About the CQD | News | Conferences | Publications | Books | Research | People | History | Patents | Contact | Channel | |
Page 1 (15 Items)
1.
| MOCVD grown β-Ga2O3 metal-oxide-semiconductor field effect transistors on sapphire Ji-Hyeon Park , Ryan McClintock, Alexandre Jaud, Arash Dehzangi , Manijeh Razeghi Applied Physics Express 12, 095503-- August 28, 2019 We fabricated β-Ga2O3:Si metal-oxide field-effect transistors (MOSFETs) on c-plane sapphire substrates which typically showed maximum drain current of 100 mA·mm−1. β-Ga2O3:Si thin films were realized on c-plane sapphire substrates through a combination of metalorganic chemical vapor deposition and post-annealing. The MOSFET device presented excellent on/off drain current ratio of ∼1011 with very low gate leakage current, sharp pinch off behavior, and a breakdown voltage of 400 V at VG = −40 V. The growth and fabrication of β-Ga2O3:Si MOSFETs on
c-plane sapphire is valuable to its demonstration of the great potential for future high-power electronic devices. reprint |
2.
| Ga2O3 Metal-oxide-semiconductor Field Effect Transistors on Sapphire Substrate by MOCVD Ji-Hyeon Park, Ryan McClintock and Manijeh Razeghi Semiconductor Science and Technology, Volume 34, Number 8-- June 26, 2019 Si-doped gallium oxide (Ga2O3) thin films were grown on a c-plane sapphire substrate by metalorganic chemical vapor deposition (MOCVD) and fabricated into metal oxide semiconductor field effect transistors (MOSFETs). The Ga2O3 MOSFETs exhibited effective gate modulation of the drain current with a complete channel pinch-off for VG < −25 V, and the three-terminal off-state breakdown voltage was 390 V. The device shows a very low gate leakage current (~50 pA/mm), which led to a high on/off ratio of ~108. These transistor characteristics were stable from room temperature to 250 °C reprint |
3.
| Strain-Induced Metastable Phase Stabilization in Ga2O3 Thin Films Yaobin Xu, Ji-hyeon Park, Zhenpeng Yao, Christopher Wolverton, Manijeh Razeghi, Jinsong Wu, and Vinayak P. Dravid ACS Appl. Mater. Interfaces-- January 10, 2019 It is well known that metastable and transient structures in bulk can be stabilized in thin films via epitaxial strain (heteroepitaxy) and appropriate growth conditions that are often far from equilibrium. However, the mechanism of heteroepitaxy, particularly how the nominally unstable or metastable phase gets stabilized, remains largely unclear. This is especially intriguing for thin film Ga2O3, where multiple crystal phases may exist under varied growth conditions with spatial and dimensional constraints. Herein, the development and distribution of epitaxial strain at the
Ga2O3/Al2O3 film-substrate interfaces is revealed down to the atomic resolution along different
orientations, with an aberration-corrected scanning transmission electron microscope (STEM).
Just a few layers of metastable α-Ga2O3 structure were found to accommodate the misfit strain in
direct contact with the substrate. Following an epitaxial α-Ga2O3 structure of about couple unit cells, several layers (4~5) of transient phase appear as the intermediate structure to release the misfit strain. Subsequent to this transient crystal phase, the nominally unstable κ-Ga2O3 phase is stabilized as the major thin film phase form. We show that the epitaxial strain is gracefully accommodated by rearrangement of the oxygen polyhedra. When the structure is under large compressive strain, Ga3+ ions occupy only the oxygen octahedral sites to form a dense structure. With gradual release of the compressive strain, more and more Ga3+ ions occupy the oxygen tetrahedral sites, leading to volumetric expansion and the phase transformation. The structure of the transition phase is identified by high resolution electron microscopy (HREM) observation,
complemented by the density functional theory (DFT) calculations. This study provides insights
from the atomic scale and their implications for the design of functional thin film materials using epitaxial engineering. |
4.
| A review of the growth, doping, and applications of β-Ga2O3 thin films Manijeh Razeghi, Ji-Hyeon Park , Ryan McClintock, Dimitris Pavlidis, Ferechteh H. Teherani, David J. Rogers, Brenden A. Magill, Giti A. Khodaparast, Yaobin Xu, Jinsong Wu, Vinayak P. Dravid Proc. SPIE 10533, Oxide-based Materials and Devices IX, 105330R -- March 14, 2018 β-Ga2O3 is emerging as an interesting wide band gap semiconductor for solar blind photo detectors (SBPD) and high power field effect transistors (FET) because of its outstanding material properties including an extremely wide bandgap (Eg ~4.9eV) and a high breakdown field (8 MV/cm). This review summarizes recent trends and progress in the growth/doping of β-Ga2O3 thin films and then offers an overview of the state-of-the-art in SBPD and FET devices. The present challenges for β-Ga2O3 devices to penetrate the market in real-world applications are also considered, along with paths for future work. reprint |
5.
| Quantum dot in a well infrared photodetectors for high operating temperature focal plane arrays S. Tsao, T. Yamanaka, S. Abdollahi Pour, I-K Park, B. Movaghar and M. Razeghi SPIE Proceedings, San Jose, CA Volume 7234-0V-- January 25, 2009 InAs quantum dots embedded in InGaAs quantum wells with InAlAs barriers on InP substrate grown by metalorganic chemical vapor deposition are utilized for high operating temperature detectors and focal plane arrays in the middle wavelength infrared. This dot-well combination is unique because the small band offset between the InAs dots and the InGaAs well leads to weak dot confinement of carriers. As a result, the device behavior differs significantly from that in the more common dot systems that have stronger confinement. Here, we present energy level modeling of our QD-QW system and apply these results to interpret the detector behavior. Detectors showed high performance with D* over 1010 cm·Hz1/2W-1 at 150 K operating temperature and with high quantum efficiency over 50%. Focal plane arrays have been demonstrated operating at high temperature due to the low dark current observed in these devices. reprint |
6. | High Power 3-12 μm Infrared Lasers: Recent Improvements and Future Trends M. Razeghi, S. Slivken, A. Tahraoui, A. Matlis, and Y.S. Park Advanced Research Workshop on Semiconductor Nanostructures, Queenstown, New Zealand; Proceedings -- February 5, 2003 In this paper, we discuss the progress of quantum cascade lasers (QCLs) grown by gas-source molecular beam epitaxy. Room temperature QCL operation has been reported for lasers emitting between 5-11 μm, with 9-11 μm lasers operating up to 425 K. Laser technology for the 3-5 μm range takes advantage of a strain-balanced active layer design. We also demonstrate record room temperature peak output powers at 9 and 11 μm (2.5 and 1 W, respectively) as well as record low 80K threshold current densities (250 A/cm²) for some laser designs. Preliminary distributed feedback (DFB) results are also presented and exhibit single mode operation for 9 μm lasers at room temperature. reprint |
7. | High Power 3-12 μm Infrared Lasers: Recent Improvements and Future Trends M. Razeghi, S. Slivken, A. Tahraoui, A. Matlis, and Y.S. Park Physica E: Low-Dimensional Systems and Nanostructures 11 (2-3)-- October 1, 2001 In this paper, we discuss the progress of quantum cascade lasers (QCLs) grown by gas-source molecular beam epitaxy. Room temperature QCL operation has been reported for lasers emitting between 5-11 μm, with 9-11 μm lasers operating up to 425 K. Laser technology for the 3-5 μm range takes advantage of a strain-balanced active layer design. We also demonstrate record room temperature peak output powers at 9 and 11 μm (2.5 and 1 W, respectively) as well as record low 80K threshold current densities (250 A/cm²) for some laser designs. Preliminary distributed feedback (DFB) results are also presented and exhibit single mode operation for 9 μm lasers at room temperature. reprint |
8. | High Performance InAs/GaSb Superlattice Photodiodes for the Very Long Wavelength Infrared Range H. Mohseni, M. Razeghi, G.J. Brown, Y.S. Park Applied Physics Letters 78 (15)-- April 9, 2001 We report on the demonstration of high-performance p-i-n photodiodes based on type-II InAs/GaSb superlattices with 50% cut-off wavelength λc = 16 μm operating at 80 K. Material is grown by molecular beam epitaxy on GaSb substrates with excellent crystal quality as evidenced by x-ray diffraction and atomic force microscopy. The processed devices show a current responsivity of 3.5 A/W at 80 K leading to a detectivity of ∼ 1.51×1010 cm·Hz½/W. The quantum efficiency of these devices is about 35% which is comparable to HgCdTe detectors with a similar active layer thickness. reprint |
9. | Long-Wavelength Quantum Well Infrared Photodetectors M. Razeghi, M. Erdtmann, C. Jelen, J. Diaz, F. Guastavino and Y.S. Park Defense Science Journal 51 (1)-- January 1, 2001 |
10. | Development of Quantum Well Infrared Photodetectors at the Center for Quantum Devices M. Razeghi, M. Erdtmann, C. Jelen, J. Diaz, F. Guastavino, G.J. Brown, and Y.S. Park Infrared Physics and Technology 42 (3-5)-- January 1, 2001 |
11. | Very Long Wavelength Infrared Type-II Detectors Operating at 80K H. Mohseni, A. Tahraoui, J. Wojkowski, M. Razeghi, G.J. Brown, W.C. Mitchel, and Y.S. Park Applied Physics Letters 77 (11)-- September 11, 2000 We report a demonstration of very long wavelength infrared detectors based on InAs/GaSb superlattices operating at T = 80 K. Detector structures with excellent material quality were grown on an optimized GaSb buffer layer on GaAs semi-insulating substrates. Photoconductive devices with 50% cutoff wavelength of λc = 17 μm showed a peak responsivity of about 100 mA/W at T = 80 K. Devices with 50% cutoff wavelengths up to λc = 22 μm were demonstrated at this temperature. Good uniformity was obtained over large areas even for the devices with very long cutoff wavelengths. reprint |
12. | Quantum Well Infrared Photodetectors (3 - 20 μm) Focal Plane Arrays: Monolithic Integration with Si-based Readout-integrated Circuitry for Low Cost and High Performance M. Razeghi, M. Erdtmann, C. Jelen, J. Diaz, F. Guastavino, G. J. Brown, and Y.S. Park SPIE Conference, Infrared Technology and Applications XXVI, San Diego, CA, -- July 30, 2000 |
13. | Room Temperature Operation of InTlSb Infrared Photodetectors on GaAs J.D. Kim, E. Michel, S. Park, J. Xu, S. Javadpour and M. Razeghi Applied Physics Letters 69 (3)-- August 15, 1996 Long-wavelength InTlSb photodetectors operating at room temperature are reported. The photo- detectors were grown on (100) semi-insulating GaAs substrates by low-pressure metalorganic chemical vapor deposition. Photoresponse of InTlSb photodetectors is observed up to 11 µm at room temperature. The maximum responsivity of an In0.96Tl0.04Sb photodetector is about 6.64 V/W at 77 K, corresponding to a detectivity of about 7.64 × 108 cm·Hz½/W. The carrier lifetime in InTlSb photodetectors derived from the stationary photoconductivity is 10–50 ns at 77 K. reprint |
14. | Sb-based infrared materials and photodetectors for the 3-5 and 8-12 μm range E. Michel, J.D. Kim, S. Park, J. Xu, I. Ferguson, and M. Razeghi SPIE Photonics West '96 'Photodetectors: Materials and Devices'; Proceedings 2685-- January 27, 1996 In this paper, we report on the growth of InSb on (100) Si and (111)B GaAs substrates and the growth of InAsSb alloys for longer wavelength applications. The fabrication and characterization of photodetectors based on these materials are also reported. Both photoconductive and photovoltaic devices are investigated. The photodiodes are InSb p-i-n structures and InSb/InAs1-xSbx/InSb double heterostructures grown on (100) and (111)B semi-insulating GaAs and Si substrates by low pressure metalorganic chemical vapor deposition and solid source molecular beam epitaxy. The material parameters for device structures have been optimized through theoretical calculations based on fundamental mechanisms. InSb p-i-n photodiodes with peak responsivities approximately 103 V/W were grown on Si and (111) GaAs substrates. An InAsSb photovoltaic detector with a composition of x equals 0.85 showed photoresponse up to 13 micrometers at 300 K with a peak responsivity of 9.13 X 10-2 V/W at 8 micrometers . The R0A product of InAsSb detectors has been theoretically and experimentally analyzed. reprint |
15. | New Infrared Materials and Detectors M. Razeghi, J.D. Kim, S.J. Park, Y.H. Choi, D. Wu, E. Michel, J. Xu, and E. Bigan International Symposium on Compound Semiconductors (ISCS-22), Cheju Island, Korea; Compound Semiconductors 145 (8)-- January 1, 1996 |
Page 1 (15 Items)
|