Publications by    
Page 2 of 32:  Prev << 1 2  3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  >> Next  (787 Items)

26.  
Mid‑wavelength infrared avalanche  photodetector with AlAsSb/GaSb  superlattice
Mid‑wavelength infrared avalanche photodetector with AlAsSb/GaSb superlattice
Jiakai Li, Arash Dehzangi, Gail Brown, Manijeh Razeghi
Scientifc Reports | (2021) 11:7104 | https://doi.org/10.1038/s41598-021-86566-8
In this work, a mid-wavelength infrared separate absorption and multiplication avalanche photodiode (SAM-APD) with 100% cut-of wavelength of ~ 5.0 µm at 200 K grown by molecular beam epitaxy was demonstrated. The InAsSb-based SAM-APD device was designed to have electron dominated avalanche mechanism via the band structure engineered multi-quantum well structure based on AlAsSb/GaSb H-structure superlattice and InAsSb material in the multiplication region. The device exhibits a maximum multiplication gain of 29 at 200 K under -14.7 bias voltage. The maximum multiplication gain value for the MWIR SAM-APD increases from 29 at 200 K to 121 at 150 K. The electron and hole impact ionization coefficients were derived and the large difference between their value was observed. The carrier ionization ratio for the MWIR SAM-APD device was calculated to be ~ 0.097 at 200 K. reprint
 
27.  
Sharp/Tuneable UVC Selectivity and Extreme Solar Blindness in Nominally Undoped Ga2O3 MSM Photodetectors Grown by Pulsed Laser Deposition
Sharp/Tuneable UVC Selectivity and Extreme Solar Blindness in Nominally Undoped Ga2O3 MSM Photodetectors Grown by Pulsed Laser Deposition
D. J. Rogers, A. Courtois, F. H. Teherani, V. E. Sandana, P. Bove, X. Arrateig, L. Damé, P. Maso, M. Meftah, W. El Huni, Y. Sama, H. Bouhnane, S. Gautier, A. Ougazzaden, M. Razeghi
Proc. SPIE 11687, Oxide-based Materials and Devices XII, 116872D (24 March 2021); doi: 10.1117/12.2596194
Ga2O3 layers were grown on c-sapphire substrates by pulsed laser deposition. Optical transmission spectra were coherent with a bandgap engineering from 4.9 to 6.2 eV controlled via the growth conditions. X-ray diffraction revealed that the films were mainly β-Ga2O3 (monoclinic) with strong (-201) orientation. Metal-Semiconductor-Metal photodetectors based on gold/nickel Inter- Digitated-Transducer structures were fabricated by single-step negative photolithography. 240 nm peak response sensors gave over 2 orders-of-magnitude of separation between dark and light signal with state-of-the-art solar and visible rejection ratios ((I240 : I290) of > 3 x 105 and (I240 : I400) of > 2 x 106) and dark signals of <50 pA (at a bias of -5V). Spectral responsivities showed an exceptionally narrow linewidth (16.5 nm) and peak values exhibited a slightly superlinear increase with applied bias up to a value of 6.5 A/W (i.e. a quantum efficiency of > 3000%) at 20V bias. reprint
 
28.  
Sharp/Tuneable UVC Selectivity and Extreme Solar Blindness in Nominally Undoped Ga2O3 MSM Photodetectors Grown by Pulsed Laser Deposition
Sharp/Tuneable UVC Selectivity and Extreme Solar Blindness in Nominally Undoped Ga2O3 MSM Photodetectors Grown by Pulsed Laser Deposition
D. J. Rogers, A. Courtois, F. H. Teherani, V. E. Sandana, P. Bove, X. Arrateig, L. Damé, P. Maso, M. Meftah, W. El Huni, Y. Sama, H. Bouhnane, S. Gautier, A. Ougazzaden & M. Razeghi
Proc. SPIE 11687 (2021) 116872D-1
Ga2O3layers were grown on c-sapphire substrates by pulsed laser deposition. Optical transmission spectra were coherent with a bandgap engineering from 4.9 to 6.2 eV controlled via the growth conditions. X-ray diffraction revealed that the films were mainly β-Ga2O3(monoclinic) with strong (-201) orientation. Metal-Semiconductor-Metal photodetectors based on gold/nickel Inter- Digitated-Transducer structures were fabricated by single-step negative photolithography. 240 nm peak response sensors gave over 2 orders-of-magnitude of separation between dark and light signal with state-of-the-art solar and visible rejection ratios ((I240 : I290) of > 3 x 105 and (I240 : I400) of > 2 x 106) and dark signals of <50 pA (at a bias of -5V). Spectral responsivities showed an exceptionally narrow linewidth (16.5 nm) and peak values exhibited a slightly superlinear increase with applied bias up to a value of 6.5 A/W (i.e. a quantum efficiency of > 3000%) at 20V bias. reprint
 
29.  
Highly Conductive Co-Doped Ga2O3Si-In Grown by MOCVD
Highly Conductive Co-Doped Ga2O3Si-In Grown by MOCVD
Junhee Lee, Honghyuk Kim, Lakshay Gautam and Manijeh Razeghi
Coatings 2021, 11(3), 287; https://doi.org/10.3390/coatings11030287
We report a highly conductive gallium oxide doped with both silicon and indium grown on c-plane sapphire substrate by MOCVD. From a superlattice structure of indium oxide and gallium oxide doped with silicon, we obtained a highly conductive material with an electron hall mobility up to 150 cm2/V·s with the carrier concentration near 2 × 1017 cm−3. However, if not doped with silicon, both Ga2O3:In and Ga2O3 are highly resistive. Optical and structural characterization techniques such as X-ray, transmission electron microscope, and photoluminescence, reveal no significant incorporation of indium into the superlattice materials, which suggests the indium plays a role of a surfactant passivating electron trapping defect levels. reprint
 
30.  
Performance analysis of infrared heterojunction phototransistors based on Type-II superlattices
Performance analysis of infrared heterojunction phototransistors based on Type-II superlattices
Jiakai Li, Arash Dehzangi, Manijeh Razeghi
Infrared Physics & Technology Volume 113, March 2021, 103641
In this study, a comprehensive analysis of the n-p-n infrared heterojunction phototransistors (HPTs)based on Type-II superlattices has been demonstrated. Different kinds of Type-II superlattices were carefully chosen for the emitter, base, and collector to improve the optical performance. The effects of different device parameters include emitter doping concentration, base doping concentration, base thickness and energy bandgap difference between emitter and base on the optical gain of the HPTs have been investigated. By scaling the base thickness to 20 nm, the HPT exhibits an optical gain of 345.3 at 1.6 μm at room temperature. For a 10 μm diameter HPT device, a −3 dB cut-off frequency of 5.1 GHz was achieved under 20 V at 150 K. reprint
 
31.  
Band-structure-engineered high-gain LWIR photodetector based on a type-II superlattice
Band-structure-engineered high-gain LWIR photodetector based on a type-II superlattice
Arash Dehzangi, Jiakai Li and Manijeh Razeghi
Light: Science & Applications volume 10, Article number: 17 (2021) https://doi.org/10.1038/s41377-020-00453-x
The LWIR and longer wavelength regions are of particular interest for new developments and new approaches to realizing long-wavelength infrared (LWIR) photodetectors with high detectivity and high responsivity. These photodetectors are highly desirable for applications such as infrared earth science and astronomy, remote sensing, optical communication, and thermal and medical imaging. Here, we report the design, growth, and characterization of a high-gain band-structure-engineered LWIR heterojunction phototransistor based on type-II superlattices. The 1/e cut-off wavelength of the device is 8.0 µm. At 77 K, unity optical gain occurs at a 90 mV applied bias with a dark current density of 3.2 × 10−7 A/cm2. The optical gain of the device at 77 K saturates at a value of 276 at an applied bias of 220 mV. This saturation corresponds to a responsivity of 1284 A/W and a specific detectivity of 2.34 × 1013 cm Hz1/2/W at a peak detection wavelength of ~6.8 µm. The type-II superlattice-based high-gain LWIR device shows the possibility of designing the high-performance gain-based LWIR photodetectors by implementing the band structure engineering approach. reprint
 
32.  
Study of Phase Transition in MOCVD Grown Ga2O3 from κ to β Phase by Ex Situ and In Situ Annealing
Study of Phase Transition in MOCVD Grown Ga2O3 from κ to β Phase by Ex Situ and In Situ Annealing
Junhee Lee, Honghyuk Kim, Lakshay Gautam, Kun He, Xiaobing Hu, Vinayak P. Dravid and Manijeh Razeghi
Photonics 2021, 8, 17. https://doi.org/10.3390/ photonics8010017
We report the post-growth thermal annealing and the subsequent phase transition of Ga2O3 grown on c-plane sapphire substrates by metal organic chemical vapor deposition (MOCVD). We demonstrated the post-growth thermal annealing at temperatures higher than 900 °C under N2 ambience, by either in situ or ex situ thermal annealing, can induce phase transition from nominally metastable κ- to thermodynamically stable β-phase. This was analyzed by structural characterizations such as high-resolution scanning transmission electron microscopy and x-ray diffraction. The highly resistive as-grown Ga2O3 epitaxial layer becomes conductive after annealing at 1000 °C. Furthermore, we demonstrate that in situ annealing can lead to a crack-free β-Ga2O3. reprint
 
33.  
Multi-band SWIR-MWIR-LWIR Type-II superlattice based infrared photodetector
Multi-band SWIR-MWIR-LWIR Type-II superlattice based infrared photodetector
Manijeh Razeghi, Arash Dehzangi, Jiakai Li
Results in Optics Volume 2, January 2021, 100054 https://doi.org/10.1016/j.rio.2021.100054
Type-II InAs/GaSb superlattices (T2SLs) has drawn a lot of attention since it was introduced in 1970, especially for infrared detection as a system of multi-interacting quantum wells. In recent years, T2SL material system has experienced incredible improvements in material quality, device structure designs and device fabrication process, which elevated the performances of T2SL-based photo-detectors to a comparable level to the state-of-the-art material systems for infrared detection such as Mercury Cadmium Telluride (MCT). As a pioneer in the field, center for quantum devices (CQD) has been involved in growth, design, characterization, and introduction of T2SL material system for infrared photodetection. In this review paper, we will present the latest development of bias-selectable multi-band infrared photodetectors at the CQD, based on InAs/GaSb/AlSb and InAs/InAs1-xSbx type-II superlattice. reprint
 
34.  
Geiger-Mode Operation of AlGaN Avalanche Photodiodes at 255 nm
Geiger-Mode Operation of AlGaN Avalanche Photodiodes at 255 nm
Lakshay Gautam, Alexandre Guillaume Jaud, Junhee Lee, Gail J. Brown, Manijeh Razeghi
Published in: IEEE Journal of Quantum Electronics ( Volume: 57, Issue: 2, April 2021)
We report the Geiger mode operation of back-illuminated AlGaN avalanche photodiodes. The devices were fabricated on transparent AlN templates specifically for back-illumination to leverage hole-initiated multiplication. The spectral response was analyzed with a peak detection wavelength of 255 nm with an external quantum efficiency of ~14% at zero bias. Low-photon detection capabilities were demonstrated in devices with areas 25 μm×25 μm. Single photon detection efficiencies of ~5% were achieved. reprint
 
35.  
Avalanche Photodetector Based on InAs/InSb Superlattice
Avalanche Photodetector Based on InAs/InSb Superlattice
Arash Dehzangi, Jiakai Li, Lakshay Gautam and Manijeh Razeghi
Quantum rep. 2020, 2(4), 591-599; https://doi.org/10.3390/quantum2040041 (registering DOI)-- December 4, 2020
This work demonstrates a mid-wavelength infrared InAs/InSb superlattice avalanche photodiode (APD). The superlattice APD structure was grown by molecular beam epitaxy on GaSb substrate. The device exhibits a 100 % cut-off wavelength of 4.6 µm at 150 K and 4.30 µm at 77 K. At 150 and 77 K, the device responsivity reaches peak values of 2.49 and 2.32 A/W at 3.75 µm under −1.0 V applied bias, respectively. The device reveals an electron dominated avalanching mechanism with a gain value of 6 at 150 K and 7.4 at 77 K which was observed under −6.5 V bias voltage. The gain value was measured at different temperatures and different diode sizes. The electron and hole impact ionization coefficients were calculated and compared to give a better prospect of the performance of the device. reprint
 
36.  
Resonant cavity enhanced heterojunction phototransistors based on type-II superlattices
Resonant cavity enhanced heterojunction phototransistors based on type-II superlattices
Jiakai Li, Arash Dehzangi, Donghai Wu, Ryan McClintock, Manijeh Razeghi
Infrared Physics & Technology Available online 27 October 2020, 103552 https://doi.org/10.1016/j.infrared.2020.103552-- October 27, 2020
Resonant cavity enhanced heterojunction phototransistor based on InAs/GaSb/AlSb type-II superlattice grown by molecular beam epitaxy has been demonstrated. The resonant wavelength was designed to be at near 1.9 μm wavelength range at room temperature. An eleven-pair lattice matched GaSb-AlAsSb quarter-wavelength Bragg reflector was used in the RCE-HPT to enhance the photoresponse. The device showed the wavelength selectivity and a cavity enhancement of the responsivity at 1.9 μm at room temperature. reprint
 
37.  
Demonstration of Planar Type-II Superlattice-Based Photodetectors Using Silicon Ion-Implantation
Demonstration of Planar Type-II Superlattice-Based Photodetectors Using Silicon Ion-Implantation
Arash Dehzangi, Donghai Wu, Ryan McClintock, Jiakai Li, Alexander Jaud and Manijeh Razeghi
Photonics 2020, 7(3), 68; https://doi.org/10.3390/photonics7030068-- September 3, 2020
In this letter, we report the demonstration of a pBn planar mid-wavelength infrared photodetectors based on type-II InAs/InAs1−xSbx superlattices, using silicon ion-implantation to isolate the devices. At 77 K the photodetectors exhibited peak responsivity of 0.76 A/W at 3.8 µm, corresponding to a quantum efficiency, without anti-reflection coating, of 21.5% under an applied bias of +40 mV with a 100% cut-off wavelength of 4.6 µm. With a dark current density of 5.21 × 10−6 A/cm2, under +40 mV applied bias and at 77 K, the photodetector exhibited a specific detectivity of 4.95 × 1011 cm·Hz1/2/W. reprint
 
38.  
High Performance InAs/InAsSb Type-II Superlattice Mid-Wavelength Infrared Photodetectors with Double Barrier
High Performance InAs/InAsSb Type-II Superlattice Mid-Wavelength Infrared Photodetectors with Double Barrier
Donghai Wu, Jiakai Li, Arash Dehzangi, Manijeh Razeghi
Infrared Physics &Technology 103439-- July 18, 2020
By introducing a double barrier design, a high performance InAs/InAsSb type-II superlattice mid-wavelength infrared photodetector has been demonstrated. The photodetector exhibits a cut-off wavelength of ~4.50 µm at 150 K. At 150 K and −120 mV applied bias, the photodetector exhibits a dark current density of 1.21 × 10−5 A/cm2, a quantum efficiency of 45% at peak responsivity (~3.95 µm), and a specific detectivity of 6.9 × 1011 cm·Hz1/2/W. The photodetector shows background-limited operating temperature up to 160 K. reprint
 
39.  
Room temperature quantum cascade laser with ∼ 31% wall-plug efficiency
Room temperature quantum cascade laser with ∼ 31% wall-plug efficiency
F. Wang, S. Slivken, D. H. Wu, and M. Razeghi
AIP Advances 10, 075012-- July 14, 2020
In this article, we report the demonstration of a quantum cascade laser emitting at λ ≈ 4.9 μm with a wall-plug efficiency of ∼31% and an output power of ∼23 W in pulsed operation at room temperature with 50 cascade stages (Ns). With proper fabrication and packaging, this buried ridge quantum cascade laser with a cavity length of 5 mm delivers more than ∼15 W output power, and its wall-plug efficiency exceeds ∼20% at 100 °C. The experimental results of the lasers are well in agreement with the numerical predictions. reprint
 
40.  
Room temperature quantum cascade lasers with 22% wall plug efficiency in continuous-wave operation
Room temperature quantum cascade lasers with 22% wall plug efficiency in continuous-wave operation
F. Wang, S. Slivken, D. H. Wu, and M. Razeghi
Optics Express Vol. 28, Issue 12, pp. 17532-17538-- June 8, 2020
We report the demonstration of quantum cascade lasers (QCLs) with improved efficiency emitting at a wavelength of 4.9 µm in pulsed and continuous-wave(CW)operation. Based on an established design and guided by simulation, the number of QCL-emitting stages is increased in order to realize a 29.3% wall plug efficiency (WPE) in pulsed operation at room temperature. With proper fabrication and packaging, a 5-mm-long, 8-µm-wide QCL with a buried ridge waveguide is capable of 22% CW WPE and 5.6 W CW output power at room temperature. This corresponds to an extremely high optical density at the output facet of ∼35 MW/cm², without any damage. reprint
 
41.  
Planar nBn type-II superlattice mid-wavelength infrared photodetectors using zinc ion-implantation
Planar nBn type-II superlattice mid-wavelength infrared photodetectors using zinc ion-implantation
Arash Dehzangi, Donghai Wu, Ryan McClintock, Jiakai Li, and Manijeh Razeghi
Appl. Phys. Lett. 116, 221103 https://doi.org/10.1063/5.0010273-- June 2, 2020
In this Letter, we report the demonstration of zinc ion-implantation to realize planar mid-wavelength infrared photodetectors based on type-II InAs/InAs1−xSbx superlattices. At 77 K, the photodetectors exhibit a peak responsivity of 0.68 A/W at 3.35 μm, corresponding to a quantum efficiency of 23.5% under Vb = −80 mV, without anti-reflection coating; these photodetectors have a 100% cutoff wavelength of 4.28 μm. With an R0 × A value of 1.53 × 104 Ω cm2 and a dark current density of 1.23 × 10−6 A/cm2 under an applied bias of −80 mV at 77 K, the photodetectors exhibit a specific detectivity of 9.12 × 1011 cm·Hz1/2/W. reprint
 
42.  
Continuous wave quantum cascade lasers with 5.6 W output power at room temperature and 41% wall-plug efficiency in cryogenic operation
Continuous wave quantum cascade lasers with 5.6 W output power at room temperature and 41% wall-plug efficiency in cryogenic operation
F. Wang, S. Slivken, D. H. Wu, Q. Y. Lu, and M. Razeghi
AIP Advances 10, 055120-- May 19, 2020
In this paper, we report a post-polishing technique to achieve nearly complete surface planarization for the buried ridge regrowth processing of quantum cascade lasers. The planarized device geometry improves the thermal conduction and reliability and, most importantly, enhances the power and efficiency in continuous wave operation. With this technique, we demonstrate a high continuous wave wall-plug efficiency of an InP-based quantum cascade laser reaching ∼41% with an output power of ∼12 W from a single facet operating at liquid nitrogen temperature. At room temperature, the continuous wave output power exceeds the previous record, reaching ∼5.6 W. reprint
 
43.  
High power continuous wave operation of single mode quantum cascade lasers up to 5 W spanning λ∼3.8-8.3 µm
High power continuous wave operation of single mode quantum cascade lasers up to 5 W spanning λ∼3.8-8.3 µm
Quanyong Lu, Steven Slivken, Donghai Wu, and Manijeh Razeghi
Optics Express Vol. 28, Issue 10, pp. 15181-15188-- May 4, 2020
In this work, we report high power continuous wave room-temperature operation single mode quantum cascade lasers in the mid-infrared spectral range from 3.8 to 8.3 µm. Single mode robustness and dynamic range are enhanced by optimizing the distributed feedback grating coupling design and the facet coatings. High power single mode operation is secured by circumventing the over-coupling issue and spatial hole burning effect. Maximum single-facet continuous-wave output power of 5.1 W and wall plug efficiency of 16.6% is achieved at room temperature. Single mode operation with a side mode suppression ratio of 30 dB and single-lobed far field with negligible beam steering is observed. The significantly increased power for single mode emission will boost the QCL applications in long-range free-space communication and remote sensing of hazardous chemicals. reprint
 
44.  
Type-II superlattice-based heterojunction phototransistors for high speed applications
Type-II superlattice-based heterojunction phototransistors for high speed applications
Jiakai Li, Arash Dehzangi, Donghai Wu, Ryan McClintock, Manijeh Razeghi
Infrared Physics and Technology 108, 1033502-- May 2, 2020
In this study, high speed performance of heterojunction phototransistors (HPTs) based on InAs/GaSb/AlSb type-II superlattice with 30 nm base thickness and 50% cut-off wavelength of 2.0 μm at room temperature are demonstrated. We studied the relationship between -3 dB cut-off frequency of these HPT versus mesa size, applied bias, and collector layer thickness. For 8 μm diameter circular mesas HPT devices with a 0.5 μm collector layer, under 20 V applied bias voltage, we achieved a -3 dB cut-off frequency of 2.8 GHz. reprint
 
45.  
Sb-based third generation at Center for Quantum Devices
Sb-based third generation at Center for Quantum Devices
Razeghi, Manijeh
SPIE Proceedings Volume 11407, Infrared Technology and Applications XLVI; 114070T-- April 23, 2020
Sb-based III-V semiconductors are a promising alternative to HgCdTe. They can be produced with a similar bandgap to HgCdTe, but take advantage of the strong bonding between group III and group V elements which leads to very stable materials, good radiation hardness, and high uniformity. In this paper, we will discuss the recent progress of our research and present the main contributions of the Center for Quantum Devices to the Sb-based 3th generation imagers. reprint
 
46.  
High performance Zn-diffused planar mid-wavelength infrared type-II InAs/InAs<sub>1-x</sub>Sb<sub>x</sub> superlattice photodetector by MOCVD
High performance Zn-diffused planar mid-wavelength infrared type-II InAs/InAs1-xSbx superlattice photodetector by MOCVD
Donghai Wu, Arash Dehzangi, Jiakai Li, and Manijeh Razeghi
Appl. Phys. Lett. 116, 161108-- April 21, 2020
We report a Zn-diffused planar mid-wavelength infrared photodetector based on type-II InAs/InAs1-xSbx superlattices. Both the superlattice growth and Zn diffusion were performed in a metal-organic chemical vapor deposition system. At 77K, the photodetector exhibits a peak responsivity of 0.70A/W at 3.65λ, corresponding to a quantum efficiency of 24% at zero bias without anti-reflection coating, with a 50% cutoff wavelength of 4.28λ. With an R0A value of 3.2x105 Ω·cm2 and a dark current density of 9.6x10-8 A/cm² bias of -20mV at 77K, the photodetector exhibits a specific detectivity of 2.9x1012cm·Hz½/W. At 150K, the photodetector exhibits a dark current density of 9.1x10-6 A/cm² and a quantum efficiency of 25%, resulting in a detectivity of 3.4x1011cm·Hz/W. reprint
 
47.  
High power, high wall-plug efficiency, high reliability, continuous-wave operation quantum cascade lasers at Center for Quantum Devices
High power, high wall-plug efficiency, high reliability, continuous-wave operation quantum cascade lasers at Center for Quantum Devices
Razeghi, Manijeh
SPIE Proceedings Volume 11296, Optical, Opto-Atomic, and Entanglement-Enhanced Precision Metrology II; 112961C-- February 25, 2020
Since the demonstration of the first quantum cascade laser (QCL) in 1997, QCLs have undergone considerable developments in output power, wall plug efficiency (WPE), beam quality, wavelength coverage and tunability. Among them, many world-class breakthroughs were achieved at the Center for Quantum Device at Northwestern University. In this paper, we will discuss the recent progress of our research and present the main contributions of the Center for Quantum Devices to the QCL family on high power, high wall-plug efficiency (WPE), continuous-wave (CW) and room temperature operation lasers. reprint
 
48.  
Mid-wavelength infrared high operating temperature pBn photodetectors based on type-II InAs/InAsSb superlattice
Mid-wavelength infrared high operating temperature pBn photodetectors based on type-II InAs/InAsSb superlattice
Donghai Wu, Jiakai Li, Arash Dehzangi, and Manijeh Razeghi
AIP Advances 10, 025018-- February 11, 2020
A high operating temperature mid-wavelength infrared pBn photodetector based on the type-II InAs/InAsSb superlattice on a GaSb substrate has been demonstrated. At 150 K, the photodetector exhibits a peak responsivity of 1.48 A/W, corresponding to a quantum efficiency of 47% at −50 mV applied bias under front-side illumination, with a 50% cutoff wavelength of 4.4 μm. With an R×A of 12,783 Ω·cm² and a dark current density of 1.16×10−5A/cm² under −50 mV applied bias, the photodetector exhibits a specific detectivity of 7.1×1011 cm·Hz½/W. At 300 K, the photodetector exhibits a dark current density of 0.44 A/cm²and a quantum efficiency of 39%, resultingin a specific detectivity of 2.5×109 cm·Hz½/W. reprint
 
49.  
Solar-blind photodetectors based on Ga<sub>2</sub>O<sub>3</sub> and III-nitrides
Solar-blind photodetectors based on Ga2O3 and III-nitrides
Ryan McClintock; Alexandre Jaud; Lakshay Gautam; Manijeh Razeghi
Proc. SPIE 11288, Quantum Sensing and Nano Electronics and Photonics XVII, 1128803-- January 31, 2020
Recently, there has been a surge of interest in the wide bandgap semiconductors for solar blind photo detectors (SBPD). This work presents our recent progress in the growth/doping of AlGaN and Ga2O3 thin films for solar blind detection applications. Both of these thin films grown are grown by metal organic chemical vapor deposition (MOCVD) in the same Aixtron MOCVD system. Solar-blind metal-semiconductor-metal photodetectors were fabricated with Ga2O3. Spectral responsivity studies of the MSM photodetectors revealed a peak at 261 nm and a maximum EQE of 41.7% for a −2.5 V bias. We have also demonstrated AlGaN based solar-blind avalanche photodiodes with a gain in excess of 57,000 at ~100 volts of reverse bias. This gain can be attributed to avalanche multiplication of the photogenerated carriers within the device. Both of these devices show the potential of wide bandgap semiconductors for solar blind photo detectors. reprint
 
50.  
High-speed short wavelength infrared heterojunction phototransistors based on type II superlattices
High-speed short wavelength infrared heterojunction phototransistors based on type II superlattices
Jiakai Li; Arash Dehzangi; Donghai Wu; Manijeh Razeghi
Proc. SPIE 11288, Quantum Sensing and Nano Electronics and Photonics XVII, 1128813-- January 31, 2020
A two terminal short wavelength infrared heterojunction phototransistors based on type-II InAs/AlSb/GaSb on GaSb substrate are designed fabricated and presented. With the base thickness of 40 nm, the device exhibited 100% cut-off wavelengths of ~2.3 μm at 300K. The saturated peak responsivity value is of 325.5 A/W at 300K, under front-side illumination without any anti-reflection coating. A saturated optical gain at 300K was 215 a saturated dark current shot noise limited specific detectivity of 4.9×1011 cm·Hz½/W at 300 K was measured. Similar heterojunction phototransistor structure was grown and fabricated with different method of processing for high speed testing. For 80 μm diameter circular diode size under 20 V applied reverse bias, a −3 dB cut-off frequency of 1.0 GHz was achieved, which showed the potential of type-II superlattice based heterojunction phototransistors to be used for high speed detection. reprint
 

Page 2 of 32:  Prev << 1 2  3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  >> Next  (787 Items)