Publications by    
Page 13 of 28:  Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13  14 15 16 17 18 19 20 21 22 23 24 25 26 27 28  >> Next  (684 Items)

301.  Gain and recombination dynamics of quantum-dot infrared photodetecto
H. Lim, B. Movaghar, S. Tsao, M. Taguchi, W. Zhang, A.A. Quivy, and M. Razeghi
Virtual Journal of Nanoscale Science & Technology-- December 4, 2006reprint
 
302.  Gain and recombination dynamics of quantum-dot infrared photodetectors
H. Lim, B. Movaghar, S. Tsao, M. Taguchi, W. Zhang, A.A. Quivy, and M. Razeghi
Physical Review B, 74 (20)-- November 15, 2006
In this paper we present a theory of diffusion and recombination in QDIPs which is an attempt to explain the recently reported values of gain in these devices. We allow the kinetics to encompass both the diffusion and capture rate limited regimes of carrier relaxation using rigorous random walk and diffusion methods. The photoconductive gains are calculated and compared with the experimental values obtained from InGaAs/InGaP/GaAs and InAs/InP QDIPs using the generation-recombination noise analysis. reprint
 
303.  Recent advances in high power mid- and far-wavelength infrared lasers for free space communication
S. Slivken and M. Razeghi
SPIE Optics East Conference, October 1-4, 2006, Boston, MA Proceedings – Active and Passive Optical Components for Communications VI, Vol. 6389, p. 63890S-1-- October 4, 2006
Link reliability is a significant issue for free space optical links. Inclement weather, such as fog, can seriously reduce the transmission of light through the atmosphere. However, this effect, for some types of fog, is wavelength-dependent. In order to improve link availability in both metro and hostile environments, mid- and far-wavelength infrared diode lasers can be of use. This paper will discuss some of the recent advances in high-power, uncooled quantum cascade lasers and their potential for use in long range and/or highly reliable free space communication links. reprint
 
304.  First Demonstration of ~ 10 microns FPAs in InAs/GaSb SLS
M. Razeghi, P.Y. Delaunay, B.M. Nguyen, A. Hood, D. Hoffman, R. McClintock, Y. Wei, E. Michel, V. Nathan and M. Tidrow
IEEE LEOS Newsletter 20 (5)-- October 1, 2006
The concept of Type-II InAs/GaSb superlattice was first brought by Nobel Laureate L. Esaki, et al. in the 1970s. There had been few studies on this material system until two decades later when reasonable quality material growth was made possible using molecular beam epitaxy. With the addition of cracker cells for the group V sources and optimizations of material growth conditions, the superlattice quality become significantly improved and the detectors made of these superlattice materials can meet the demand in some practical field applications. Especially in the LWIR regime, it provides a very promising alternative to HgCdTe for better material stability and uniformity, etc. We have developed the empirical tight binding model (ETBM) for precise determination of the superlattice bandgap. reprint
 
305.  Optical Coatings by ion-beam sputtering deposition for long-wave infrared quantum cascade lasers
J. Nguyen, J.S. Yu, A. Evans, S. Slivken and M. Razeghi
Applied Physics Letters, 89 (11)-- September 11, 2006
The authors report on the development of high-reflection and multilayer antireflection coatings using ion-beam sputtering deposition for long-wave infrared (λ~9.4 μm) quantum cascade lasers. A metallic high-reflection coating structure using Y2O3 and Au is demonstrated to achieve a high reflectance of 96.70%, and the use of a multilayer anti-reflection coating structure using PbTe and ZnO is demonstrated to achieve a very low reflectance of 1.64%. reprint
 
306.  High differential resistance type-II InAs/GaSb superlattice photodiodes for the long-wavelength infrared
A. Hood, D. Hoffman, B.M. Nguyen, P.Y. Delaunay, E. Michel and M. Razeghi
Applied Physics Letters, 89 (9)-- August 28, 2006
Type-II InAs/GaSb superlattice photodiodes with a 50% cutoff wavelength ranging from 11 to 13 μm are presented. Optimization of diffusion limited photodiodes provided superlattice structures for improved injection efficiency in direct injection hybrid focal plane array applications. reprint
 
307.  High performance mid-wavelength quantum dot infrared photodetectors for focal plane arrays
M. Razeghi, H. Lim, S. Tsao, M. Taguchi, W. Zhang and A.A. Quivy
SPIE Conference, San Diego, CA, Vol. 6297, pp. 62970C-- August 13, 2006
Quantum dot infrared photodetectors (QDIPs) have recently emerged as promising candidates for detection in the middle wavelength infrared (MWIR) and long wavelength infrared (LWIR) ranges. Here, we report our recent results for mid-wavelength QDIPs grown by low-pressure metalorganic chemical vapor deposition. Three monolayer of In0.68Ga0.32As self-assembled via the Stranski-Krastanov growth mode and formed lens-shaped InGaAs quantum dots with a density around 3×1010 cm-2. The peak responsivity at 77 K was measured to be 3.4 A/W at a bias of -1.9 V with 4.7 µm peak detection wavelength. Focal plane arrays (FPAs) based on these devices have been developed. The preliminary result of FPA imaging is presented. reprint
 
308.  Reliability of strain-balanced Ga0.331In0.669As/Al0.659In0.341As/InP quantum-cascade lasers under continuous-wave room-temperature operation
A. Evans and M. Razeghi
Applied Physics Letters, 88 (26)-- June 26, 2006
Constant current aging is reported for two randomly selected high-reflectivity-coated QCLs with an output power over 100 mW. QCLs are tested under continuous-wave operation at a heat sink temperature of 298 K(25 °C) corresponding to an internal temperature of 378 K (105 °C). Over 4000 h of continuous testing is reported without any decrease in output power. reprint
 
309.  Temperature dependent characteristics of λ ~ 3.8 µm room-temperature continuous-wave quantum-cascade lasers
J.S. Yu, A. Evans, S. Slivken, S.R. Darvish and M. Razeghi
Applied Physics Letters, 88 (25)-- June 19, 2006
The highest-performance device displays pulsed laser action at wavelengths between 3.4 and 3.6 μm, for temperatures up to 300 K, with a low temperature (80 K) threshold current density of approximately 2.6 kA/cm2, and a characteristic temperature of T0~130 K. The shortest wavelength QCL (λ ~ 3.05 μm) has a higher threshold current density (~12 kA/cm2 at T=20 K) and operates in pulsed mode at temperatures up to 110 K. reprint
 
310.  Quantum Dots in GaInP/GaInAs/GaAs for Infrared Sensing
M. Razeghi, H. Lim, S. Tsao, M. Taguchi, W. Zhang, and A.A. Quivy
Advances in Science and Technology 51-- June 4, 2006
Quantum dots grown by epitaxial self-assembly via Stranski- Krastanov growth mode have many favorable properties for infrared sensing. Because of their very small size and three-dimensional confinement, the electronic energy levels are quantized and discrete. These quantum effects lead to a unique property, “phonon bottleneck”, which might enable the high operating temperature of infrared sensing which usually requires cryogenic cooling. Here we report a focal plane array (FPA) based on an epitaxial self-assembled quantum dot infrared detector (QDIP). The device structure containing self-assembled In0.68Ga0.32As quantum dots with a density around 3×1010 cm-2 was grown by low-pressure metalorganic chemical vapor deposition (LP-MOCVD). Using different structures, we successfully developed QDIPs with a peak photoresponse around 5 μm and 9 μm. High peak detectivities were achieved at 77 K from both QDIPs. By stacking both device structures, we demonstrated a two-color QDIP whose peak detection wavelength could be tuned from 5 μm to 9 μm by changing the bias. 256×256 detector arrays based on 5 μm and 9 μm-QDIPs were fabricated with standard photolithography, dry etching and hybridization to a read-out integrated circuit (ROIC). We demonstrated thermal imaging from our FPAs based on QDIPs.
 
311.  Room-temperature, high-power and continuous-wave operation of distributed-feedback quantum-cascade lasers at λ ~ 9.6 µm
S.R. Darvish, S. Slivken, A. Evans, J.S. Yu, and M. Razeghi
Applied Physics Letters, 88 (20)-- May 15, 2006
High-power continuous-wave (cw) operation of distributed-feedback quantum-cascade lasers is reported. Continuous-wave output powers of 100 mW at 25 °C and 20 mW at 50 °C are obtained. The device exhibits a cw threshold current density of 1.34 kA/cm2, a maximum cw wall-plug efficiency of 1% at 25 °C, and a characteristic temperature of ~190 K in pulsed mode. Single-mode emission near 9.6 μm with a side-mode suppression ratio of ≥ 30 dB and a tuning range of 2.89 cm–1 from 15 to 50 °C is obtained. reprint
 
312.  Type-II superlattice photodetectors for MWIR to VLWIR focal plane arrays
M. Razeghi, Y. Wei, A. Hood, D. Hoffman, B.M. Nguyen, P.Y. Delaunay, E. Michel and R. McClintock
SPIE Infrared Technology and Applications Conference, April 17-21, 2006, Orlando, FL Proceedings – Infrared Technology and Applications XXXII, Vol. 6206, p. 62060N-1-- April 21, 2006
Results obtained on GaSb/InAs Type-II superlattices have shown performance comparable to HgCdTe detectors, with the promise of higher performance due to reduced Auger recombination and dark current through improvements in device design and material quality. In this paper, we discuss advancements in Type-II IR sensors that cover the 3 to > 30 µm wavelength range. Specific topics covered will be device design and modeling using the Empirical Tight Binding Method (ETBM), material growth and characterization, device fabrication and testing, as well as focal plane array processing and imaging. Imaging has been demonstrated at room temperature for the first time with a 5 µm cutoff wavelength 256×256 focal plane array. reprint
 
313.  Quantum-dot infrared photodetectors and focal plane arrays
M. Razeghi, H. Lim, S. Tsao, M. Taguchi, W. Zhang, and A.A. Quivy
SPIE Infrared Technology and Applications Conference, April 17-21, 2006, Orlando, FL Proceedings – Infrared Technology and Applications XXXII, Vol. 6206, p. 62060I-1-- April 21, 2006
We report our recent results about mid-wavelength infrared quantum-dot infrared photodetectors (QDIPs) grown by low-pressure metalorganic chemical vapor deposition. A very high responsivity and a very low dark current were obtained. A high peak detectivity of the order of 3×1012 Jones was achieved at 77 K. The temperature dependent device performance was also investigated. The improved temperature insensitivity compared to QWIPs was attributed to the properties of quantum dots. The device showed a background limited performance temperature of 220 K with a 45° field of view and 300K background. reprint
 
314.  Electroluminescence at 375 nm from a Zn0/GaN:Mg/c-Al2O3 heterojunction light emitting diodes
D.J. Rogers, F.Hosseini Teherani, A. Yasan, K. Minder, P. Kung, and M. Razeghi
Applied Physics Letters, 88 (14)-- April 13, 2006
n-ZnO/p-GaN:Mg heterojunction light emitting diode (LED) mesas were fabricated on c-Al2O3 substrates using pulsed laser deposition for the ZnO and metal organic chemical vapor deposition for the GaN:Mg. Room temperature (RT) photoluminescence (PL) showed an intense main peak at 375 nm and a negligibly low green emission indicative of a near band edge excitonic emission from a ZnO layer with low dislocation/defect density. The LEDs showed I-V characteristics confirming a rectifying diode behavior and a RT electroluminescence (EL) peaked at about 375 nm. reprint
 
315.  Improved performance of quantum cascade lasers through a scalable, manufacturable epitaxial-side-down mounting process
A. Tsekoun, R. Go, M. Pushkarsky, M. Razeghi, and C. Kumar N. Patel
Proceedings of the National Academy of Sciences 103 (13)-- March 26, 2006
We report substantially improved performance of high-power quantum cascade lasers (QCLs) by using epitaxial-side-down mounting that provides superior heat dissipation properties. We used aluminum nitride as the heatsink material and gold–tin eutectic solder. We have obtained continuous wave power output of 450 mW at 20°C from mid-IR QCLs. The improved thermal management achieved with epitaxial-side-down mounting combined with a highly manufacturable and scalable assembly process should permit incorporation of mid-IR QCLs in reliable instrumentation.
 
316.  High-detectivity quantum-dot infrared photodetectors grown by metal-organic chemical-vapor deposition
J. Szafraniec, S. Tsao, W. Zhang, H. Lim, M. Taguchi, A.A. Quivy, B. Movaghar and M. Razeghi
Applied Physics Letters 88 (121102)-- March 20, 2006
A mid-wavelength infrared photodetector based on InGaAs quantum dots buried in an InGaP matrix and deposited on a GaAs substrate was demonstrated. Its photoresponse at T=77 K was measured to be around 4.7 μm with a cutoff at 5.5 μm. Due to the high peak responsivity of 1.2 A/W and low dark-current noise of the device, a specific peak detectivity of 1.1 x 1012 cm·Hz½·W−1 was achieved at −0.9 V bias reprint
 
317.  Investigations of p-type signal for ZnO thin films grown on (100) GaAs substrates by pulsed laser deposition
D.J. Rogers, F. Hosseini Teherani, T. Monteiro, M. Soares, A. Neves, M. Carmo, S. Periera, M.R. Correia, A. Lusson, E. Alves, N.P. Barradas, J.K. Morrod, K.A. Prior, P. Kung, A. Yasan, and M. Razeghi
Phys. Stat. Sol. C, 3 (4)-- March 1, 2006
n this work we investigated ZnO films grown on semi-insulating (100) GaAs substrates by pulsed laser deposition. Samples were studied using techniques including X-ray diffraction (XRD), scanning electron microscopy, atomic force microscopy, Raman spectroscopy, temperature dependent photoluminescence, C-V profiling and temperature dependent Hall measurements. reprint
 
318.  High-power λ ~ 9.5 µm quantum-cascade lasers operating above room temperature in continuous-wave mode
J.S. Yu, S. Slivken, A. Evans, S.R. Darvish, J. Nguyen, and M. Razeghi
Applied Physics Letters, 88 (9)-- February 27, 2006
We report high-power continuous-wave (cw) operation of λ~9.5 μm quantum-cascade lasers to a temperature of 318 K. A high-reflectivity-coated 19-μm-wide and 3-mm-long device exhibits cw output powers as high as 150 mW at 288 K and still 22 mW at 318 K. In cw operation at 298 K, a threshold current density of 1.57 kA/cm2, a slope efficiency of 391 mW/A, and a maximum wall-plug efficiency of 0.71% are obtained. reprint
 
319.  Negative luminescence of InAs/GaSb superlattice photodiodes
F. Fuchs, D. Hoffman, A. Gin, A. Hood, Y. Wei, and M. Razeghi
Phys. Stat. Sol. C 3 (3)-- February 22, 2006
The emission behaviour of InAs/GaSb superlattice photodiodes has been studied in the spectral range between 8 µm and 13 μm. With a radiometric calibration of the experimental set-up the internal quantum efficiency has been determined in the temperature range between 80 K and 300 K for both, the negative and positive luminescence. The quantitative analysis of the internal quantum efficiency of the non-equilibrium radiation enables the determination of the Auger coefficient. reprint
 
320.  Non-equilibrium radiation of long wavelength InAs/GaSb superlattice photodiodes
D. Hoffman, A. Hood, F. Fuchs and M. Razeghi
Journal of Applied Physics 99-- February 15, 2006
The emission behavior of binary-binary type-II InAs/GaSb superlattice photodiodes has been studied in the spectral range between 8 and 13 μm. With a radiometric calibration of the experimental setup the internal and external quantum efficiencies have been determined in the temperature range between 80 and 300 K for both the negative and positive luminescences. reprint
 
321.  Capacitance-voltage investigation of high purity InAs/GaSb superlattice photodiodes
A. Hood, D. Hoffman, Y. Wei, F. Fuchs, and M. Razeghi
Applied Physics Letters 88 (6)-- February 6, 2006
The residual carrier backgrounds of binary type-II InAs/GaSb superlattice photodiodes with cutoff wavelengths around 5 μm have been studied in the temperature range between 20 and 200 K. By applying a capacitance-voltage measurement technique, a residual background concentration below 1015 cm–3 has been found. reprint
 
322.  Electroluminescence of InAs/GaSb heterodiodes
D. Hoffman, A. Hood, E. Michel, F. Fuchs, and M. Razeghi
IEEE Journal of Quantum Electronics, 42 (2)-- February 1, 2006
The electroluminescence of a Type-II InAs-GaSb superlattice heterodiode has been studied as a function of injection current and temperature in the spectral range between 3 and 13 μm. The heterodiode comprises a Be-doped midwavelength infrared (MWIR) superlattice with an effective bandgap around 270 meV and an undoped long wavelength infrared (LWIR) superlattice with an effective bandgap of 115 meV. reprint
 
323.  Quantum-Cascade Lasers Operating in Continuous-Wave Mode Above 90°C at λ ~5.25 µm
A. Evans, J. Nguyen, S. Slivken, J.S. Yu, S.R. Darvish, and M. Razeghi
Applied Physics Letters 88 (5)-- January 30, 2006
We report on the design and fabrication of λ~5.25 μm quantum-cascade lasers (QCLs) for very high temperature continuous-wave (CW) operation. CW operation is reported up to a maximum temperature of 90 °C (363 K). CW output power is reported in excess of 500 mW near room temperature with a low threshold current density. A finite element thermal model is used to investigate the Gth and maximum CW operating temperature of the QCLs. reprint
 
324.  Room-temperature continuous-wave operation of quantum-cascade lasers at λ ~ 4 µm
J.S. Yu, S.R. Darvish, A. Evans, J. Nguyen, S. Slivken, and M. Razeghi
Applied Physics Letters 88 (4)-- January 23, 2006
High-power cw λ~4 μm quantum-cascade lasers (QCLs) are demonstrated. The effect of different cavity length and laser die bonding is also investigated. For a high-reflectivity-coated 11-μm-wide and 4-mm-long epilayer-down bonded QCL, cw output powers as high as 1.6 W at 80 K and 160 mW at 298 K are obtained, and the cw operation is achieved up to 313 K with 12 mW. reprint
 
325.  Positive and negative luminescence in binary Type-II InAs/GaSb superlattice photodiodes
D. Hoffman and M. Razeghi
SPIE Conference, San Jose, CA, Vol. 6127, pp. 61271H-- January 23, 2006
In the present work, we show measurements of both positive and negative luminescence of binary Type-II InAs/GaSb superlattice photodiodes in the 3 to 13 μm spectral range. Through a radiometric calibration technique, we demonstrate temperature independent negative luminescence efficiencies of 45 % in the midwavelength (MWIR) sample from 220 K to 320 K without anti-reflective coating and values reaching 35 % in the long wavelength infrared (LWIR) spectrum sample. reprint
 

Page 13 of 28:  Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13  14 15 16 17 18 19 20 21 22 23 24 25 26 27 28  >> Next  (684 Items)