Publications by    
Page 1 of 4:  1  2 3 4  >> Next  (83 Items)

1.  
Antimonite-based gap-engineered type-II superlattice materials grown by MBE and MOCVD for the third generation of infrared imagers
Antimonite-based gap-engineered type-II superlattice materials grown by MBE and MOCVD for the third generation of infrared imagers
Manijeh Razeghi, Arash Dehzangi, Donghai Wu, Ryan McClintock, Yiyun Zhang, Quentin Durlin, Jiakai Li, Fanfei Meng
Proc. SPIE Defense + Commercial Sensing,Infrared Technology and Applications XLV, 110020G -- May 7, 2019
Third generation of infrared imagers demand performances for higher detectivity, higher operating temperature, higher resolution, and multi-color detection all accomplished with better yield and lower manufacturing costs. Antimonidebased gap-engineered Type-II superlattices (T2SLs) material system is considered as a potential alternative for MercuryCadmium-Telluride (HgCdTe) technology in all different infrared detection regimes from short to very long wavelengths for the third generation of infrared imagers. This is due to the incredible growth in the understanding of its material properties and improvement of device processing which leads to design and fabrication of better devices. We will present the most recent research results on Antimonide-based gap-engineered Type-II superlattices, such as highperformance dual-band SWIR/MWIR photo-detectors and focal plane arrays for different infrared regimes, toward the third generation of infrared imaging systems at the Center for Zuantum Devices. Comparing metal-organic chemical vapor deposition (MOCVD), vs molecular beam epitaxy (MBE). reprint
 
2.  
Fabrication of 12 µm pixel-pitch 1280 × 1024 extended short wavelength infrared focal plane array using heterojunction type-II superlattice-based photodetector
Fabrication of 12 µm pixel-pitch 1280 × 1024 extended short wavelength infrared focal plane array using heterojunction type-II superlattice-based photodetector
Arash Dehzangi , Abbas Haddadi, Romain Chevallier, Yiyun Zhang and Manijeh Razegh
Semicond. Sci. Technol. 34, 03LT01-- February 4, 2019
We present an initial demonstration of a 1280 × 1024 extended short-wavelength infrared focal plane array (FPA) imager with 12μm pixel-pitch based on type–II InAs/AlSb/GaSb superlattice heterojunction photodetectors, with a novel bandstructure-engineered photo-generated carrier extractor as the window layer in the hetero structure to efficiently extract the photo-generated carriers. This heterostructure with a larger bandgap top window/contact layer leads to the device having lower dark current density compared to conventional pn junction devices. The large format FPA was fabricated with 12 μm pixel-pitch using a developed fabrication process. Test pixels fabricated separately exhibit 100% cut–off wavelengths of ∼2.22, ∼2.34μm, and ∼2.45μm at 150, 200K, and 300K. The test devices achieve saturated quantum efficiency values under zero bias of 54.3% and 68.4% at 150 and 300K, under back-side illumination and without any anti-reflection coating. At 150K, these photodetectors exhibit dark current density of 1.63 × 10−7 A·cm−2 under −20mV applied bias providing a specific detectivity of 1.01 × 1011 cm ·Hz½/W at 1.9μm. reprint
 
3.  
High quantum efficiency mid-wavelength infrared type-II InAs/InAs<sub>1-x</sub>Sb<sub>x</sub> superlattice photodiodes grown by metal-organic chemical vapor deposition
High quantum efficiency mid-wavelength infrared type-II InAs/InAs1-xSbx superlattice photodiodes grown by metal-organic chemical vapor deposition
Donghai Wu , Quentin Durlin, Arash Dehzangi , Yiyun Zhang , and Manijeh Razeghi
Appl. Phys. Lett. 114, 011104-- January 8, 2019
We report the growth and characterization of mid-wavelength infrared type-II InAs/InAs1-xSbx superlattice photodiodes on GaSb substrates grown by metal-organic chemical vapor deposition. At 150 K, the 50% cut-off wavelength is 5.0 um, the dark current density is 3.3x10−4 A/cm2 under −20mV bias, and the peak responsivity is 1.76A/W corresponding to a quantum efficiency of 55% without anti-reflection coating. A specific detectivity of 1.2x1011cmHz1/2/W is achieved at 4.0 um under −20mV bias at 150 K. reprint
 
4.  
Suppressing Spectral Crosstalk in Dual-Band LongWavelength Infrared Photodetectors With Monolithically Integrated Air-Gapped Distributed Bragg Reflectors
Suppressing Spectral Crosstalk in Dual-Band LongWavelength Infrared Photodetectors With Monolithically Integrated Air-Gapped Distributed Bragg Reflectors
Yiyun Zhang, Abbas Haddadi, Arash Dehzangi , Romain Chevallier, Manijeh Razeghi
IEEE Journal of Quantum Electronics Volume: 55, Issue:1-- November 22, 2018
Antimonide-based type-II superlattices (T2SLs) have made possible the development of high-performance infrared cameras for use in a wide variety of thermal imaging applications, many of which could benefit from dual-band imaging. The performance of this material system has not reached its limits. One of the key issues in dual-band infrared photodetection is spectral crosstalk. In this paper, air-gapped distributed Bragg reflectors (DBRs) have been monolithically integrated between the two channels in long-/very long-wavelength dualband InAs/InAs1−xSbx/AlAs1−xSbx-based T2SLs photodetectors to suppress the spectral crosstalk. This air-gapped DBR has achieved a significant spectral suppression in the 4.5–7.5-µm photonic stopband while transmitting the optical wavelengths beyond 7.5 µm, which is confirmed by theoretical calculations, numerical simulation, and experimental results. reprint
 
5.  
Demonstration of long wavelength infrared Type-II InAs/InAs<sub>1-x</sub>Sb<sub>x</sub> superlattices photodiodes on GaSb substrate grown by metalorganic chemical vapor deposition
Demonstration of long wavelength infrared Type-II InAs/InAs1-xSbx superlattices photodiodes on GaSb substrate grown by metalorganic chemical vapor deposition
D. H. Wu, A. Dehzangi, Y. Y. Zhang, M. Razeghi
Applied Physics Letters 112, 241103-- June 12, 2018
We report the growth and characterization of long wavelength infrared type-II InAs/InAs1−xSbx superlattices photodiodes with a 50% cut-off wavelength at 8.0 μm on GaSb substrate grown by metalorganic chemical vapor deposition. At 77 K, the photodiodes exhibited a differential resistance at zero bias (R0A) 8.0 Ω·cm2, peak responsivity of 1.26 A/W corresponding to a quantum efficiency of 21%. A specific detectivity of 5.4×1010 cm·Hz1/2/W was achieved at 7.5 μm. reprint
 
6.  
Thin-Film Antimonide-Based Photodetectors Integrated on Si
Thin-Film Antimonide-Based Photodetectors Integrated on Si
Yiyun Zhang , Member, IEEE, Abbas Haddadi, Member, IEEE, Romain Chevallier, Arash Dehzangi, Member, IEEE, and Manijeh Razeghi , Life Fellow, IEEE
IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 54, NO. 2-- April 1, 2018
Monolithic integration of antimonide (Sb)-based compound semiconductors on Si is in high demand to enrich silicon photonics by extending the detection range to longer infrared wavelengths. In this paper, we have demonstrated the damage-free transfer of large-area (1×1 cm² ) narrow-bandgap Sb-based type-II superlattice (T2SL)-based thin-film materials onto a Si substrate using a combination of wafer-bonding and chemical epilayer release techniques. An array of Sb-based T2SL-based long-wavelength infrared (LWIR) photodetectors with diameters from 100 to 400 μm has been successfully fabricated using standard "top–down" processing technique. The transferred LWIR photodetectors exhibit a cut-off wavelength of λ 8.6 μm at 77 K. The dark current density of the transferred photodetectors under 200 mV applied bias at 77 K is as low as 5.7×10−4 A/cm² and the R×A reaches 66.3 Ω·cm², exhibiting no electrical degradation compared with reference samples on GaSb native substrate. The quantum efficiency and peak responsivity at 6.75 μm (@77 K, 200 mV) are 46.2% and 2.44 A/W, respectively. The specific detectivity (D*) at 6.75 μm reaches as high as 1.6×1011 cm·Hz1/2/W under 200 mV bias at 77 K. Our method opens a reliable pathway to realize high performance and practical Sb-based optoelectronic devices on a Si platform. reprint
 
7.  
Room temperature operation of In<sub>x</sub>Ga<sub>1-x</sub>Sb/InAs type-II quantum well infrared photodetectors grown by MOCVD
Room temperature operation of InxGa1-xSb/InAs type-II quantum well infrared photodetectors grown by MOCVD
D. H. Wu, Y. Y. Zhang, and M. Razeghi
Applied Physics Letters 112, 111103-- March 14, 2018
We demonstrate room temperature operation of In0.5Ga0.5Sb/InAs type-II quantum well photodetectors on InAs substrate grown by metal-organic chemical vapor deposition. At 300 K, the detector exhibits a dark current density of 0.12 A/cm2, peak responsivity of 0.72 A/W corresponding to a quantum efficiency of 23.3%, with calculated specific detectivity of 2.4×109 cm.Hz1/2/W at 3.81 μm. reprint
 
8.  
nBn extended short-wavelength infrared focal plane array
nBn extended short-wavelength infrared focal plane array
ARASH DEHZANGI, ABBAS HADDADI, ROMAIN CHEVALLIER, YIYUN ZHANG, AND MANIJEH RAZEGHI
Optics Letters Vol. 43, Issue 3, pp. 591-594-- February 1, 2018
An extended short-wavelength nBn InAs/GaSb/AlSb type-II superlattice-based infrared focal plane array imager was demonstrated. A newly developed InAs0.10Sb0.90∕GaSb superlattice design was used as the large-bandgap electron barrier in this photodetector. The large band gap electron-barrier design in this nBn photodetector architecture leads to the device having lower dark current densities. A new bi-layer etch-stop scheme using a combination of InAs0.91Sb0.09 bulk and AlAs0.1Sb0.9∕GaSb superlattice layers was introduced to allow complete substrate removal and a shorter wavelength cut-on. Test pixels exhibit 100% cutoff wavelengths of ∼2.30 and ∼2.48 μm at 150 and 300 K, respectively. The devices achieve saturated quantum efficiency values of 59.7% and 63.8% at 150 and 300 K, respectively, under backside illumination and without any antireflection coating.At 150 K, photodetectors exhibit dark current density of 8.75 × 10−8 A∕cm² under −400 mV applied bias, providing specific detectivity of 2.82 × 1012 cm · Hz1∕2∕W at 1.78 μm. At 300 K, the dark current density reaches 4.75 × 10−2 A∕cm² under −200 mV bias, providing a specific detectivity of 8.55 × 109 cm · Hz1∕2∕W 1.78 μm. reprint
 
9.  
Surface plasmon enhanced light emission from AlGaN-based ultraviolet light-emitting diodes grown on Si (111)
Surface plasmon enhanced light emission from AlGaN-based ultraviolet light-emitting diodes grown on Si (111)
Chu-Young Cho, Yinjun Zhang, Erdem Cicek, Benjamin Rahnema, Yanbo Bai, Ryan McClintock, and Manijeh Razeghi
Appl. Phys. Lett. 102, 211110 (2013)-- May 31, 2013
We report on the development of surface plasmon (SP) enhanced AlGaN-based multiple quantum wells (MQWs) ultraviolet (UV) light-emitting diodes (LEDs) grown on silicon (111) substrates. In order to generate SP-coupling with the radiating dipoles in MQWs, an aluminum layer is selectively deposited in holes etched in the top p-AlGaN to p-GaN layers. After flip-chip bonding and substrate removal, an optical output power of ∼1.2 mW is achieved at an emission wavelength of 346 nm; the output power of these UV LEDs with Al layer is increased by 45% compared to that of conventional UV LEDs without Al layer. This enhancement can be attributed to an increase in the spontaneous emission rate and improved internal quantum efficiency via resonance coupling between excitons in MQWs and SPs in the aluminum layer. reprint
 
10.  
Engineering future light emitting diodes and photovoltaics with inexpensive materials: Integrating ZnO and Si into GaN-based devices
Engineering future light emitting diodes and photovoltaics with inexpensive materials: Integrating ZnO and Si into GaN-based devices
C. Bayram ; K. T. Shiu ; Y. Zhu ; C. W. Cheng ; D. K. Sadana ; F. H. Teherani ; D. J. Rogers ; V. E. Sandana ; P. Bove ; Y. Zhang ; S. Gautier ; C.-Y. Cho ; E. Cicek ; Z. Vashaei ; R. McClintock ; M. Razeghi
Proc. SPIE 8626, Oxide-based Materials and Devices IV, 86260L (March 18, 2013)-- March 18, 2013
Indium Gallium Nitride (InGaN) based PV have the best fit to the solar spectrum of any alloy system and emerging LED lighting based on InGaN technology and has the potential to reduce energy consumption by nearly one half while enabling significant carbon emission reduction. However, getting the maximum benefit from GaN diode -based PV and LEDs will require wide-scale adoption. A key bottleneck for this is the device cost, which is currently dominated by the substrate (i.e. sapphire) and the epitaxy (i.e. GaN). This work investigates two schemes for reducing such costs. First, we investigated the integration of Zinc Oxide (ZnO) in InGaN-based diodes. (Successful growth of GaN on ZnO template layers (on sapphire) was illustrated. These templates can then be used as sacrificial release layers for chemical lift-off. Such an approach provides an alternative to laser lift-off for the transfer of GaN to substrates with a superior cost-performance profile, plus an added advantage of reclaiming the expensive single-crystal sapphire. It was also illustrated that substitution of low temperature n-type ZnO for n-GaN layers can combat indium leakage from InGaN quantum well active layers in inverted p-n junction structures. The ZnO overlayers can also double as transparent contacts with a nanostructured surface which enhances light in/out coupling. Thus ZnO was confirmed to be an effective GaN substitute which offers added flexibility in device design and can be used in order to simultaneously reduce the epitaxial cost and boost the device performance. Second, we investigated the use of GaN templates on patterned Silicon (100) substrates for reduced substrate cost LED applications. Controlled local metal organic chemical vapor deposition epitaxy of cubic phase GaN with on-axis Si(100) substrates was illustrated. Scanning electron microscopy and transmission electron microscopy techniques were used to investigate uniformity and examine the defect structure in the GaN. Our results suggest that groove structures are very promising for controlled local epitaxy of cubic phase GaN. Overall, it is concluded that there are significant opportunities for cost reduction in novel hybrid diodes based on ZnO-InGaN-Si hybridization. reprint
 
11.  
Crack-free AlGaN for solar-blind focal plane arrays through reduced area expitaxy
Crack-free AlGaN for solar-blind focal plane arrays through reduced area expitaxy
E. Cicek, R. McClintock, Z. Vashaei, Y. Zhang, S. Gautier, C.Y. Cho and M. Razeghi
Applied Physics Letters, Vol. 102, No. 05, p. 051102-1-- February 4, 2013
We report on crack reduction for solar-blind ultraviolet detectors via the use of a reduced area epitaxy (RAE) method to regrow on patterned AlN templates. With the RAE method, a pre-deposited AlN template is patterned into isolated mesas in order to reduce the formation of cracks in the subsequently grown high Al-content AlxGa1−xN structure. By restricting the lateral dimensions of the epitaxial growth area, the biaxial strain is relaxed by the edges of the patterned squares, which resulted in ∼97% of the pixels being crack-free. After successful implementation of RAE method, we studied the optical characteristics, the external quantum efficiency, and responsivity of average pixel-sized detectors of the patterned sample increased from 38% and 86.2 mA/W to 57% and 129.4 mA/W, respectively, as the reverse bias is increased from 0 V to 5 V. Finally, we discussed the possibility of extending this approach for focal plane array, where crack-free large area material is necessary for high quality imaging. reprint
 
12.  
Near milliwatt power AlGaN-based ultraviolet light emitting diodes based on lateral epitaxial overgrowth of AlN on Si(111)
Near milliwatt power AlGaN-based ultraviolet light emitting diodes based on lateral epitaxial overgrowth of AlN on Si(111)
Y. Zhang, S. Gautier, C. Cho, E. Cicek, Z, Vashaei, R. McClintock, C. Bayram, Y. Bai and M. Razeghi
Applied Physics Letters, Vol. 102, No. 1, p. 011106-1-- January 7, 2013
We report on the growth, fabrication, and device characterization of AlGaN-based thin-film ultraviolet (UV) (λ ∼ 359 nm) light emitting diodes (LEDs). First, AlN/Si(111) template is patterned. Then, a fully coalesced 7-μm-thick lateral epitaxial overgrowth (LEO) of AlN layer is realized on patterned AlN/Si(111) template followed by UV LED epi-regrowth. Metalorganic chemical vapor deposition is employed to optimize LEO AlN and UV LED epitaxy. Back-emission UV LEDs are fabricated and flip-chip bonded to AlN heat sinks followed by Si(111) substrate removal. A peak pulsed power and slope efficiency of ∼0.6 mW and ∼1.3 μW/mA are demonstrated from these thin-film UV LEDs, respectively. For comparison, top-emission UV LEDs are fabricated and back-emission LEDs are shown to extract 50% more light than top-emission ones. reprint
 
13.  
InP-based quantum-dot infrared photodetectors with high quantum efficiency and high temperature imaging
InP-based quantum-dot infrared photodetectors with high quantum efficiency and high temperature imaging
S. Tsao, H. Lim, H. Seo, W. Zhang and M. Razeghi
IEEE Sensors Journal, Vol. 8, No. 6, p. 936-941-- June 1, 2008
We report a room temperature operating InAs quantum-dot infrared photodetector grown on InP substrate. The self-assembled InAs quantum dots and the device structure were grown by low-pressure metalorganic chemical vapor depositon. The detectivity was 6 x 1010cm·Hz1/2·W-1 at 150 K and a bias of 5 V with a peak detection wavelength around 4.0 micron and a quantum efficiency of 48%. Due to the low dark current and high responsivity, a clear photoresponse has been observed at room temperature. A 320 x 256 middle wavelength infrared focal plane array operating at temperatures up to 200 K was also demonstrated. The focal plane array had 34 mA/W responsivity, 1.1% conversion efficiency, and noise equivalent temperature difference of 344 mK at 120 K operating temperature. reprint
 
14.  
Room temperature continuous wave operation of quantum cascade lasers with watt-level optical power
Room temperature continuous wave operation of quantum cascade lasers with watt-level optical power
Y. Bai, S.R. Darvish, S. Slivken, W. Zhang, A. Evans, J. Nguyen and M. Razeghi
Applied Physics Letters, Vol. 92, No. 10, p. 101105-1-- March 10, 2008
We demonstrate quantum cascade lasers at an emitting wavelength of 4.6 µm, which are capable of room temperature, high power continuous wave (cw) operation. Buried ridge geometry with a width of 9.8 µm was utilized. A device with a 3 mm cavity length that was epilayer-down bonded on a diamond submount exhibited a maximum output power of 1.3 W at room temperature in cw operation. The maximum output power at 80 K was measured to be 4 W, with a wall plug efficiency of 27%. reprint
 
15.  
Electrically pumped photonic crystal distributed feedback quantum cascade lasers
Electrically pumped photonic crystal distributed feedback quantum cascade lasers
Y. Bai, P. Sung, S.R. Darvish, W. Zhang, A. Evans, S. Slivken, and M. Razeghi
SPIE Conference, January 20-25, 2008, San Jose, CA Proceedings – Quantum Sensing and Nanophotonic Devices V, Vol. 6900, p. 69000A-1-8.-- February 1, 2008
We demonstrate electrically pumped, room temperature, single mode operation of photonic crystal distributed feedback (PCDFB) quantum cascade lasers emitting at ~ 4.75 µm. Ridge waveguides of 50 µm and 100 µm width were fabricated with both PCDFB and Fabry-Perot feedback mechanisms. The Fabry-Perot device has a broad emitting spectrum and a broad far-field character. The PCDFB devices have primarily a single spectral mode and a diffraction limited far field characteristic with a full angular width at half-maximum of 4.8 degrees and 2.4 degrees for the 50 µm and 100 µm ridge widths, respectively. reprint
 
16.  
Overview of Quantum Cascade Laser Research at the Center for Quantum Devices
Overview of Quantum Cascade Laser Research at the Center for Quantum Devices
S. Slivken, A. Evans, J. Nguyen, Y. Bai, P. Sung, S.R. Darvish, W. Zhang and M. Razeghi
SPIE Conference, January 20-25, 2008, San Jose, CA Proceedings – Quantum Sensing and Nanophotonic Devices V, Vol. 6900, p. 69000B-1-8.-- February 1, 2008
Over the past several years, our group has endeavored to develop high power quantum cascade lasers for a variety of remote and high sensitivity infrared applications. The systematic optimization of laser performance has allowed for demonstration of high power, continuous-wave quantum cascade lasers operating above room temperature. In the past year alone, the efficiency and power of our short wavelength lasers (~4.8 µm) has doubled. In continuous wave at room temperature, we have now separately demonstrated ~10% wallplug efficiency and ~700 mW of output power. Up to now, we have been able to show that room temperature continuous wave operation with > 100 mW output power in the 3.8 < λ < 11.5 µm wavelength range is possible. reprint
 
17.  
Thermal imaging based on high-performance InAs/InP quantum-dot infrared photodetector operating at high temperature
Thermal imaging based on high-performance InAs/InP quantum-dot infrared photodetector operating at high temperature
M. Razeghi; H. Lim; S. Tsao; H. Seo; W. Zhang
Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS.15-16:[4382251] (2007).-- October 21, 2007
We report a room temperature operating and high-performance InAs quantum-dot infrared photodetector on InP substrate and thermal imaging of 320times256 focal plane array based on this device up to 200 K. reprint
 
18.  
Electrically pumped photonic crystal distributed feedback quantum cascade lasers
Electrically pumped photonic crystal distributed feedback quantum cascade lasers
Y. Bai, S.R. Darvish, S. Slivken, P. Sung, J. Nguyen, A. Evans, W. Zhang, and M. Razeghi
Applied Physics Letters, Vol. 91, No. 14, p. 141123-1-- October 1, 2007
We demonstrate electrically pumped, room temperature, single mode operation of photonic crystal distributed feedback (PCDFB) quantum cascade lasers emitting at ~4.75 µm. Ridge waveguides of 100 µm width were fabricated with both PCDFB and Fabry-Pérot feedback mechanisms. The Fabry-Pérot device has a broad emitting spectrum and a double lobed far-field character. The PCDFB device, as expected, has primarily a single spectral mode and a diffraction limited far field characteristic with a full angular width at half maximum of 2.4°. This accomplishment represents the first step in power scaling of single mode, midinfrared laser diodes operating at room temperature. reprint
 
19.  
High operating temperature 320 x 256 middle-wavelength infrared focal plane array imaging based on an InAs/InGaAs/InAlAs/InP quantum dot infrared photodetector
High operating temperature 320 x 256 middle-wavelength infrared focal plane array imaging based on an InAs/InGaAs/InAlAs/InP quantum dot infrared photodetector
S. Tsao, H. Lim, W. Zhang, and M. Razeghi
Virtual Journal of Nanoscale Science and Technology-- May 28, 2007reprint
 
20.  
High operating temperature 320 x 256 middle-wavelength infrared focal plane array imaging based on an InAs/InGaAs/InAlAs/InP quantum dot infrared photodetector
High operating temperature 320 x 256 middle-wavelength infrared focal plane array imaging based on an InAs/InGaAs/InAlAs/InP quantum dot infrared photodetector
S. Tsao, H. Lim, W. Zhang, and M. Razeghi
Applied Physics Letters, Vol. 90, No. 20, p. 201109-- May 14, 2007
This letter reports a 320×256 middle-wavelength infrared focal plane array operating at temperatures up to 200 K based on an InAs quantum dot/InGaAs quantum well/InAlAs barrier detector grown on InP substrate by low pressure metal organic chemical vapor deposition. The device's low dark current density and the persistence of the photocurrent up to room temperature enabled the high temperature imaging. The focal plane array had a peak detection wavelength of 4 µm, a responsivity of 34 mA/W, a conversion efficiency of 1.1%, and a noise equivalent temperature difference of 344 mK at an operating temperature of 120 K. reprint
 
21.  
Self-assembled semiconductor quantum dot infrared photodetector operating at room temperature and focal plane array
Self-assembled semiconductor quantum dot infrared photodetector operating at room temperature and focal plane array
Ho-Chul Lim; Stanley Tsao; Wei Zhang; Manijen Razeghi
Proc. SPIE 6542, Infrared Technology and Applications XXXIII, 65420R (May 14, 2007)-- May 14, 2007
Self-assembled semiconductor quantum dots have attracted much attention because of their novel properties and thus possible practical applications including the lasers, detectors and modulators. Especially the photodetectors which have quantum dots in their active region have been developed and show promising performances such as high operation temperature due to three dimensional confinement of the carriers and normal incidence in contrast to the case of quantum well detectors which require special optical coupling schemes. Here we report our recent results for mid-wavelength infrared quantum dot infrared photodetector grown by low-pressure metalorganic chemical vapor deposition. The material system we have investigated consists of 25 period self-assembled InAs quantum dot layers on InAlAs barriers, which are lattice-matched to InP substrates, covered with InGaAs quantum well layers and InAlAs barriers. This active region was sandwiched by highly doped InP contact layers. The device operates at 4.1 μm with a peak detectivity of 2.8×1011 cm·Hz1/2/W at 120 K and a quantum efficiency of 35 %. The photoresponse can be observed even at room temperature resulting in a peak detectivity of 6×107 cm·Hz1/2/W. A 320×256 focal plane array has been fabricated in this kind of device. Its performance will also be discussed here. reprint
 
22.  
High-power, continuous-operation intersubband laser for wavelengths greater than 10 micron
High-power, continuous-operation intersubband laser for wavelengths greater than 10 micron
S. Slivken, A. Evans, W. Zhang and M. Razeghi
Applied Physics Letters, Vol. 90, No. 15, p. 151115-1-- April 9, 2007
In this letter, high-power continuous-wave emission (>100 mW) and high temperature operation (358 K) at a wavelength of 10.6 µm is demonstrated using an individual diode laser. This wavelength is advantageous for many medium-power applications previously reserved for the carbon dioxide laser. Improved performance was accomplished using industry-standard InP-based materials and by careful attention to design, growth, and fabrication limitations specific to long-wave infrared semiconductor lasers. The main problem areas are explored with regard to laser performance, and general steps are outlined to minimize their impact. reprint
 
23.  
High-performance InAs quantum-dot infrared photodetectors grown on InP substrate operating at room temperature
High-performance InAs quantum-dot infrared photodetectors grown on InP substrate operating at room temperature
H. Lim, S. Tsao, W. Zhang, and M. Razeghi
Applied Physics Letters, Vol. 90, No. 13, p. 131112-1-- March 26, 2007
The authors report a room temperature operating InAs quantum-dot infrared photodetector grown on InP substrate. The self-assembled InAs quantum dots and the device structure were grown by low-pressure metal-organic chemical vapor deposition. The detectivity was 2.8×1011 cm·Hz1/2/W at 120 K and a bias of −5 V with a peak detection wavelength around 4.1 μm and a quantum efficiency of 35%. Due to the low dark current and high responsivity, a clear photoresponse has been observed at room temperature, which gives a detectivity of 6.7×107 cm·Hz1/2/W. reprint
 
24.  
High-power continuous-wave operation of distributed-feedback quantum-cascade lasers at λ ~ 7.8 µm
High-power continuous-wave operation of distributed-feedback quantum-cascade lasers at λ ~ 7.8 µm
S.R. Darvish, W. Zhang, A. Evans, J.S. Yu, S. Slivken, and M. Razeghi
Applied Physics Letters, 89 (25)-- December 18, 2006
The authors present high-power continuous-wave (cw) operation of distributed-feedback quantum-cascade lasers. Continuous-wave output powers of 56 mW at 25 °C and 15 mW at 40 °C are obtained. Single-mode emission near 7.8 μm with a side-mode suppression ratio of >=30 dB and a tuning range of 2.83 cm−1 was obtained between 15 and 40 °C. The device exhibits no beam steering with a full width at half maximum of 27.4° at 25 °C in cw mode. reprint
 
25.  
Gain and recombination dynamics of quantum-dot infrared photodetecto
Gain and recombination dynamics of quantum-dot infrared photodetecto
H. Lim, B. Movaghar, S. Tsao, M. Taguchi, W. Zhang, A.A. Quivy, and M. Razeghi
Virtual Journal of Nanoscale Science & Technology-- December 4, 2006reprint
 

Page 1 of 4:  1  2 3 4  >> Next  (83 Items)