About the CQD | News | Conferences | Publications | Books | Research | People | History | Patents | Contact | Channel | |
Page 1 (11 Items)
1. | Aluminum free GaInP/GaAs Quantum Well Infrared Photodetectors for Long Wavelength Detection C. Jelen, S. Slivken, J. Hoff, M. Razeghi, and G. Brown Applied Physics Letters 70 (3)-- January 20, 1997 We demonstrate quantum well infrared photodetectors based on a GaAs/Ga0.51In0.49P superlattice structure grown by gas-source molecular beam epitaxy. Wafers were grown with varying well widths. Wells of 40, 65, and 75 Å resulted in peak detection wavelengths of 10.4, 12.8, and 13.3 μm with a cutoff wavelength of 13.5, 15, and 15.5 μm, respectively. The measured peak and cutoff wavelengths match those predicted by eight band theoretical analysis. Measured dark currents were lower than equivalent GaAs/AlGaAs samples. reprint |
2. | Effect of the spin split-off band on optical absorption in p-type Ga1 xInxAsyP1-y quantum-well infrared detectors J.R. Hoff, M. Razeghi and G. Brown Physical Review B 54 (15)-- October 15, 1996 Experimental investigations of p-type Ga1-xInxAsyP1-y quantum-well intersubband photodetectors (QWIP’s) led to the discovery of unique features in photoresponse spectra of these devices. In particular, the strong 2–5 μm photoresponse of these QWIP’s was not anticipated based on previous experimental and theoretical results for p-type GaAs/AlxGa1-xAs QWIP’s. Our theoretical modeling of p-type QWIP’s based on the Ga1-xInxAsyP1-y system revealed that the intense short-wavelength photoresponse was due to a much stronger coupling to the spin-orbit split-off components in the continuum than occurs for GaAs/AlxGa1-xAs QWIP’s. Due to the strong influence of the spin split-off band, an eight-band Kane Hamiltonian was required to accurately model the measured photoresponse spectra. This theoretical model is first applied to a standard p-type GaAs/Al0.3Ga0.7As QWIP, and then to a series of GaAs/Ga0.51In0.49P, GaAs/Ga0.62In0.38As0.22P0.78, Ga0.79In0.21As0.59P0.41/Ga0.51In0.49P, and Ga0.79In0.21As0.59P0.41/Ga0.62In0.38As0.22P0.78 QWIP’s. Through this analysis, the insignificance of spin split-off absorption in GaAs/AlxGa1-xAs QWIP’s is verified, as is the dual role of light-hole extended-state and spin split-off hole-extended-state absorption on the spectral shape of Ga1-xInxAsyP1-y QWIP’s. reprint |
3. | III-V interband and intraband far-infrared detectors M. Razeghi, C. Jelen, S. Slivken and J. Hoff 23rd International Symposium on Compound Semiconductors, St. Petersburg, Russia; Proceedings 155 (5)-- September 23, 1996 |
4. | Optical Absorption and Photoresponse in fully Quaternary p-type Quantum Well Detectors J. Hoff, C. Jelen, S. Slivken, G.J. Brown, and M. Razeghi SPIE Photonics West '96 Photodetectors: Materials and Devices; Proceedings 2685-- January 27, 1996 Acceptor doped, non-strained aluminum-free Quantum Well Intersubband Photodetectors lattice matched to GaAs with Ga0.79In0.21As0.59P0.41 wells and Ga0.62In0.38As0.22P0.78 barriers have been demonstrated on semi-insulating GaAs substrates. These devices which operate at normal incidence demonstrate a unique spectral response which extends from approximately 2 μm up to 10 μm. To explain such a broad spectral shape, a detailed theoretical analysis based on the 8 x 8 Kane Hamiltonian was necessary to probe all aspect of optical absorption. The results of this analysis revealed that spectral shape results from the influence of the Spin Split-off band on the band structure and the optical matrix. reprint |
5. | Background limited performance in p-doped quantum well intersubband photodetectors J. Hoff, J. Piotrowski, E. Bigan, M. Razeghi, and G.J. Brown International Symposium on Compound Semiconductors (ISCS-22), Cheju Island, Korea; Compound Semiconductors 145 (8)-- January 1, 1996 |
6. | MOCVD Growth of Ga1-xInxAsyP1-y-GaAs Quantum Structures M. Razeghi, J. Hoff, M. Erdtmann, S. Kim, D. Wu, E. Kaas, C. Jelen, S. Slivken, I. Eliashevich, J. Diaz, E. Bigan, G.J. Brown, S. Javadpour NATO 2nd International Workshop on Heterostructures Epitaxy and Devices (HEAD '95) Smolenice Castle, Slovakia; Heterostructure Epitaxy and Devices-- January 1, 1996 |
7. | p-doped GaAs/Ga0.51In0.49P quantum well intersub-band photodetectors J. Hoff, X. He, M. Erdtmann, E. Bigan, M. Razeghi, and G.J. Brown Journal of Applied Physics 78 (3)-- August 1, 1995 Lattice‐matched p-doped GaAs–Ga0.51In0.49P quantum well intersub‐band photodetectors with three different well widths have been grown on GaAs substrates by metal‐organic chemical‐vapor deposition and fabricated into mesa structures. The photoresponse cutoff wavelength varies between 3.5 and 5.5 μm by decreasing the well width from 50 down to 25 Å. Dark current measurements as a function of temperature reveal activation energies for thermionic emission that closely correspond to measured cutoff wavelengths. Experimental results are in reasonable agreement with Kronig–Penney calculations. reprint |
8. | Background Limited Performance in p-doped GaAs/Ga[0.71]In[0.29]As[0.39]P[0.61] Quantum Well Infrared Photodetectors J. Hoff, S. Kim, M. Erdtmann, R. Williams, J. Piotrowski, E. Bigan, M. Razeghi and G. Brown Applied Physics Letters 67 (1)-- July 3, 1995 Background limited infrared photodetection has been achieved up to 100 K at normal incidence with p-type GaAs/Ga0.71In0.29As0.39P0.61 quantum well intersubband photodetectors grown by low-pressure metalorganic chemical vapor deposition. Photoresponse covers the wavelength range from 2.5 μm up to 7 μm. The device shows photovoltaic response, the cutoff wavelength increases slightly with bias, and the responsivity increases nonlinearly with bias. These effects are attributed to an asymmetric quantum well profile. reprint |
9. | Aluminum-free Quantum Well Intersubband Photodetectors with p-type GaAs Wells and lattice-matched ternary and quaternary barriers J. Hoff, E. Bigan, G.J. Brown, and M. Razeghi Optoelectronic Integrated Circuit Materials, Physics and Devices, SPIE Conference, San Jose, CA; Proceedings, Vol. 2397-- February 6, 1995 Acceptor doped Quantum Well Intersubband Photodetectors with GaAs wells and lattice matched barriers of both ternary (In0.49Ga0.51P) and quaternary (In0.62Ga0.38As0.22P0.78) materials have been grown on semi-insulating GaAs substrates by Low Pressure Metal Organic Chemical Vapor Deposition. Mesa devices were fabricated and subjected to a series of tests to illuminate experimentally some of the detection capabilities of the lattice matched quaternary InxGa1-xAsyP1-y system with (0 ≤ x ≤ 0.52) and (0 ≤ y ≤ 1). The observed photoresponse cut-off wavelengths are in good agreement with the activation energies observed in the temperature dependence of the dark currents. Kronig-Penney calculations were used to model the intersubband transition energies. reprint |
10. | Analysis of Spectral Response in p-type GaAs/GaInP QWIPs J. Hoff, C. Jelen, S. Slivken, E. Bigan, M. Razeghi, and G.J. Brown Superlattices and Microstructures, 8 (4)-- January 1, 1995 |
11. | Intersubband hole absorption in GaAs-GaInP Quantum Wells grown by Gas Source Molecular Beam Epitaxy J. Hoff, C. Jelen, S. Slivken, E. Michel, O. Duchemin, E. Bigan, and M. Razeghi with G. Brown and S.M. Hegde (Wright Laboratory) Applied Physics Letters 65 (9)-- August 29, 1994 P-doped GaAs‐GaInP quantum wells have been grown on GaAs substrate by gas source molecular beam epitaxy. Structural quality has been evidenced by x-ray diffraction. A narrow low-temperature photoluminescence full width at half‐maximum has been measured. Strong hole intersubband absorption has been observed at 9 μm, and its dependence on light polarization has been investigated. reprint |
Page 1 (11 Items)
|