About the CQD | News | Conferences | Publications | Books | Research | People | History | Patents | Contact | Channel | |
Page 1 (4 Items)
1.
 | Type-II InAs/GaSb/AlSb superlatticebased heterojunction phototransistors: back to the future Abbas Haddadi, Arash Dehzangi, Romain Chevallier, Thomas Yang, Manijeh Razeghi Proc. SPIE 10540, Quantum Sensing and Nano Electronics and Photonics XV- Page-1054004-1-- January 26, 2018 Most of reported HPTs in literatures are based on InGaAs compounds that cover NIR spectral region. However, InGaAs compounds provide limited cut-off wavelength tunability. In contrast, type-II superlattices (T2SLs) are a developing new material system with intrinsic advantages such as great flexibility in bandgap engineering, low growth and manufacturing cost, high-uniformity, auger recombination suppression, and high carrier effective mass that are becoming an attractive candidate for infrared detection and imaging from short-wavelength infrared to very long wavelength infrared regime. We present the recent advancements in T2SL-based heterojunction phototransistors in e– SWIR, MWIR and LWIR spectral ranges. A mid-wavelength infrared heterojunction phototransistor based on type-II InAs/AlSb/GaSb superlattices on GaSb substrate has been demonstrated. Then, we present the effect of vertical scaling on the optical and electrical performance of heterojunction phototransistors, where the performance of devices with
different base width was compared as the base was scaled from 60 down to 40 nm. reprint |
2.
 | Recent advances in antimonide-based gap-engineered Type-II superlattices material system for 2 and 3 colors infrared imagers Manijeh. Razeghi, Abbas Haddadi, Arash Dehzangi, Romain Chevallier, and Thomas Yang Proceedings of SPIE 10177, Infrared Technology and Applications XLIII, 1017705-- May 9, 2017 InAs/InAs1-xSbx/AlAs1-xSbx type-II superlattices (T2SLs) is a system of multi-interacting quantum wells. Since its introduction, this material system has drawn a lot of attention especially for infrared detection. In recent years, InAs/InAs1-
xSbx/AlAs1-xSbx T2SL material system has experienced incredible improvements in material quality, device structure designs and device fabrication process which elevated the performances of T2SL-based photodetectors to a comparable
level to the state-of-the-art material systems for infrared detection such as Mercury Cadmium Telluride (MCT). In this paper, we will present the current status of InAs/InAs1-xSbx/AlAs1-xSbx T2SL-based photodetectors for detection in
different infrared regions, from short-wavelength (SWIR) to long-wavelength (LWIR) infrared, and the future outlook of this material system. reprint |
3.
 | Recent advances in InAs/InAs1- xSbx/AlAs1-xSbx gap-engineered Type-II superlattice-based photodetectors Manijeh Razeghi, Abbas Haddadi, Arash Dehzangi, Romain Chevallier, Thomas Yang Proc. SPIE 10177, Infrared Technology and Applications XLIII, 1017705 -- May 9, 2017 InAs/InAs1-xSbx/AlAs1-xSbx type-II superlattices (T2SLs) is a system of multi-interacting quantum wells. Since its
introduction, this material system has drawn a lot of attention especially for infrared detection. In recent years, InAs/InAs1-
xSbx/AlAs1-xSbx T2SL material system has experienced incredible improvements in material quality, device structure
designs and device fabrication process which elevated the performances of T2SL-based photodetectors to a comparable
level to the state-of-the-art material systems for infrared detection such as Mercury Cadmium Telluride (MCT). In this
paper, we will present the current status of InAs/InAs1-xSbx/AlAs1-xSbx T2SL-based photodetectors for detection in
different infrared regions, from short-wavelength (SWIR) to long-wavelength (LWIR) infrared, and the future outlook of
this material system. reprint |
4. | Evaluation of the Band Offsets of GaAs-GaInP Multilayers by Electroreflectance Razeghi M., D. Yang, J.W. Garland, Z. Zhang, D. Xue SPIE Proceedings, Vol. 1676, pp. 130-- January 1, 1992 We report the first band offset measurement of GaAs/Ga0.51In0.49P multiquantum wells and superlattices by electrolyte electroreflectance spectroscopy. The conduction and valence band discontinuities (Delta) Ec equals 159 ± 4 meV and (Delta) Ev equals 388 ± 6 meV have been measured. The values found for the conduction band, heavy-hole and light-hole masses in the GaInP barriers and GaAs wells and for the split-off well mass are in excellent agreement with the literature. The intraband, intersubband transition energies, which are important for III - V infrared detection devices, also were directly measured. reprint |
Page 1 (4 Items)
|