Publications by    
Page 15 of 27:  Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15  16 17 18 19 20 21 22 23 24 25 26 27  >> Next  (669 Items)

351.  Review of III-Nitride Optoelectronic Materials for light Emission and Detection
M. Razeghi, A. Yasan, R. McClintock, K. Mayes, D. Shiell, S. Darvish, and P. Kung
Physica Status Solidi C S141 - S148-- September 10, 2004
We review the significant achievements relating to optoelectronic devices based on III-nitrides at the center for quantum devices (CQD). Based on GaN/InGaN multiple-quantum well structures, we demonstrated blue laser diodes at a wavelength of 405 nm. This achievement was particularly significant at the time, because while no defect reduction technique was used, a fairly low threshold current density was achieved (3.8 kA/cm²). In the past few years, however, the interest has shifted towards shorter wavelength light emitters, i.e. ultraviolet LEDs and LDs. Lower crystalline quality and unsatisfactory doping levels of AlGaN compound semiconductors posed serious challenges en route to the realization of UV light emitters. However, steady progress in the growth of AlGaN and AlN epilayers made it possible to overcome some of the difficulties. To date, we have been able to demonstrate UV LEDs at wavelengths as short as 265 nm (corresponding to 45% Al in AlxGa1-xN) with optical output powers of over 5 mW. We have addressed the n-type AlGaN doping problem by using a Si-In co-doped scheme. We also employed high-quality AlGaN/AlN superlattice templates for the reduction of defects. We have also demonstrated 280 nm UV LEDs with output powers of over 6 mW and external quantum efficiencies of over 0.25%. Despite all the success in the realization of short-wavelength UV LEDs, UV laser diodes at these short wavelengths are yet to be realized. The main difficulties are the low material quality, high device resistance leading to excessive heating of the device, realization of smooth cavity mirrors, and issues related to the cracking of the material. We have also demonstrated different types of photodetectors in the UV range of the spectrum: photoconductors, MSM photodetector, Schottky barrier photodetectors, and p-i-n photodiodes to name a few. The most promising type of photodetector for realization of UV imaging focal plane arrays is the p-i-n photodiode. Realization of high-efficiency AlGaN-based p-i-n photodiodes becomes more difficult when considering the need for the collection of the light from the backside of the substrate. However, similar to our back-emission UV LED structure, we have demonstrated back-illuminated p-i-n solar-blind photodiodes with external quantum efficiencies as high as 68% under no applied bias and 74% under -5 V of bias. reprint
 
352.  Demonstration of a 256x256 Middle-Wavelength Infrared Focal Plane Array based on InGaAs/InGaP Quantum Dot Infrared Photodetectors (QDIPs)
J. Jiang, K. Mi, S. Tsao, W. Zhang, H. Lim, T.O'Sullivan, T. Sills, M. Razeghi, G.J. Brown, and M.Z. Tidrow
Applied Physics Letters, 84 (13)-- April 29, 2004
We report a demonstration of an infrared focal plane array based on InGaAs/InGaP quantum dot infrared photodetectors. The middle-wavelength infrared quantum-dot infrared photodetector (QDIP) structure was grown via low-pressure metal organic chemical vapor deposition. A detectivity of 3.6×1010 cm·Hz½/W was achieved at T = 95 K and a bias of –1.4 V. The background limited temperature of our QDIP was 140 K with a 45° field of view. A 256×256 detector array was fabricated with dry etching, and hybridized to a Litton readout chip by indium bumps. Thermal imaging was achieved at temperatures up to 120 K. At T = 77 K, the noise equivalent temperature difference was measured as 0.509 K with a 300 K background and f/2.3 optics. reprint
 
353.  High Detectivity InGaAs/InGaP Quantum-Dot Infrared Photodetectors Grown by Low Pressure Metalorganic Chemical Vapor Deposition
J. Jiang, S. Tsao, T. O'Sullivan, W. Zhang, H. Lim, T. Sills, K. Mi, M. Razeghi, G.J. Brown, and M.Z. Tidrow
Applied Physics Letters, 84 (12)-- April 22, 2004
We report a high detectivity middle-wavelength infrared quantum dot infrared photodetector (QDIP). The InGaAs quantum dots were grown by self-assembly on an InGaP matrix via low pressure metalorganic chemical vapor deposition. Photoresponse was observed at temperatures above 200 K with a peak wavelength of 4.7 µm and cutoff wavelength of 5.2 µm. The background limited performance temperature was 140 K, and this was attributed to the super low dark current observed in this QDIP. A detectivity of 3.6×1010 cm·Hz½/W, which is comparable to the state-of-the-art quantum well infrared photodetectors in a similar wavelength range, was obtained for this InGaAs/InGaP QDIP at both T = 77 K and T = 95 K at biases of –1.6 and –1.4 V, reprint
 
354.  Demonstration of a 256x256 Middle-Wavelength Infrared Focal Plane Array based on InGaAs/InGaP Quantum Dot Infrared Photodetectors (QDIPs)
J. Jiang, K. Mi, S. Tsao, W. Zhang, H. Lim, T.O'Sullivan, T. Sills, M. Razeghi, G.J. Brown, and M.Z. Tidrow
Virtual Journal of Nanoscale Science and Technology 9 (13)-- April 5, 2004reprint
 
355.  High Detectivity InGaAs/InGaP Quantum-Dot Infrared Photodetectors Grown by Low Pressure Metalorganic Chemical Vapor Deposition
J. Jiang, S. Tsao, T. O'Sullivan, W. Zhang, H. Lim, T. Sills, K. Mi, M. Razeghi, G.J. Brown, and M.Z. Tidrow
Virtual Journal of Nanoscale Science and Technology 9 (12)-- March 29, 2004reprint
 
356.  Ammonium Sulfide Passivation of Type-II InAs/GaSb Superlattice Photodiodes
A. Gin, Y. Wei, A. Hood, A. Bajowala, V. Yazdanpanah, M. Razeghi and M.Z. Tidrow
Applied Physics Letters, 84 (12)-- March 22, 2004
We report on the surface passivation of Type-II InAs/GaSb superlattice photodetectors using various ammonium sulfide solutions. Compared to unpassivated detectors, zero-bias resistance of treated 400 µm×400 µm devices with 8 µm cutoff wavelength was improved by over an order of magnitude to ~20 kΩ at 80 K. Reverse-bias dark current density was reduced by approximately two orders of magnitude to less than 10 mA/cm2 at –2 V. Dark current modeling, which takes into account trap-assisted tunneling, indicates greater than 70 times reduction in bulk trap density for passivated detectors. reprint
 
357.  Fabrication of Indium Bumps for Hybrid Infrared Focal Plane Array Applications
J. Jiang, S. Tsao, T. O'Sullivan, M. Razeghi, and G.J. Brown
Infrared Physics and Technology, 45 (2)-- March 1, 2004
Hybrid infrared focal plane arrays (FPAs) have found many applications. In hybrid IR FPAs, FPA and Si read out integrated circuits (ROICs) are bonded together with indium bumps by flip-chip bonding. Taller and higher uniformity indium bumps are always being pursued in FPA fabrication. In this paper, two indium bump fabrication processes based on evaporation and electroplating techniques are developed. Issues related to each fabrication technique are addressed in detail. The evaporation technique is based on a unique positive lithography process. The electroplating method achieves taller indium bumps with a high aspect ratio by a unique “multi-stack” technique. This technique could potentially benefit the fabrication of multi-color FPAs. Finally, a proposed low-cost indium bump fabrication technique, the “bump transfer”, is given as a future technology for hybrid IR FPA fabrication. reprint
 
358.  High-Power Continuous-Wave Operation of Quantum-Cascade Lasers Up to 60 °C
J.S. Yu, A. Evans, J. David, L. Doris, S. Slivken and M. Razeghi
IEEE Photonics Technology Letters, 16 (3)-- March 1, 2004
High-temperature high-power continuous-wave (CW) operation of high-reflectivity-coated 12 μm wide quantum-cascade lasers emitting at λ = 6 μm with a thick electroplated Au top contact layer is reported for different cavity lengths. For a 3 mm long laser, the CW optical output powers of 381 mW at 293 K and 22 mW at maximum operating temperature of 333 K (60°C) are achieved with threshold current densities of 1.93 and 3.09 kA/cm2, respectively. At 298 K, the same cavity gives a maximum wall plug efficiency of 3.17% at 1.07 A. An even higher CW optical output power of 424 mW at 293 K is obtained for a 4-mm-long laser and the device also operates up to 332 K with an output power of 14 mW. Thermal resistance is also analyzed at threshold as a function of cavity length. reprint
 
359.  Ridge-Width Dependence on High-Temperature Continuous-Wave Quantum-Cascade Laser Operation
S. Slivken, J.S. Yu, A. Evans, L. Doris, J. David, and M. Razeghi
IEEE Photonics Technology Letters, 16 (3)-- March 1, 2004
We report continuous-wave (CW) operation of quantum-cascade lasers (λ=6 μm) up to a temperature of 313 K (40°C). The maximum CW optical output powers range from 212 mW at 288 K to 22 mW at 313 K and are achieved with threshold current densities of 2.21 and 3.11 kA/cm2, respectively, for a high-reflectivity-coated 12-μm-wide and 2-mm-long laser. At room temperature (298 K), the power output is 145 mW at 0.87 A, corresponding to a power conversion efficiency of 1.68%. The maximum CW operating temperature of double-channel ridge waveguide lasers mounted epilayer-up on copper heatsinks is analyzed in terms of the ridge width, which is varied between 12 and 40 μm. A clear trend of improved performance is observed as the ridge narrows. reprint
 
360.  High Quantum Efficiency AlGaN Solar-Blind Photodetectors
R. McClintock, A. Yasan, K. Mayes, D. Shiell, S.R. Darvish, P. Kung and M. Razeghi
Applied Physics Letters, 84 (8)-- February 23, 2004
We report AlGaN-based back-illuminated solar-blind ultraviolet p-i-n photodetectors with a peak responsivity of 136 mA/W at 282 nm without bias. This corresponds to a high external quantum efficiency of 60%, which improves to a value as high as 72% under 5 V reverse bias. We attribute the high performance of these devices to the use of a very-high quality AlN and Al0.87Ga0.13N/AlN superlattice material and a highly conductive Si–In co-doped Al0.5Ga0.5N layer reprint
 
361.  High Power 280 nm AlGaN Light Emitting Diodes Based on an Asymmetric Single Quantum Well
K. Mayes, A. Yasan, R. McClintock, D. Shiell, S.R. Darvish, P. Kung, and M. Razeghi
Applied Physics Letters, 84 (7)-- February 16, 2004
We demonstrate high-power AlGaN-based ultraviolet light-emitting diodes grown on sapphire with an emission wavelength of 280 nm using an asymmetric single-quantum-well active layer configuration on top of a high-quality AlGaN/AlN template layer. An output power of 1.8 mW at a pulsed current of 400 mA was achieved for a single 300 µm×300 µm diode. This device reached a high peak external quantum efficiency of 0.24% at 40 mA. An array of four diodes produced 6.5 mW at 880 mA of pulsed current. reprint
 
362.  Modeling of Type-II InAs/GaSb Superlattices Using Empirical Tight-Binding Method and Interface Engineering
Y. Wei and M. Razeghi
Physical Review B, 69 (8)-- February 15, 2004
We report the most recent work on the modeling of type-II InAs/GaSb superlattices using the empirical tight binding method in an sp3s* basis. After taking into account the antimony segregation in the InAs layers, the modeling accuracy of the band gap has been improved. Our calculations agree with our experimental results within a certain growth uncertainty. In addition, we introduce the concept of GaxIn1-x type interface engineering in order to reduce the lattice mismatch between the superlattice and the GaSb (001) substrate to improve the overall superlattice material quality. reprint
 
363.  Passivation of Type-II InAs/GaSb Superlattice Photodiodes
A. Gin, Y. Wei, J. Bae, A. Hood, J. Nah, and M. Razeghi
International Conference on Metallurgical Coatings and Thin Films (ICMCTF), San Diego, CA; Thin Solid Films 447-448-- January 30, 2004
Recently, excellent infrared detectors have been demonstrated using Type-II InAs/GaSb superlattice materials sensitive at wavelengths from 3 μm to greater than 32 μm. These results indicate that Type-II superlattice devices may challenge the preponderance of HgCdTe and other state-of-the-art infrared material systems. As such, surface passivation is becoming an increasingly important issue as progress is made towards the commercialization of Type-II devices and focal plane array applications. This work focuses on initial attempts at surface passivation of Type-II InAs/GaSb superlattice photodiodes using PECVD-grown thin layers of SiO2. Our results indicate that silicon dioxide coatings deposited at various temperatures improve photodetector resistivity by several times. Furthermore, reverse-bias dark current has been reduced significantly in passivated devices. reprint
 
364.  High Quantum Efficiency Solar-Blind Photodetectors
R. McClintock, A. Yasan, K. Mayes, D. Shiell, S. Darvish, P. Kung and M. Razeghi
SPIE Conference, Jose, CA, Vol. 5359, pp. 434-- January 25, 2004
We report AlGaN-based back-illuminated solar-blind p-i-n photodetectors with a record peak responsivity of 150 mA/W at 280 nm, corresponding to a high external quantum efficiency of 68%, increasing to 74% under 5 volts reverse bias. Through optimization of the p-AlGaN layer, we were able to remove the out-of-band negative photoresponse originating from the Schottky-like p-type metal contact, and hence significantly improve the degree of solar-blindness reprint
 
365.  Growth of Deep UV Light Emitting Diodes by Metalorganic Chemical Vapor Deposition
A. Yasan, R. McClintock, K. Mayes, D. Shiell, S. Darvish, P. Kung and M. Razeghi
SPIE Conference, Jose, CA, Vol. 5359, pp. 400-- January 25, 2004
We demonstrate high power AlGaN based ultraviolet light-emitting diodes (UV LEDs) with an emission wavelength of 280 nm using an asymmetric single quantum well active layer configuration on top of a high-quality AlGaN/AlN template layer grown by metalorganic chemical vapor deposition (MOCVD). An output power of 1.8 mW at a pulsed current of 400 mA was achieved for a single 300 µm × 300 µm diode. This device reached a high peak external quantum efficiency of 0.24% at 40 mA. An array of four diodes produced 6.5 mW at 880 mA of pulsed current. reprint
 
366.  Modeling Type-II InAs/GaSb Superlattices Using Empirical Tight-Binding Method: New Aspects
Y. Wei, M. Razeghi, G.J. Brown, and M.Z. Tidrow
SPIE Conference, Jose, CA, Vol. 5359, pp. 301-- January 25, 2004
The recent advances in the experimental work on the Type-II InAs/GaSb superlattices necessitate a modeling that can handle arbitrary layer thickness as well as different types of interfaces in order to guide the superlattice design. The empirical tight-binding method (ETBM) is a very good candidate since it builds up the Hamiltonian atom by atom. There has been a lot of research work on the modeling of Type-II InAs/GaSb superlattices using the ETBM. However, different groups generate very different accuracy comparing with experimental results. We have recently identified two major aspects in the modeling: the antimony segregation and the interface effects. These two aspects turned out to be of crucial importance governing the superlattice properties, especially the bandgap. We build the superlattice Hamiltonian using antimony segregated atomic profile taking into account the interface. Our calculations agree with our experimental results within growth uncertainties. In addition we introduced the concept of GaxIn1-x type interface engineering, which will add another design freedom especially in the mid-wavelength infrared range (3~7 µm) in orderto reduce the lattice mismatch. reprint
 
367.  High Power, Room Temperature, Continuous-Wave Operation of Quantum Cascade Lasers Grown by GasMBE
A. Evans, J. David, L. Doris, J.S. Yu, S. Slivken and M. Razeghi
SPIE Conference, Jose, CA, Vol. 5359, pp. 188-- January 25, 2004
Very high power continuous-wave quantum cascade lasers are demonstrated in the mid-infrared (3 - 6 µm) wavelength range. λ~6 µm high-reflectivity coated QCLs are demonstrated producing over 370 mW continuous-wave power at room temperature with continuous-wave operation up to 333 K. Advanced heterostructure geometries, including the use of a thick electroplated gold, epilayer-side heat sink and a buried-ridge heterostructure are demonstrated to improve laser performance significantly when combined with narrow laser ridges. Recent significant improvements in CW operation are presented and include the development if narrow (9 µm-wide) ridges for high temperature CW operation. GasMBE growth of the strain-balanced λ~6 µm QCL heterostructure is discussed. X-ray diffraction measurements are presented and compared to computer simulations that indicate excellent layer and compositional uniformity of the structure. reprint
 
368.  High-temperature high-power continuous-wave operation of buried heterostructure quantum-cascade lasers
A. Evans, J.S. Yu, J. David, L. Doris, K. Mi, S. Slivken, and M. Razeghi
Applied Physics Letters, 84 (3)-- January 19, 2004
We report cw operation of buried heterostructure quantum-cascade lasers (λ=6 µm) using a thick electroplated Au top contact layer and epilayer-up bonding on a copper heat sink up to a temperature of 333 K (60 °C). The high cw optical output powers of 446 mW at 293 K, 372 mW at 298 K, and 30 mW at 333 K are achieved with threshold current densities of 2.19, 2.35, and 4.29 kA/cm2 respectively, for a high-reflectivity-coated, 9-µm-wide and 3-mm-long laser reprint
 
369.  Cavity Length Effects of High-Temperature High-Power Continuous Wave Characteristics in Quantum-Cascade Lasers
J.S. Yu, A. Evans, J. David, L. Doris, S. Slivken, and M. Razeghi
Applied Physics Letters, 83 (25)-- December 22, 2003
We report the cavity-length dependent high-temperature high-power cw characteristics in λ=6 µm quantum-cascade lasers with a thick electroplated Au top contact layer. For a high-reflectivity (HR) coated 15 µm wide and 3 mm long laser, the cw operation is achieved up to 313 K (40 °C) with an output power of 17 mW. At 298 K, a very high cw output power of 213 mW is obtained for a HR coated 15 µm wide and 4 mm long laser. Thermal resistance is analyzed at temperatures above 283 K for HR coated lasers with different cavities. reprint
 
370.  4.5 mW Operation of AlGaN-based 267 nm Deep-Ultraviolet Light-Emitting Diodes
A. Yasan, R. McClintock, K. Mayes, D. Shiell, L. Gautero, S.R. Darvish, P. Kung and M. Razeghi
Applied Physics Letters, 83 (23)-- December 8, 2003
We demonstrate 4.5 mW output power from AlGaN-based single quantum well ultraviolet light-emitting diodes at a very short wavelength of 267 nm in pulsed operation mode. The output power in continuous-wave mode reaches a value of 165 µW at an injected current of 435 mA. The measurements were done on arrays of four devices flip chip bonded to AlN submounts for thermal management. reprint
 
371.  Photoluminescence Study of AlGaN-based 280 nm Ultraviolet Light-Emitting Diodes
A. Yasan, R. McClintock, K. Mayes, D.H. Kim, P. Kung, and M. Razeghi
Applied Physics Letters, 83 (20)-- November 17, 2003
We investigated optical properties of single quantum well AlGaN-based UV 280 nm light-emitting diodes using temperature-dependent photoluminescence (PL) measurement. We found an "S-shaped" temperature dependence of the peak energy. From the Arrhenius plot of integrated PL intensity, we speculate that dislocations as well as thermal emission of carriers out of the quantum well are responsible for the PL quenching behavior. Also a second nonradiative channel with much lower activation energy was found, the origin of which we believe to be quenching of the bound excitons reprint
 
372.  High Quality Type-II InAs/GaSb Superlattices with Cutoff Wavelength ~3.7 µm Using Interface Engineering
Y. Wei, J. Bae, A. Gin, A. Hood, M. Razeghi, G.J. Brown, and M. Tidrow
Journal of Applied Physics, 94 (7)-- October 1, 2003
We report the most recent advance in the area of Type-II InAs/GaSb superlattices that have cutoff wavelength of ~3.7 µm. With GaxIn1–x type interface engineering techniques, the mismatch between the superlattices and the GaSb (001) substrate has been reduced to <0.1%. There is no evidence of dislocations using the best examination tools of x-ray, atomic force microscopy, and transmission electron microscopy. The full width half maximum of the photoluminescence peak at 11 K was ~4.5 meV using an Ar+ ion laser (514 nm) at fluent power of 140 mW. The integrated photoluminescence intensity was linearly dependent on the fluent laser power from 2.2 to 140 mW at 11 K. The temperature-dependent photoluminescence measurement revealed a characteristic temperature of one T1 = 245 K at sample temperatures below 160 K with fluent power of 70 mW, and T1 = 203 K for sample temperatures above 180 K with fluent power of 70 and 420 mW. reprint
 
373.  High-Power Continuous-Wave Operation of a 6 µm Quantum-Cascade Laser at Room Temperature
J.S. Yu, S. Slivken, A. Evans, L. Doris, and M. Razeghi
Applied Physics Letters, 83 (13)-- September 29, 2003
We report continuous-wave (cw) operation of quantum-cascade lasers (λ= 6 µm) using a thick electroplated Au top contact layer and epilayer-up bonding on a copper heat sink up to a temperature of 308 K (35 °C). The high cw optical output powers of 132 mW at 293 K and 21 mW at 308 K are achieved with threshold current densities of 2.29 and 2.91 kA/cm², respectively, for a high-reflectivity-coated 15 µm wide and 2 mm long laser. reprint
 
374.  Overview of Antimonide Based III-V Semiconductor Epitaxial Layers and their Applications at the Center for Quantum Devices
M. Razeghi
The European Physical Journal-Applied Physics, Vol. 23-- September 15, 2003
The properties of Sb-based III-V semiconductor compounds for optoelectronic applications in the mid-wavelength infrared (MWIR) and long-wavelength infrared (LWIR) range were reviewed. The growths of the Sb-based binary, ternary and quaternary were studied by molecular beam epitaxy (MBE) and metalorganic chemical vapor deposition (MOCVD). The structural, optical and electrical characterizations were carried out. Focal plane array, photoconductors and photodiodes were fabricated for the MWIR and LWIR range. Doublehetero structure (DH), multi-quantum well (MQW) and strained superlattice (SSL) lasers in the 3-5 μm range were fabricated. InAs-GaSb type-II superlattices were designed, grown and fabricated into photodetectors for the MWIR and LWIR range.
 
375.  Demonstration of 256x256 Focal Plane Arrays Based on Al-free GaInAs/InP QWIP
J. Jiang, K. Mi, R. McClintock, M. Razeghi, G.J. Brown, and C. Jelen
IEEE Photonics Technology Letters 15 (9)-- September 1, 2003
We report the first demonstration of an infrared focal plane array based on aluminum-free GaInAs-InP quantum-well infrared photodetectors (QWIPs).A unique positive lithography method was developed to perform indium-bump liftoff. The noise equivalent differential temperature (NEΔT) of 29 mK was achieved at 70 K with f/2 optics. reprint
 

Page 15 of 27:  Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15  16 17 18 19 20 21 22 23 24 25 26 27  >> Next  (669 Items)