About the CQD | News | Conferences | Publications | Books | Research | People | History | Patents | Contact | Channel | |
Page 1 (3 Items)
1.
 | III-Nitride/Ga2O3 heterostructure for future power electronics: opportunity and challenges Nirajman Shrestha, Jun Hee Lee, F. H. Teherani, Manijeh Razeghi Proc. of SPIE Vol. 12895, Quantum Sensing and Nano Electronics and Photonics XX, 128950B (28 January - 1 February 2024, San Francisco)http://dx.doi.org/10.1117/12.3011688 Ga2O3 has become the new focal point of high-power semiconductor device research due to its superior capability
to handle high voltages in smaller dimensions and with higher efficiencies compared to other commercialized
semiconductors. However, the low thermal conductivity of the material is expected to limit device performance. To
compensate for the low thermal conductivity of Ga2O3 and to achieve a very high density 2-dimensional electron
gas (2DEG), an innovative idea is to combine Ga2O3 with III-Nitrides (which have higher thermal conductivity),
such as AlN. However, metal-polar AlN/β-Ga2O3 heterojunction provides type-II heterojunction which are
beneficial for optoelectronic application, because of the negative value of specific charge density. On the other
hand, N-polar AlN/β- Ga2O3 heterostructures provide higher 2DEG concentration and larger breakdown voltage
compared to conventional AlGaN/GaN devices. This advancement would allow the demonstration of RF power
transistors with a 10x increase in power density compared to today’s State of the Art (SoA) and provide a solution
to size, weight, and power-constrained applications reprint |
2.
 | Development of high power, InP-based quantum cascade lasers on alternative epitaxial platforms Steven Slivken, Nirajman Shrestha, Manijeh Razeghi Proc. of SPIE Vol. 12895, Quantum Sensing and Nano Electronics and Photonics XX, 1289503 (28 January - 1 February 2024, San Francisco) doi: 10.1117/12.3009335 In this talk, challenges and solutions associated with the monolithic, epitaxial integration of mid- and longwave- infrared,
InP-based quantum cascade lasers on GaAs and Si wafers will be discussed. Initial results, including room temperature,
high power, and continuous wave operation, will be described. reprint |
3.
 | High Power Mid-Infrared Quantum Cascade Lasers Grown on Si Steven Slivken, Nirajman Shrestha, and Manijeh Razeghi Photonics, vol. 9, 626 This article details the demonstration of a strain-balanced, InP-based mid-infrared quantum cascade laser structure that is grown directly on a Si substrate. This is facilitated by the creation of a metamorphic buffer layer that is used to convert from the lattice constant of Si (0.543 nm) to that of InP (0.587 nm). The laser geometry utilizes two top contacts in order to be compatible with future large-scale integration. Unlike previous reports, this device is capable of room temperature operation with up to 1.6 W of peak power. The emission wavelength at 293 K is 4.82 um, and the device operates in the fundamental transverse mode. reprint |
Page 1 (3 Items)
|