droop” behavior – a phenomenon defined as “the reduction in emitter efficiency as injection current increases”. The elimination of piezoelectric fields in GaN-based emitters as proposed in this work provide the potential for achieving a 100% internal efficiency and might lead to droopfree light emitting diodes. In addition, this work demonstrates co-integration of GaN emitters on cheap and scalable CMOS-compatible Si (100) substrate, which yields possibility of realizing a GaN laser diode uniquely – via forming mirrors along the naturally occurring cubic phase GaN-Si(100) cleavage planes. reprint
2.  Cubic Phase GaN on Nano-grooved Si (100) via Maskless Selective Area Epitaxy
Bayram, C., Ott, J. A., Shiu, K.-T., Cheng, C.-W., Zhu, Y., Kim, J., Razeghi, M. and Sadana, D. K.
Adv. Funct. Mater. 2014-- April 1, 2014
A method of forming cubic phase (zinc blende) GaN (referred as c-GaN) on a CMOS-compatible on-axis Si (100) substrate is reported. Conventional GaN materials are hexagonal phase (wurtzite) (referred as h-GaN) and possess very high polarization fields (∼MV/cm) along the common growth direction of <0001>. Such large polarization fields lead to undesired shifts (e.g., wavelength and current) in the performance of photonic and vertical transport electronic devices. The cubic phase of GaN materials is polarization-free along the common growth direction of <001>, however, this phase is thermodynamically unstable, requiring low-temperature deposition conditions and unconventional substrates (e.g., GaAs). Here, novel nano-groove patterning and maskless selective area epitaxy processes are employed to integrate thermodynamically stable, stress-free, and low-defectivity c-GaN on CMOS-compatible on-axis Si. These results suggest that epitaxial growth conditions and nano-groove pattern parameters are critical to obtain such high quality c-GaN. InGaN/GaN multi-quantum-well structures grown on c-GaN/Si (100) show strong room temperature luminescence in the visible spectrum, promising visible emitter applications for this technology. reprint
3.  Thermal conductivity tensors of the cladding and active layers of antimonide infrared lasers and detectors
Chuanle Zhou, I. Vurgaftman, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, J. R. Meyer, A. Hoang, A. Haddadi, M. Razeghi, and M. Grayson
Optical Materials Express. 2013;3(10):1632-1640.-- October 1, 2013
The in-plane and cross-plane thermal conductivities of the cladding layers and active quantum wells of interband cascade lasers and type-II superlattice infrared detector are measured by the 2-wire 3ω method. The layers investigated include InAs/AlSb superlattice cladding layers, InAs/GaInSb/InAs/AlSb W-active quantum wells, an InAs/GaSb superlattice absorber, an InAs/GaSb/AlSb M-structure, and an AlAsSb digital alloy. The in-plane thermal conductivity of the InAs/AlSb superlattice is 4-5 times higher than the cross-plane value. The isotropic thermal conductivity of the AlAsSb digital alloy matches a theoretical expectation, but it is one order of magnitude lower than the only previously-reported experimental value. reprint
4.  ZnO 3D flower-like nanostructure synthesized on GaN epitaxial layer by simple route hydrothermal process
J.M. Jung, C.R. Kim, H. Ryu, M. Razeghi and W.G. Jung
Journal of Alloys and Compounds-- September 15, 2007
The 3D type, flower-like ZnO nanostructures from particle to flower-like or chestnut bur are fabricated on the GaN epitaxial layer substrate through the simple-route hydrothermal process. Structural characterization was made for the ZnO 3D nanostructures synthesized in different pH ranging from 9.5 to 11.0. The growth model was proposed and discussed regarding the fabrication mechanism and morphology of ZnO 3D flower-like nanostructure. The flower-like ZnO is composed of many thin single crystals ZnO nanorods. Bigger and thicker ZnO structure is fabricated with the increase of pH in solution. The enhanced UV emission in the PL measurement and the spectra in the Raman spectroscopy for ZnO–GaN heterojunction material were discussed. reprint
5.  High-Power Distributed-Feedback Quantum Cascade Lasers
W.W. Bewley, I. Vurgaftman, C.S. Kim, J.R. Meyer, J. Nguyen, A.J. Evans, J.S. Yu, S.R. Darvish, S. Slivken and M. Razeghi
SPIE Conference, San Jose, CA, Vol. 6127, pp. 612704-- January 23, 2006
Recently, a distributed-feedback quantum cascade laser operating in a single spectral mode at 4.8 µm and at temperatures up to 333 K has been reported. In the present work, we provide detailed measurements and modeling of its performance characteristics. The sidemode suppression ratio exceeds 25 dB, and the emission remains robustly single-mode at all currents and temperatures tested. Cw output powers of 99 mW at 298 K and 357 mW at 200 K are obtained at currents well below the thermal rollover point. reprint
6.  Characterization and Analysis of Single-Mode High-Power CW Quantum-Cascade Laser
W.W. Bewley, I. Vurgaftman, C.S. Kim, J.R. Meyer, J. Nguyen, A. Evans, J.S. Yu, S.R. Darvish, S. Slivken, and M. Razeghi
Journal of Applied Physics 98-- October 15, 2005
We measured and modeled the performance characteristics of a distributed-feedback quantum-cascade laser exhibiting high-power continuous-wave (CW) operation in a single spectral mode at λ~4.8 µm and temperatures up to 333 K. The sidemode suppression ratio exceeds 25 dB, and the emission remains robustly single mode at all currents and temperatures tested. CW output powers of 99 mW at 298 K and 357 mW at 200 K are obtained at currents well below the thermal rollover point. The slope efficiency and subthreshold amplified spontaneous emission spectra are shown to be consistent with a coupling coefficient of no more than κL ~ 4–5, which is substantially lower than the estimate of 9 based on the nominal grating fabrication parameters. reprint
7.  Beam Steering in High-Power CW Quantum Cascade Lasers
W.W. Bewley, J.R. Lindle, C.S. Kim, I. Vurgaftman, J.R. Meyer, A.J. Evans, J.S. Yu, S. Slivken, and M. Razeghi
IEEE Journal of Quantum Electronics, 41 (6)-- June 1, 2005
We report the light-current (L-I), spectral, and far-field characteristics of quantum cascade lasers (QCLs) with seven different wavelengths in the λ=4.3 to 6.3 μm range. In continuous-wave (CW) mode, the narrow-stripe (≈13 μm) epitaxial- side-up devices operated at temperatures up to 340 K, while at 295 K the CW output power was as high as 640 mW with a wallplug efficiency of 4.5%. All devices with λ≥4.7 μm achieved room-temperature CW operation, and at T=200 K several produced powers exceeding 1 W with ≈10% wallplug efficiency. The data indicated both spectral and spatial instabilities of the optical modes. For example, minor variations of the current often produced nonmonotonic hopping between spectra with envelopes as narrow as 5-10 nm or as broad as 200-250 nm. Bistable beam steering, by far-field angles of up to ±12° from the facet normal, also occurred, although even in extreme cases the beam quality never became worse than twice the diffraction limit. The observed steering is consistent with a theory for interference and beating between the two lowest order lateral modes. We also describe simulations of a wide-stripe photonic-crystal distributed-feedback QCL, which based on the current material quality is projected to emit multiple watts of CW power into a single-mode beam at T=200 K. reprint
8.  Photoluminescence Study of AlGaN-based 280 nm Ultraviolet Light-Emitting Diodes
A. Yasan, R. McClintock, K. Mayes, D.H. Kim, P. Kung, and M. Razeghi
Applied Physics Letters, 83 (20)-- November 17, 2003
We investigated optical properties of single quantum well AlGaN-based UV 280 nm light-emitting diodes using temperature-dependent photoluminescence (PL) measurement. We found an "S-shaped" temperature dependence of the peak energy. From the Arrhenius plot of integrated PL intensity, we speculate that dislocations as well as thermal emission of carriers out of the quantum well are responsible for the PL quenching behavior. Also a second nonradiative channel with much lower activation energy was found, the origin of which we believe to be quenching of the bound excitons reprint
9.  Quantum Dot Intersubband Photodetectors
C. Jelen, M. Erdtmann, S. Kim, and M. Razeghi
SPIE Conference, San Jose, CA, -- January 22, 2001
Quantum dots are recognized as very promising candidates for the fabrication of intersubband photodetectors in the infrared spectral range. At present, material quality is making rapid progress and some devices have been demonstrated. Examples of mid-infrared quantum dot intersubband photodetectors are presented along with device design and data analysis. Nonetheless, the performance of these devices remains less than comparable quantum well intersubband photodetectors due to difficulties in controlling the quantum dot size and distribution during epitaxy. reprint
10.  Exploration of Novel InSbBi Alloy for Uncooled Infrared Photodetector Applications
J.J. Lee, J.D. Kim, and M. Razeghi
-- July 1, 1999
11.  Growth and characterization of InGaAs/InGaP quantum dots for mid-infrared photodetectors
S. Kim, M. Erdtmann, and M. Razeghi
-- July 1, 1999
12.  Novel InTlSb Alloy for Uncooled Long-Wavelength Infrared Photodetectors
J.J. Lee, J.D. Kim, and M. Razeghi
-- March 1, 1999
13.  Growth of InAsSb Alloys on GaAs and Si Substrates for Uncooled Infrared Photodetector Applications
J.D. Kim, H. Mohseni, J.S. Wojkowski, J.J. Lee and M. Razeghi
SPIE Conference, San Jose, CA, -- January 27, 1999
In this paper, we report on the growth and characterization of InAsSb alloys on GaAs and Si substrates for uncooled infrared photodetector applications. The fabrication and characterization of photodetectors from the grown layers are also reported. The photovoltaic and photoconductive devices were grown on (100) GaAs and Si substrates, respectively, using molecular beam epitaxy (MBE). The composition of InAs>sub>1-xSbx layers was 0.95 in both cases and cut-off wavelength of 7-8 μm has been obtained. At 300 K, the photovoltaic detectors on GaAs substrates resulted in a sharp cut-off wavelength of 7.5 μm with a peak responsivity as high as 0.32 V/W at 6.5 micrometer. For the photoconductive detectors on Si substrates, cut-off wavelength of 8 μm has been observed with a responsivity of 6.3x10-2 V/W at 7 μm under an electric field of 420 V/m. reprint
14.  Demonstration of InAsSb/AlInSb Double Heterostructure Detectors for Room Temperature Operation in the 5–8 μm Wavelength Range
J.S. Wojkowski, H. Mohseni, J.D. Kim, and M. Razeghi
SPIE Conference, San Jose, CA, -- January 27, 1999
We report the first demonstration of InAsSb/AlInSb double heterostructure detectors for room temperature operation. The structures were grown in a solid source molecular beam epitaxy reactor on semi-insulating GaAs substrate. The material was processed to 400x400 micrometer mesas using standard photolithography, etching, and metallization techniques. No optical immersion or surface passivation was used. The photovoltaic detectors showed a cutoff wavelength at 8 micrometer at 300 K. The devices showed a high quantum efficiency of 40% at 7 μm at room temperature. A responsivity of 300 mA/W was measured at 7 μm under a reverse bias of 0.25 V at 300 K resulting in a Johnson noise limited detectivity of 2x108 cm·Hz½/W. reprint
15.  Characteristics of Self-Assembled InGaAs/InGaP Quantum Dot Mid-Infrared Photoconductive Detectors Grown by Low Pressure MOCVD
S. Kim, M. Erdtmann, and M. Razeghi
SPIE Conference, San Jose, CA, -- January 27, 1999
We report the first self-assembled InGaAs/InGaP quantum dot intersubband infrared photoconductive detectors (QDIPs) grown on semi-insulating GaAs substrate by low pressure metal organic chemical vapor deposition (MOCVD). The InGaAs quantum dots were constructed on an InGaP matrix as self assembling in Stranski-Krastanow growth mode in optimum growth conditions. The detector structure was prepared for single layer and multi-stacked quantum dots for active region. Normal incident photoconductive response was observed at a peak wavelength of 5.5 μm with a high responsivity of 130 mA/W, and a detectivity of 4.74 X 107 cm·Hz½/W at 77 K for multi-stack QDIP. Low temperature photoresponse of the single quantum dot photodetector was characterized. Peak response was obtained between 16 K and 60 K. The detailed dark current noise measurements were carried on single and multistack quantum dot infrared detectors. High photoconductive gain as 7.6 x 103 biased at 0.5 V results in increasing the intersubband carrier relaxation time as two order of magnitude compared quantum well infrared photodetectors. reprint
16.  Investigation of InAsSb Infrared Photodetectors for Near Room Temperature Operation
J.D. Kim and M. Razeghi
-- December 1, 1998
17.  Growth and Characterization of Self-Assembled InGaAs/InGaP Quantum Dots for Mid-Infrared Photoconductive Detector by LP-MOCVD
S. Kim and M. Razeghi
-- November 5, 1998
18.  Uncooled long-wavelength infrared photodetectors using narrow bandgap semiconductors
M. Razeghi, J. Wojkowski, J.D. Kim, H. Mohseni and J.J. Lee
-- October 12, 1998
19.  Growth and characterization of InGaAs/InGaP quantum dots for mid-infrared photoconductive detector
S. Kim, H. Mohseni, M. Erdtmann, E. Michel, C. Jelen and M. Razeghi
Applied Physics Letters 73 (7)-- August 17, 1998
We report InGaAs quantum dot intersubband infrared photodetectors grown by low-pressure metalorganic chemical vapor deposition on semi-insulating GaAs substrates. The optimum growth conditions were studied to obtain uniform InGaAs quantum dots constructed in an InGaP matrix. Normal incidence photoconductivity was observed at a peak wavelength of 5.5 μm with a high responsivity of 130 mA/W and a detectivity of 4.74×107  cm· Hz½/W at 77 K. reprint
20.  Room temperature operation of 8-12 μm InSbBi infrared photodetectors on GaAs substrates
J.J. Lee, J.D. Kim, and M. Razeghi
Applied Physics Letters 73 (5)-- August 3, 1998
We report the room temperature operation of 8–12 μm InSbBi long-wavelength infrared photodetectors. The InSbBi/InSb heterostructures were grown on semi-insulating GaAs (001) substrates by low pressure metalorganic chemical vapor deposition. The voltage responsivity at 10.6 μm was about 1.9 mV/W at room temperature and the corresponding Johnson noise limited detectivity was estimated to be about 1.2×106 cm·Hz½/W. The carrier lifetime derived from the voltage dependent responsivity measurements was about 0.7 ns. reprint
21.  New Developments in III-Nitride Material and Device Applications
M. Razeghi, A. Saxler, P. Kung, D. Walker, X. Zhang, K.S. Kim, H.R. Vydyanath, J. Solomon, M. Ahoujja, and W.C. Mitchel
-- January 1, 1998
22.  Long-Wavelength Infrared Photodetectors Based on InSbBi Grown on GaAs Substrates
J.J. Lee, J.D. Kim, and M. Razeghi
Applied Physics Letters 71 (16)-- October 20, 1997
We demonstrate the operation of InSbBi infrared photoconductive detectors grown by low-pressure metalorganic chemical vapor deposition on semi-insulating GaAs substrates. The fabricated photodetector showed a cutoff wavelength of 7.7 μm at 77 K. The responsivity of the InSbBi photodetector at 7 μm was about 3.2 V/W at 77 K. The corresponding Johnson-noise limited detectivity was 4.7×108  cm· Hz½/W. The carrier lifetime was estimated to be about 86 ns from the voltage-dependent responsivity measurements. reprint
23.  High Carrier Lifetime InSb Grown on GaAs Substrates
E. Michel, H. Mohseni, J.D. Kim, J. Wojkowski, J. Sandven, J. Xu, M. Razeghi, R. Bredthauer, P. Vu, W. Mitchel, and M. Ahoujja
Applied Physics Letters 71 (8-- August 25, 1997
We report on the growth of near bulklike InSb on GaAs substrates by molecular beam epitaxy despite the 14% lattice mismatch between the epilayer and the substrate. Structural, electrical, and optical properties were measured to assess material quality. X-ray full widths at half-maximum were as low as 55 arcsec for a 10 µm epilayer, peak mobilities as high as ~ 125 000 cm2/V s, and carrier lifetimes up to 240 ns at 80 K. reprint
24.  Schottky barrier heights and conduction-band offsets of In1-xGaxAs1-yPy lattice matched to GaAs
J.K. Lee, Y.H. Cho, B.D. Choe, K.S. Kim, H.I. Jeon, H. Lim and M. Razeghi
Applied Physics Letters 71 (7)-- August 18, 1997
The Schottky barrier heights of Au/In1−xGaxAs1−yPy contacts have been determined as a function of y by the capacitance–voltage and temperature dependent current–voltage characteristics measurements. The barrier height is observed to increase as y is increased for both n- and p-type materials, with a more rapid increase for the p-type material. The compositional variation of the barrier heights for Au/n-In1−xGaxAs1−yPy is found to be identical to that of the conduction-band offsets in In1−xGaxAs1−yPy/GaAs heterojunctions. A possible cause of this phenomenon is also discussed. reprint
25.  Determination of of Band Gap Energy of Al1-xInxN Grown by Metal Organic Chemical Vapor Deposition in the High Al Composition Regime
K.S. Kim, A. Saxler, P. Kung, M. Razeghi, and K.Y. Lim
Applied Physics Letters 71 (6)-- August 11, 1997
Ternary AlInN was grown by metal–organic chemical-vapor deposition in the high Al composition regime. The band-gap energy of AlInN ternary was measured by optical absorption spectroscopy at room temperature. The band-gap energy of Al0.92In0.08N is 5.26 eV. The potential application of AlInN as a barrier material for GaN is also discussed. reprint

Page 1 of 3:  1  2 3  >> Next  (53 Items)