Publications by    
Page 7 of 27:  Prev << 1 2 3 4 5 6 7  8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27  >> Next  (669 Items)

151.  Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ ∼ 3.76 μm
N. Bandyopadhyay, Y. Bai, B. Gokden, A. Myzaferi, S. Tsao, S. Slivken and M. Razeghi
Applied Physics Letters, Vol. 97, No. 13-- September 27, 2010
An InP-based quantum cascade laser heterostructure emitting at 3.76 μm is grown with gas-source molecular beam epitaxy. The laser core is composed of strain balanced In0.76Ga0.24As/In0.26Al0.74As. Pulsed testing at room temperature exhibits a low threshold current density (1.5 kA/cm²) and high wall plug efficiency (10%). Room temperature continuous wave operation gives 6% wall plug efficiency with a maximum output power of 1.1 W. Continuous wave operation persists up to 95 °C. reprint
 
152.  Broad area photonic crystal distributed feedback quantum cascade lasers emitting 34 W at λ ~ 4.36 μm
B. Gokden, Y. Bai, N. Bandyopadhyay, S. Slivken and M. Razeghi
Applied Physics Letters, Vol. 97, No. 13, p. 131112-1-- September 27, 2010
We demonstrate room temperature, high power, single mode, and diffraction limited operation of a two dimensional photonic crystal distributed feedback quantum cascade laser emitting at 4.36 μm. Total peak power up to 34 W is observed from a 3 mm long laser with 400 μm cavity width at room temperature. Far-field profiles have M2 figure of merit as low as 2.5. This device represents a significant step toward realization of spatially and spectrally pure broad area high power quantum cascade lasers. reprint
 
153.  Photoluminescence characteristics of polar and nonpolar AlGaN/GaN superlattices
Z. Vashaei, C. Bayram, P. Lavenus, and M. Razeghi
Applied Physics Letters, Vol. 97, No. 12, p. 121918-1-- September 20, 2010
High quality Al0.2Ga0.8N/GaN superlattices (SLs) with various (GaN) well widths (1.6 to 6.4 nm) have been grown on polar c-plane and nonpolar m-plane freestanding GaN substrates by metal-organic chemical vapor deposition. Atomic force microscopy, high resolution x-ray diffraction, and photoluminescence (PL) studies of SLs have been carried out to determine and correlate effects of well width and polarization field on the room-temperature PL characteristics. A theoretical model was applied to explain PL energy-dependency on well width and crystalline orientation taking into account internal electric field for polar substrate. Absence of induced-internal electric field in nonpolar SLs was confirmed by stable PL peak energy and stronger PL intensity as a function of excitation power density than polar ones. reprint
 
154.  Room temperature neagtive differential resistance characteristics of polar III-nitride resonant tunneling diodes
C. Bayram, Z. Vashaei, and M. Razeghi
Applied Physics Letters, Vol. 97, No. 9, p. 092104-1-- August 30, 2010
III-nitride resonant tunneling diodes (RTDs), consisting Al0.2Ga0.8N/GaN double-barrier (DB) active layers, were grown on c-plane lateral epitaxial overgrowth (LEO) GaN/sapphire and c-plane freestanding (FS) GaN. RTDs on both templates, fabricated into mesa diameters ranging from 5 to 35 μm, showed negative differential resistance (NDR) at room temperature. NDR characteristics (voltage and current density at NDR onset and current-peak-to-valley ratio) were analyzed and reported as a function of device size and substrate choice. Our results show that LEO RTDs perform as well as FS ones and DB active layer design and quality have been the bottlenecks in III-nitride RTDs. reprint
 
155.  Comparison of ultraviolet APDs grown on free-standing GaN and sapphire substrates
E. Cicek, Z. Vashaei, C. Bayram, R. McClintock, M. Razeghi and M. Ulmer
Proceedings, Vol. 7780, p. 77801P, SPIE Optics and Photonics Symposium, Conference on Detectors and Imaging Devices: Infrared, Focal Plane and Single Photon, San Diego, CA -- August 4, 2010
There is a need for semiconductor-based ultraviolet photodetectors to support avalanche gain in order to realize better performance andmore effective compete with existing technologies. Wide bandgap III-Nitride semiconductors are the promising material system for the development of avalanche photodiodes (APDs) that could be a viable alternative to current bulky UV detectors such as photomultiplier tubes. In this paper, we review the current state-of-the-art in IIINitride visible-blind APDs, and present our latest results on GaN APDs grown on both conventional sapphire and low dislocation density free-standing c- and m-plane GaN substrates. Leakage current, gain, and single photon detection efficiency (SPDE) of these APDs were compared. The spectral response and Geiger-mode photon counting performance of UV APDs are studied under low photon fluxes, with single photon detection capabilities as much as 30% being demonstrated in smaller devices. Geiger-mode operation conditions are optimized for enhanced SPDE. reprint
 
156.  III-nitride based avalanche photo detectors
R. McClintock, E. Cicek, Z. Vashaei, C. Bayram, M. Razeghi and M. Ulmer
Proceedings, Vol. 7780, p. 77801B, SPIE Optics and Photonics Symposium, Conference on Detectors and Imaging Devices: Infrared, Focal Plane and Single Photon, San Diego, CA -- August 4, 2010
Research into III-Nitride based avalanche photodiodes (APDs) is motivated by the need for high sensitivity ultraviolet (UV) detectors in numerous civilian and military applications. By designing III-Nitride photodetectors that utilize low-noise impact ionization high internal gain can be realized-GaN APDs operating in Geiger mode can achieve gains exceeding 1×107. Thus with careful design, it becomes possible to count photons at the single photon level. In this paper we review the current state of the art in III-Nitride visible-blind APDs and discuss the critical design choices necessary to achieve high performance Geiger mode devices. Other major technical issues associated with the realization of visible-blind Geiger mode APDs are also discussed in detail and future prospects for improving upon the performance of these devices are outlined. The photon detection efficiency, dark count rate, and spectral response of or most recent Geiger-mode GaN APDs on free-standing GaN substrates are studied under low photon fluxes, with single photon detection capabilities being demonstrated. We also present our latest results regarding linear mode gain uniformity: the study of gain uniformity helps reveal the spatial origins of gain so that we can better understand the role of defects. reprint
 
157.  Geiger-mode operation of ultraviolet avalanche photodiodes grown on sapphire and free-standing GaN substrates
E. Cicek, Z. Vashaei, R. McClintock, C. Bayram, and M. Razeghi
Applied Physics Letters, Vol. 96, No. 26, p. 261107 (2010);-- June 28, 2010
GaN avalanche photodiodes (APDs) were grown on both conventional sapphire and low dislocation density free-standing (FS) c-plane GaN substrates. Leakage current, gain, and single photon detection efficiency (SPDE) of these APDs were compared. At a reverse-bias of 70 V, APDs grown on sapphire substrates exhibited a dark current density of 2.7×10−4 A/cm² whereas APDs grown on FS-GaN substrates had a significantly lower dark current density of 2.1×10−6 A/cm². Under linear-mode operation, APDs grown on FS-GaN achieved avalanche gain as high as 14 000. Geiger-mode operation conditions were studied for enhanced SPDE. Under front-illumination the 625 μm² area APD yielded a SPDE of 13% when grown on sapphire substrates compared to more than 24% when grown on FS-GaN. The SPDE of the same APD on sapphire substrate increased to 30% under back-illumination—the FS-GaN APDs were only tested under front illumination due to the thick absorbing GaN substrate. reprint
 
158.  GaN avalanche photodiodes grown on m-plane freestanding GaN substrate
Z. Vashaei, E. Cicek, C. Bayram, R. McClintock and M. Razeghi
Applied Physics Letters, Vol. 96, No. 20, p. 201908-1-- May 17, 2010
M-plane GaN avalanche p-i-n photodiodes on low dislocation density freestanding m-plane GaN substrates were realized using metal-organic chemical vapor deposition. High quality homoepitaxial m-plane GaN layers were developed; the root-mean-square surface roughness was less than 1 Å and the full-width-at-half-maximum value of the x-ray rocking curve for (1010) diffraction of m-plane GaN epilayer was 32 arcsec. High quality material led to a low reverse-bias dark current of 8.11 pA for 225 μm² mesa photodetectors prior to avalanche breakdown, with the maximum multiplication gain reaching about 8000. reprint
 
159.  Type-II Antimonide-based Superlattices for the Third Generation Infrared Focal Plane Arrays
Manijeh Razeghi, Edward Kwei-wei Huang, Binh-Minh Nguyen, Siamak Abdollahi Pour, and Pierre-Yves Delaunay
SPIE Proceedings, Infrared Technology and Applications XXXVI, Vol. 7660, pp. 76601F-- May 10, 2010
In recent years, the Type-II superlattice (T2SL) material platform has seen incredible growth in the understanding of its material properties which has lead to unprecedented development in the arena of device design. Its versatility in band-structure engineering is perhaps one of the greatest hallmarks of the T2SL that other material platforms are lacking. In this paper, we discuss advantages of the T2SL, specifically the M-structure T2SL, which incorporates AlSb in the traditional InAs/GaSb superlattice. Using the M-structure, we present a new unipolar minority electron detector coined as the p-M-p, the letters which describe the composition of the device. Demonstration of this device structure with a 14 μm cutoff attained a detectivity of 4x1010 Jones (-50 mV) at 77 K. As device performance improves year after year with novel design contributions from the many researchers in this field, the natural progression in further enabling the ubiquitous use of this technology is to reduce cost and support the fabrication of large infrared imagers. In this paper, we also discuss the use of GaAs substrates as an enabling technology for third generation imaging on T2SLs. Despite the 7.8% lattice mismatch between the native GaSb and alternative GaAs substrates, T2SL photodiodes grown on GaAs at the MWIR and LWIR have been demonstrated at an operating temperature of 77 K reprint
 
160.  Novel Green Light Emitting Diodes: Exploring Droop-Free Lighting Solutions for a Sustainable Earth
M. Razeghi, C. Bayram, R. McClintock, F. Hosseini Teherani, D.J. Rogers, and V.E. Sandana
Journal of Light Emitting Diodes, Vol. 2, No. 1, p. 1-33-- April 30, 2010
The total annual energy consumption in the United States for lighting is approximately 800 Terawatt-hours and costs $80 billion to the public. The energy consumed for lighting throughout the world entails to greenhouse gas emission equivalent to 70% of the emissions from all the cars in the world. Novel solutions to lighting with higher efficiency will drastically reduce the energy consumption and help greenhouse gas emissions to be lowered. Novel green light emitting diodes are the key components of an affordable, durable and environmentally benign lighting solution that can achieve unique spectral quality and promise superior energy conversion efficiency. Light-emitting diodes (LEDs), based on the InGaN alloy, are currently the most promising candidates for realizing solid state lighting (SSL). InGaN is a direct wide bandgap semiconductor with an emission that can span the entire visible spectrum via compositional tuning. However, InGaN LED performance remains wavelength-dependent. Indeed, ultrabright and efficient blue InGaN-based LEDs are readily available but the performance of InGaN-based green LEDs is still far from adequate for use in SSL. Our recent work demonstrated hybrid green light-emitting diodes (LEDs) comprised of n-ZnO/(InGaN/GaN) multi-quantum-wells/p-GaN were grown on semi-insulating AlN/sapphire using pulsed laser deposition for the n-ZnO and metal organic chemical vapor deposition for the other layers.. We have shown that atop grown ZnO layer by Pulsed Laser Deposition can be a good replacement for GaN. The green wavelength emission requires significant indium content in the active layer (growth temperature ~ 700ºC) that makes InGaN quantum wells very susceptible to thermal degradation. With our technology, diffusion and segregation of indium in the green emitting active is inhibited thanks to the lower ZnO deposition temperatures (<600ºC) than is required for GaN (>1000ºC). Our novel technology preserves the integrity of the as-grown active layer and demonstrates superior green spectral quality (as demonstrated for LEDs on c-sapphire). The results indicate that hybrid LED structures could hold prospects for the development of green LEDs with superior performance.
 
161.  Demonstration of negative differential resistance in GaN/AlN resonant tunneling didoes at room temperature
Z. Vashaei, C. Bayram and M. Razeghi
Journal of Applied Physics, Vol. 107, No. 8, p. 083505-- April 15, 2010
GaN/AlN resonant tunneling diodes (RTD) were grown by metal-organic chemical vapor deposition (MOCVD) and negative differential resistance with peak-to-valley ratios as high as 2.15 at room temperature was demonstrated. Effect of material quality on RTDs’ performance was investigated by growing RTD structures on AlN, GaN, and lateral epitaxial overgrowth GaN templates. Our results reveal that negative differential resistance characteristics of RTDs are very sensitive to material quality (such as surface roughness) and MOCVD is a suitable technique for III-nitride-based quantum devices. reprint
 
162.  Spatial Noise and Correctability of Type-II InAs/GaSb Focal Plane Arrays
P.Y. Delaunay and M. Razeghi
IEEE Journal of Quanutm Electronics, April 2010, Vol. 46, No. 4, p. 584-588-- April 1, 2010
A long wavelength infrared focal plane array based on Type-II InAs/GaSb superlattices was fabricated and characterized at 80 K. The noise equivalent temperature difference of the array was measured as low as 23 mK (f# = 2), for an integration time of 0.129 ms. The spatial noise of the array was dominated by the nonuniformity of the illumination through the circular aperture. A standard two-point nonuniformity correction improved the inhomogeneity equivalent temperature difference to 16 mK. The correctability just after calibration was 0.6. The long-term stability time was superior to 25 hours. reprint
 
163.  Thin film transistors with wurtzite ZnO channels grown on Si3N4/SiO2/Si (111) substrates by pulsed laser deposition
D.J. Rogers; V.E. Sandana; F. Hosseini Teherani; M. Razeghi
Proc. SPIE 7603, Oxide-based Materials and Devices, 760318 (March 02, 2010)-- March 7, 2010
Thin Film Transistors (TFT) were made by growing ZnO on Si3N4/SiO2/Si (111) substrates by pulsed laser deposition. X-ray diffraction and scanning electron microscope studies revealed the ZnO to have a polycrystalline wurtzite structure with a smooth surface, good crystallographic quality and a strong preferential c-axis orientation. Transmission studies in similar ZnO layers on glass substrates showed high transmission over the whole visible spectrum. Electrical measurements of a back gate geometry FET showed an enhancement-mode response with hard saturation, mA range Id and a VON ∼ 0V. When scaled down, such TFTs may be of interest for high frequency applications. reprint
 
164.  Quantum cascade lasers that emit more light than heat
Y. Bai, S. Slivken, S. Kuboya, S.R. Darvish and M. Razeghi
Nature Photonics, February 2010, Vol. 4, p. 99-102-- February 1, 2010
For any semiconductor lasers, the wall plug efficiency, that is, the portion of the injected electrical energy that can be converted into output optical energy, is one of the most important figures of merit. A device with a higher wall plug efficiency has a lower power demand and prolonged device lifetime due to its reduced self-heating. Since its invention, the power performance of the quantum cascade laser has improved tremendously. However, although the internal quantum efficiency can be engineered to be greater than 80% at low temperatures, the wall plug efficiency of a quantum cascade laser has never been demonstrated above 50% at any temperature. The best wall plug efficiency reported to date is 36% at 120 K. Here, we overcome the limiting factors using a single-well injector design and demonstrate 53% wall plug efficiency at 40 K with an emitting wavelength of 5 µm. In other words, we demonstrate a quantum cascade laser that produces more light than heat. reprint
 
165.  On the interface properties of ZnO/Si electroluminescent diodes
J.L. Pau, J. Piqueras, D.J. Rogers, F. Hosseini Teherani, K. Minder, R. McClintock, and M. Razeghi
Journal of Applied Physics, Vol. 107, No. 3, p. 033719-1-- February 1, 2010
ZnO layers grown on n–Si(100), n+–Si(100), and n–Si(111) substrates by pulsed-laser deposition were found to give electroluminescence. Light emission was observed in the form of discrete spots for currents over 1 mA with a white appearance to the naked eye. The intensity of these spots showed an erratic behavior over time, appearing and disappearing at random, while showing an associated random telegraph noise in the current signal. Regardless the substrate used, the electroluminescence spectra had a main broadband emission centered at about 600 nm and a relatively small peak at around 380 nm which corresponds to the energy of ZnO near band edge emission. Furthermore, the devices exhibited rectifying characteristics, whose current blocking direction depended on the substrate orientation. Optimization of ZnO conductivity and performing sample growth in N2 ambient were found to be critical to enhance the emission intensity. Rutherford backscattering characterization revealed the existence of an intermixed region at the interface between ZnO and Si. To study the electronic properties at the interface, frequency dependent capacitance measurements were carried out. The junction capacitance became frequency dependent at the bias voltages at which light emission occurs due to the relatively slow trapping and generation processes at deep centers. These centers are believed to play an important role in the mechanism of light emission. reprint
 
166.  Band gap tunability of Type-II Antimonide-based superlattices
M. Razeghi and B.M. Nguyen
Physics Procedia, Vol. 3, Issue 2, p. 1207-1212 (14th International Conference on Narrow Gap Semiconductors and Systems NGSS-14, Sendai, Japan, July 13-17, 2009)-- January 31, 2010
Current state-of-the art infrared photon detectors based on bulk semiconductors such as InSb or HgCdTe are now relatively mature and have almost attained the theoretical limit of performance. It means, however, that the technology can not be expected to demonstrate revolutionary improvements, in terms of device performances. In contrasts, low dimensional quantum systems such as superlattices, quantum wells, quantum dots, are still the development stage, yet have shown comparable performance to the bulk detector family. Especially for the Type-II Antimony-based superlattices, recent years have seen significant improvements in material quality, structural design as well as fabrication techniques which lift the performance of Type-II superlattice photodetectors to a new level. In this talk, we will discuss the advantages of Type-II-superlattices, from the physical nature of the material to the practical realisms. We will demonstrate the flexibility in controlling the energy gap and their overall band alignment for the suppression of Auger recombination, as well as to create sophisticated hetero-designs. reprint
 
167.  High performance quantum dot-quantum well infrared focal plane arrays
S. Tsao, A. Myzaferi, and M. Razeghi
SPIE Proceedings, San Francisco, CA (January 22-28, 2010), Vol. 7605, p. 76050J-1-- January 27, 2010
Quantum dot (QD) devices are a promising technology for high operating temperature detectors. We have studied InAs QDs embedded in an InGaAs/InAlAs quantum well structure on InP substrate for middle wavelength infrared detectors and focal plane arrays (FPAs). This combined dot-well structure has weak dot confinement of carriers, and as a result, the device behavior differs significantly from that in more common dot systems with stronger confinement. We report on our studies of the energy levels in the QDWIP devices and on QD-based detectors operating at high temperature with D* over 1010 cm·Hz½/W at 150 K operating temperature and high quantum efficiency over 50%. FPAs have been demonstrated operating at up to 200 K. We also studied two methods of adapting the QDWIP device to better accommodate FPA readout circuit limitations. reprint
 
168.  ZnO Thin Films & Nanostructures for Emerging Optoelectronic Applications
D.J. Rogers, F. Hosseini Teherani, V.E. Sandana, and M. Razeghi
SPIE Proceedings, San Francisco, CA (January 22-28, 2010), Vol. 7605, p. 76050K-1-- January 27, 2010
ZnO-based thin films and nanostructures grown by PLD for various emerging optoelectronic applications. AZO thin films are currently displacing ITO for many TCO applications due to recent improvements in attainable AZO conductivity combined with processing, cost and toxicity advantages. Advances in the channel mobilities and Id on/off ratios in ZnO-based TTFTs have opened up the potential for use as a replacement for a-Si in AM-OLED and AM-LCD screens. Angular-dependent specular reflection measurements of self-forming, moth-eye-like, nanostructure arrays grown by PLD were seen to have <0.5% reflectivity over the whole visible spectrum for angles of incidence between 10 and 60 degrees. Such nanostructures may be useful for applications such as AR coatings on solar cells. Compliant ZnO layers on mismatched/amorphous substrates were shown to have potential for MOVPE regrowth of GaN. This approach could be used as a means to facilitate lift-off of GaN-based LEDs from insulating sapphire substrates and could allow the growth of InGaN-based solar cells on cheap substrates. The green gap in InGaN-based LEDs was combated by substituting low Ts PLD n-ZnO for MOCVD n-GaN in inverted hybrid heterojunctions. This approach maintained the integrity of the InGaN MQWs and gave LEDs with green emission at just over 510 nm. Hybrid n-ZnO/p-GaN heterojunctions were also seen to have the potential for UV (375 nm) EL, characteristic of ZnO NBE emission. This suggests that there was significant hole injection into the ZnO and that such LEDs could profit from the relatively high exciton binding energy of ZnO. reprint
 
169.  AlN/GaN double-barrier resonant tunneling diodes grown by metal-organic chemical vapor deposition
C. Bayram, Z. Vashaei and M. Razeghi
Applied Physics Letters, Vol. 96, No. 4, p. 042103-1-- January 25, 2010
AlN/GaN double-barrier resonant tunneling diodes (RTDs) were grown by metal-organic chemical vapor deposition on sapphire. RTDs were fabricated via standard processing steps. RTDs demonstrate a clear negative differential resistance (NDR) at room temperature (RT). The NDR was observed around 4.7 V with a peak current density of 59 kA/cm² and a peak-to-valley ratio of 1.6 at RT. Dislocation-free material is shown to be the key for the performance of GaN RTDs. reprint
 
170.  High power photonic crystal distributed feedback quantum cascade lasers emitting at 4.5 micron
B. Gokden, S. Slivken and M. Razeghi
SPIE Proceedings, San Francisco, CA (January 22-28, 2010), Vol. 7608, p. 760806-1-- January 22, 2010
Quantum cascade lasers possess very small linewidth enhancement factor, which makes them very prominent candidates for realization of high power, nearly diffraction limited and single mode photonic crystal distributed feedback broad area lasers in the mid-infrared frequencies. In this paper, we present room temperature operation of a two dimensional photonic crystal distributed feedback quantum cascade laser emitting at 4.5 µm. peak power up to ~0.9 W per facet is obtained from a 2 mm long laser with 100 µm cavity width at room temperature. The observed spectrum is single mode with a very narrow linewidth. Far-field profile has nearly diffraction limited single lobe with full width at half maximum of 3.5 degree normal to the facet. The mode selection and power output relationships are experimentally established with respect to different cavity lengths for photonic crystal distributed feedback quantum cascade lasers. reprint
 
171.  Current status and potential of high power mid-infrared intersubband lasers
S. Slivken, Y. Bai, B. Gokden, S.R. Darvish and M. Razeghi
SPIE Proceedings, San Francisco, CA (January 22-28, 2010), Vol. 7608, p. 76080B-1-- January 22, 2010
Some of the recent advances in high power quantum cascade laser development will be reviewed in this paper. Research areas explored include short wavelength (λ <4 µm) lasers, high performance strain-balanced heterostructures, and high power long wavelength (7< λ< 16 µm) lasers. Near λ=4.5 µm, highlights include demonstration of 18% continuous wave wallplug efficiency at room temperature, 53% pulsed wallplug efficiency at 40 K, and 120 W of peak power output from a single device at room temperature. Near λ ~10 µm, up to 0.6 W of continuous output power at room temperature has also been demonstrated, with pulsed efficiencies up to 9%. reprint
 
172.  Very high wall plug efficiency of quantum cascade lasers
Y. Bai, S. Slivken, S.R. Darvish, and M. Razeghi
SPIE Proceedings, San Francisco, CA (January 22-28, 2010), Vol. 7608, p. 76080F-1-- January 22, 2010
We demonstrate very high wall plug efficiency (WPE) of mid-infrared quantum cascade lasers (QCLs) in low temperature pulsed mode operation (53%), room temperature pulsed mode operation (23%), and room temperature continuous wave operation (18%). All of these values are the highest to date for any QCLs. The optimization of WPE takes the route of understanding the limiting factors of each sub-efficiency, exploring new designs to overcome the limiting factor, and constantly improving the material quality. reprint
 
173.  High operating temperature MWIR photon detectors based on Type-II InAs/GaSb superlattice
M. Razeghi, B.M. Nguyen, P.Y. Delaunay, S. Abdollahi Pour, E.K.W. Huang, P. Manukar, S. Bogdanov, and G. Chen
SPIE Proceedings, San Francisco, CA (January 22-28, 2010), Vol. 7608, p. 76081Q-1-- January 22, 2010
Recent efforts have been paid to elevate the operating temperature of Type-II InAs/GaSb superlattice Mid Infrared photon detectors. Optimized growth parameters and interface engineering technique enable high quality material with a quantum efficiency above 50%. Intensive study on device architecture and doping profile has resulted in almost one order of magnitude of improvement to the electrical performance and lifted up the 300 K-background BLIP operation temperature to 166 K. At 77 K, the ~4.2 µm cut-off devices exhibit a differential resistance area product in excess of the measurement system limit (106 Ω·cm²) and a detectivity of 3x1013 cm·Hz½·W−1. High quality focal plane arrays were demonstrated with a noise equivalent temperature of 10 mK at 77 K. Uncooled camera is capable to capture hot objects such as soldering iron. reprint
 
174.  Minority electron unipolar photodetectors based on Type-II InAs/GaSb/AlSb superlattices for very long wavelength infrared detection
B.M. Nguyen, S. Abdollahi Pour, S. Bogdanov and M. Razeghi
SPIE Proceedings, San Francisco, CA (January 22-28, 2010), Vol. 7608, p. 760825-1-- January 22, 2010
The bandstructure tunability of Type-II antimonide-based superlattices has been significantly enhanced since the introduction of the M-structure superlattice, resulting in significant improvements of Type-II superlattice infrared detectors. By using M-structure, we developed the pMp design, a novel infrared photodetector architecture that inherits the advantages of traditional photoconductive and photovoltaic devices. This minority electron unipolar device consists of an M-structure barrier layer blocking the transport of majority holes in a p-type semiconductor, resulting in an electrical transport due to minority carriers with low current density. Applied for the very long wavelength detection, at 77K, a 14µm cutoff detector exhibits a dark current 3.3 mA·cm−2, a photoresponsivity of 1.4 A/W at 50mV bias and the associated shot-noise detectivity of 4x1010 Jones. reprint
 
175.  High power quantum cascade lasers
M. Razeghi, S. Slivken, Y. Bai, B. Gokden, and S.R. Darvish
New Journal of Physics (NJP), Volume 11, p. 125017-- December 1, 2009
We report the most recent state-of-art quantum cascade laser results at wavelengths around 4.8 and 10 μm. At 4.8 μm, a room temperature wall plug efficiency (WPE) of 22 and 15.5% are obtained in pulsed mode and continuous wave (cw) mode, respectively. Room temperature cw output power reaches 3.4 W. The same laser design is able to reach a WPE of 36% at 120 K in pulsed mode. At 10 μm, room temperature average power of 2.2 W and cw power of 0.62 W are obtained. We also explore lasers utilizing the photonic crystal distributed feedback mechanism, and we demonstrate up to 12 W peak power operation at three different wavelengths around 4.7 μm with a waveguide width of 100 μm and diffraction limited beam quality. reprint
 

Page 7 of 27:  Prev << 1 2 3 4 5 6 7  8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27  >> Next  (669 Items)