Publications by    
Page 11 of 27:  Prev << 1 2 3 4 5 6 7 8 9 10 11  12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27  >> Next  (673 Items)

251.  Overview of Quantum Cascade Laser Research at the Center for Quantum Devices
S. Slivken, A. Evans, J. Nguyen, Y. Bai, P. Sung, S.R. Darvish, W. Zhang and M. Razeghi
SPIE Conference, January 20-25, 2008, San Jose, CA Proceedings – Quantum Sensing and Nanophotonic Devices V, Vol. 6900, p. 69000B-1-8.-- February 1, 2008
Over the past several years, our group has endeavored to develop high power quantum cascade lasers for a variety of remote and high sensitivity infrared applications. The systematic optimization of laser performance has allowed for demonstration of high power, continuous-wave quantum cascade lasers operating above room temperature. In the past year alone, the efficiency and power of our short wavelength lasers (~4.8 µm) has doubled. In continuous wave at room temperature, we have now separately demonstrated ~10% wallplug efficiency and ~700 mW of output power. Up to now, we have been able to show that room temperature continuous wave operation with > 100 mW output power in the 3.8 < λ < 11.5 µm wavelength range is possible. reprint
 
252.  High performance focal plane array based on type-II InAs/GaSb superlattice heterostructures
P.Y. Delaunay and M. Razeghi
SPIE Conference, January 20-25, 2008, San Jose, CA Proceedings – Quantum Sensing and Nanophotonic Devices V, Vol. 6900, p. 69000M-1-10.-- February 1, 2008
Recent progress in growth techniques, structure design and processing has lifted the performances of Type-II InAs/GaSb superlattice photodetectors. A double heterostructure design, based on a low band gap (11 µm) active region and high band gap (5 µm) superlattice contacts, reduced the sensitivity of the superlattice to surface effects. The heterodiodes with an 11 µm cutoff, passivated with SiO2, presented similar performances to unpassivated devices and a one order of magnitude increase of the resistivity of the sidewalls, even after flip-chip bonding and underfill. Thanks to this new design and to the inversion of the polarity of the devices, a high performance focal plane array with an 11 µm cutoff was demonstrated. The noise equivalent temperature difference was measured as 26 mK and 19 mK for operating temperatures of 81 K and 67 K. At an integration time of 0.08 ms, the FPA presented a quantum efficiency superior to 50%. reprint
 
253.  III-Nitride photon counting avalanche photodiodes
R. McClintock, J.L. Pau, K. Minder, C. Bayram and M. Razeghi
SPIE Conference, January 20-25, 2008, San Jose, CA Proceedings – Quantum Sensing and Nanophotonic Devices V, Vol. 6900, p. 69000N-1-11.-- February 1, 2008
In order for solar and visible blind III-Nitride based photodetectors to effectively compete with the detective performance of PMT there is a need to develop photodetectors that take advantage of low noise avalanche gain. Furthermore, in certain applications, it is desirable to obtain UV photon counting performance. In this paper, we review the characteristics of III-nitride visible-blind avalanche photodetectors (APDs), and present the state-of-the-art results on photon counting based on the Geiger mode operation of GaN APDs. The devices are fabricated on transparent AlN templates specifically for back-illumination in order to enhance hole-initiated multiplication. The spectral response and Geiger-mode photon counting performance are analyzed under low photon fluxes, with single photon detection capabilities being demonstrated in smaller devices. Other major technical issues associated with the realization of high-quality visible-blind APDs and Geiger mode APDs are also discussed in detail and solutions to the major problems are described where available. Finally, future prospects for improving upon the performance of these devices are outlined. reprint
 
254.  Substrate removal for high quantum efficiency back side illuminated type-II InAs/GaSb photodetectors
P.Y. Delaunay, B.M. Nguyen, D. Hoffman and M. Razeghi
Applied Physics Letters, Vol. 91, No. 23, p. 231106-- December 3, 2007
A substrate removal technique using an InAsSb etch stop layer improves by a factor of 2 the quantum efficiency of back side illuminated type-II InAs/GaSb superlattice photodetectors. After etching of the GaSb substrate with a CrO3 based solution, the quantum efficiency of the diodes presents Fabry-Pérot oscillations averaging at 56%. Due to the confinement of the infrared light inside the devices, the quantum efficiency for certain devices reaches 75% at 8.5 µm. The implementation of this new technique to a focal plane array resulted in a decrease of the integration time from 0.23 to 0.08 ms. reprint
 
255.  Advances in APDs for UV astronomy
Melville P. Ulmer; Ryan M. McClintock; Jose L. Pau; Manijeh Razeghi
Proc. SPIE 6686, UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XV, 668605 (September 13, 2007)-- November 13, 2007
We report the most recent work of our group of the development of avalanche photo diodes based on (Al)GaN. The goal of this group is to achieve single photon counting. In this paper we first give the scientific motivation for making such a device in the context of UV astronomy and then describe current work and plans for future development. The development includes improving the sensitivity to be able to carry out single photon detection and the fabrication of arrays. reprint
 
256.  Research activity on Type-II InAs/GaSb superlattice for LWIR detection and imaging at the Center for Quantum Devices
M. Razeghi and B.M. Nguyen
American Institute of Physics Conference Proceedings Vol. 949, Issue 1, p. 35-42, 6th International Workshop on Information Optics (WIO'07), Reykjavik, Iceland, June 25-30, 2007-- October 24, 2007
Type-II superlattice photodetectors have recently experienced significant improvements in both theoretical structure design and experimental realization. Empirical Tight Binding Method was initiated and developed for Type-II superlattice. A new Type-II structure, called M-structure, was introduced and theoretically demonstrated high R0A, high quantum efficiency. Device design and growth condition were optimized to improve the performance. As a result, a 54% quantum efficiency, a 12 Ω·cm2 R0A were achieved for 11 µm cut-off photodetector at 77 K. Effective surface passivation techniques for MWIR and LWIR Type-II superlattice were developed. FPA imaging at MWIR and LWIR were demonstrated with a capability of imaging up to room temperature and 211 K respectively. The noise equivalent temperature difference presented a peak at 50 mK for MWIR FPA at 121 K and 26 mK for LWIR FPA at 81 K. reprint
 
257.  Thermal imaging based on high-performance InAs/InP quantum-dot infrared photodetector operating at high temperature
M. Razeghi; H. Lim; S. Tsao; H. Seo; W. Zhang
Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS.15-16:[4382251] (2007).-- October 21, 2007
We report a room temperature operating and high-performance InAs quantum-dot infrared photodetector on InP substrate and thermal imaging of 320times256 focal plane array based on this device up to 200 K. reprint
 
258.  Dark current suppression in Type-II InAs/GaSb superlattice long wavelength infrared photodiodes with M-structure barrier
B.M. Nguyen, D. Hoffman, P.Y. Delaunay, and M. Razeghi
Applied Physics Letters, Vol. 91, No. 16, p. 163511-1-- October 15, 2007
We presented an alternative design of Type-II superlattice photodiodes with the insertion of a mid-wavelength infrared M-structure AlSb/GaSb/InAs/GaSb/AlSb superlattice for the reduction of dark current. The M-structure superlattice has a larger carrier effective mass and a greater band discontinuity as compared to the standard Type-II superlattices at the valence band. It acts as an effective medium that weakens the diffusion and tunneling transport at the depletion region. As a result, a 10.5 µm cutoff Type-II superlattice with 500 nm M-superlattice barrier exhibited a R0A of 200 cm2 at 77 K, approximately one order of magnitude higher than the design without the barrier. The quantum efficiency of such structures does not show dependence on either barrier thickness or applied bias. reprint
 
259.  Beryllium compensation doping of InAs/GaSb infrared superlattice photodiodes
D. Hoffman, B.M. Nguyen, P.Y. Delaunay, A. Hood, M. Razeghi and J. Pellegrino
Applied Physics Letters, Vol. 91, No. 14, p. 143507-1-- October 1, 2007
Capacitance-voltage measurements in conjunction with dark current measurements on InAs/GaSb long wavelength infrared superlattice photodiodes grown by molecular-beam epitaxy on GaSb substrates are reported. By varying the beryllium concentration in the InAs layer of the active region, the residually n-type superlattice is compensated to become slightly p-type. By adjusting the doping, the dominant dark current mechanism can be varied from diffusion to Zener tunneling. Minimization of the dark current leads to an increase of the zero-bias differential resistance from less than 4 to 32 cm2 for a 100% cutoff of 12.05 µm reprint
 
260.  Electrically pumped photonic crystal distributed feedback quantum cascade lasers
Y. Bai, S.R. Darvish, S. Slivken, P. Sung, J. Nguyen, A. Evans, W. Zhang, and M. Razeghi
Applied Physics Letters, Vol. 91, No. 14, p. 141123-1-- October 1, 2007
We demonstrate electrically pumped, room temperature, single mode operation of photonic crystal distributed feedback (PCDFB) quantum cascade lasers emitting at ~4.75 µm. Ridge waveguides of 100 µm width were fabricated with both PCDFB and Fabry-Pérot feedback mechanisms. The Fabry-Pérot device has a broad emitting spectrum and a double lobed far-field character. The PCDFB device, as expected, has primarily a single spectral mode and a diffraction limited far field characteristic with a full angular width at half maximum of 2.4°. This accomplishment represents the first step in power scaling of single mode, midinfrared laser diodes operating at room temperature. reprint
 
261.  ZnO 3D flower-like nanostructure synthesized on GaN epitaxial layer by simple route hydrothermal process
J.M. Jung, C.R. Kim, H. Ryu, M. Razeghi and W.G. Jung
Journal of Alloys and Compounds-- September 15, 2007
The 3D type, flower-like ZnO nanostructures from particle to flower-like or chestnut bur are fabricated on the GaN epitaxial layer substrate through the simple-route hydrothermal process. Structural characterization was made for the ZnO 3D nanostructures synthesized in different pH ranging from 9.5 to 11.0. The growth model was proposed and discussed regarding the fabrication mechanism and morphology of ZnO 3D flower-like nanostructure. The flower-like ZnO is composed of many thin single crystals ZnO nanorods. Bigger and thicker ZnO structure is fabricated with the increase of pH in solution. The enhanced UV emission in the PL measurement and the spectra in the Raman spectroscopy for ZnO–GaN heterojunction material were discussed. reprint
 
262.  Polarity inversion of Type-II InAs/GaSb superlattice photodiodes
B.M. Nguyen, D. Hoffman, P.Y. Delaunay, M. Razeghi and V. Nathan
Applied Physics Letters, Vol. 91, No. 10, p. 103503-1-- September 3, 2007
The authors demonstrated the realization of p-on-n Type-II InAs/GaSb superlattice photodiodes. Growth condition for high quality InAsSb layer lattice matched to GaSb was established for the use of an effective n-contact layer. By studying the effect of various GaSb capping layer thicknesses on the optical and electrical performances, an optimized thickness of 160 nm was determined. In comparison to as grown n-on-p superlattice photodiodes, this inverted design of p on n has shown similar quality. Finally, by analyzing Fabry-Perot interference fringes in the front side illuminated spectral measurement, the refractive index of the superlattice was determined to be approximately 3.8. reprint
 
263.  Passivation of type-II InAs/GaSb double heterostructure
P.Y. Delaunay, A. Hood, B.M. Nguyen, D. Hoffman, Y. Wei, and M. Razeghi
Applied Physics Letters, Vol. 91, No. 9, p. 091112-1-- August 27, 2007
Focal plane array fabrication requires a well passivated material that is resistant to aggressive processes. The authors report on the ability of type-II InAs/GaSb superlattice heterodiodes to be more resilient than homojunctions diodes in improving sidewall resistivity through the use of various passivation techniques. The heterostructure consisting of two wide band gap (5 µm) superlattice contacts and a low band gap active region (11 µm) exhibits an R0A averaging of 13·Ω cm2. The devices passivated with SiO2, Na2S and SiO2 or polyimide did not degrade compared to the unpassivated sample and the resistivity of the sidewalls increased to 47 kΩ·cm. reprint
 
264.  Buried heterostructure quantum cascade lasers with high continuous-wave wall plug efficiency
A. Evans, S.R. Darvish, S. Slivken, J. Nguyen, Y. Bai and M. Razeghi
Applied Physics Letters, Vol. 91, No. 7, p. 071101-1-- August 13, 2007
The authors report on the development of ~4.7 µm strain-balanced InP-based quantum cascade lasers with high wall plug efficiency and room temperature continuous-wave operation. The use of narrow-ridge buried heterostructure waveguides and thermally optimized packaging is presented. Over 9.3% wall plug efficiency is reported at room temperature from a single device producing over 0.675 W of continuous-wave output power. Wall plug efficiencies greater than 18% are also reported for devices at a temperature of 150 K, with continuous-wave output powers of more than 1 W. reprint
 
265.  Scaling in back-illuminated GaN avalanche photodiodes
K. Minder, J.L. Pau, R. McClintock, P. Kung, C. Bayram, M. Razeghi and D. Silversmith
Applied Physics Letters, Vol. 91, No. 7, p. 073513-1-- August 13, 2007
Avalanche p-i-n photodiodes of various mesa areas were fabricated on AlN templates for back illumination for enhanced performance through hole-initiated multiplication, and the effects of increased area on device performance were studied. Avalanche multiplication was observed in mesa sizes up to 14,063 µm^2 under linear mode operation. Uniform gain and a linear increase of the dark current with area were demonstrated. reprint
 
266.  Use of ZnO thin films as sacrifical templates for metal organic vapor phase epitaxy and chemical lift-off of GaN
D.J. Rogers, F. Hosseini Teherani, A. Ougazzaden, S. Gautier, L. Divay, A. Lusson, O. Durand, F. Wyczisk, G. Garry, T. Monteiro, M.R. Correira, M. Peres, A. Neves, D. McGrouther, J.N. Chapman, and M. Razeghi
Applied Physics Letters, Vol. 91, No. 7, p. 071120-1-- August 13, 2007
Continued development of GaN-based light emitting diodes is being hampered by constraints imposed by current non-native substrates. ZnO is a promising alternative substrate but it decomposes under the conditions used in conventional GaN metal organic vapor phase epitaxy (MOVPE). In this work, GaN was grown on ZnO/c-Al2O3 using low temperature/pressure MOVPE with N2 as a carrier and dimethylhydrazine as a N source. Characterization confirmed the epitaxial growth of GaN. The GaN was lifted-off the c-Al2O3 by chemically etching away the ZnO underlayer. This approach opens up the way for bonding of the GaN onto a support of choice. reprint
 
267.  Geiger-mode operation of back-illuminated GaN avalanche photodiodes
J. L. Pau, R. McClintock, K. Minder, C. Bayram, P. Kung, M. Razeghi, E. Muñoz, and D. Silversmith
Applied Physics Letters, Vol. 91, No. 04, p. 041104 -1-- July 23, 2007
We report the Geiger-mode operation of back-illuminated GaN avalanche photodiodes fabricated on transparent AlN templates specifically for back illumination in order to enhance hole-initiated multiplication. The spectral response in Geiger-mode operation was analyzed under low photon fluxes. Single photon detection capabilities were demonstrated in devices with areas ranging from 225 to 14,063 µm2. Single photon detection efficiency of 20% and dark count rate < 10 kHz were achieved in the smallest devices. reprint
 
268.  High-power mid- and far- wavelength infrared lasers for free space communication
M. Razeghi; A. Evans; J. Nguyen; Y. Bai; S. Slivken; S.R. Darvish; K. Mi
Proc. SPIE 6593, Photonic Materials, Devices, and Applications II, 65931V (June 12, 2007)-- June 12, 2007
Laser-based free-space communications have been developed to serve specific roles in "last mile" high-speed data networks due to their high security, low cost, portability, and high bandwidth. Conventional free-space systems based on near infrared optical devices suffer from reliability problems due to atmospheric scattering losses and scintillation effects, such as those encountered with storms, dust, and fog. Mid-infrared wavelengths are less affected by atmospheric effects and can significantly enhance link up-time and range. This paper will discuss some of the recent advances in high-power, high temperature, high reliability mid-infrared Quantum Cascade Lasers and their potential application in highly reliable free space communication links. reprint
 
269.  Very high quantum efficiency in type-II InAs/GaSb superlattice photodiode with cutoff of 12 µm
B.M. Nguyen, D. Hoffman, Y. Wei, P.Y. Delaunay, A. Hood and M. Razeghi
Applied Physics Letters, Vol. 90, No. 23, p. 231108-1-- June 4, 2007
The authors report the dependence of the quantum efficiency on device thickness of Type-II InAs/GaSb superlattice photodetectors with a cutoff wavelength around 12 µm. The quantum efficiency and responsivity show a clear delineation in comparison to the device thickness. An external single-pass quantum efficiency of 54% is obtained for a 12 µm cutoff wavelength photodiodes with a -region thickness of 6.0 µm. The R0A value is kept stable for the range of structure thicknesses allowing for a specific detectivity (2.2×1011 cm·Hz½/W). reprint
 
270.  Near bulk-limited R0A of long-wavelength infrared type-II InAs/GaSb superlattice photodiodes with polyimide surface passivation
Andrew Hood, Pierre-Yves Delaunay, Darin Hoffman, Binh-Minh Nguyen, Yajun Wei, Manijeh Razeghi, and Vaidya Nathan
Applied Physics Letters 90, 233513-- June 4, 2007
Effective surface passivation of Type-II InAs/GaSb superlattice photodiodes with cutoff wavelengths in the long-wavelength infrared is presented. A stable passivation layer, the electrical properties of which do not change as a function of the ambient environment nor time, has been prepared by a solvent-based surface preparation, vacuum desorption, and the application of an insulating polyimide layer. Passivated photodiodes, with dimensions ranging from 400×400 to 25×25 µm2, with a cutoff wavelength of ~11 µm, exhibited near bulk-limited R0A values of ~12 Ω·cm2, surface resistivities in excess of 104 Ω·cm, and very uniform current-voltage behavior at 77 K. reprint
 
271.  High operating temperature 320 x 256 middle-wavelength infrared focal plane array imaging based on an InAs/InGaAs/InAlAs/InP quantum dot infrared photodetector
S. Tsao, H. Lim, W. Zhang, and M. Razeghi
Virtual Journal of Nanoscale Science and Technology-- May 28, 2007reprint
 
272.  High operating temperature 320 x 256 middle-wavelength infrared focal plane array imaging based on an InAs/InGaAs/InAlAs/InP quantum dot infrared photodetector
S. Tsao, H. Lim, W. Zhang, and M. Razeghi
Applied Physics Letters, Vol. 90, No. 20, p. 201109-- May 14, 2007
This letter reports a 320×256 middle-wavelength infrared focal plane array operating at temperatures up to 200 K based on an InAs quantum dot/InGaAs quantum well/InAlAs barrier detector grown on InP substrate by low pressure metal organic chemical vapor deposition. The device's low dark current density and the persistence of the photocurrent up to room temperature enabled the high temperature imaging. The focal plane array had a peak detection wavelength of 4 µm, a responsivity of 34 mA/W, a conversion efficiency of 1.1%, and a noise equivalent temperature difference of 344 mK at an operating temperature of 120 K. reprint
 
273.  Current status of high performance quantum cascade lasers at the center for quantum devices
M. Razeghi; A. Evans; Y. Bai; J. Nguyen; S. Slivken; S.R. Darvish; K. Mi
Conference Proceedings - International Conference on Indium Phosphide and Related Materials. 588-593:[4266015] (2007)-- May 14, 2007
Mid-infrared laser sources are highly desired for laser-based trace chemical sensors, military countermeasures, free-space communications, as well as developing medical applications. While application development has been limited by the availability of adequate mid-infrared sources, InP-based quantum cascade lasers (QCLs) hold promise as inexpensive, miniature, portable solutions capable of producing high powers and operating at high temperatures with excellent beam quality and superior reliability. This paper discusses the most recent developments of application-ready high power (> 100 mW), continuous-wave (CW), mid-infrared QCLs operating above room temperature with lifetimes exceeding 13,000 hours. reprint
 
274.  Comparison of type-II superlattice and HgCdTe infrared detector technologies
Jagmohan Bajaj; Gerry Sullivan; Don Lee; Ed Aifer; Manijeh Razeghi
Proc. SPIE 6542, Infrared Technology and Applications XXXIII, 65420B (May 14, 2007)-- May 14, 2007
Performance of HgCdTe detector technology surpasses all others in the mid-wave and long-wave infrared spectrum. This technology is relatively mature with current effort focused on improving uniformity, and demonstrating increased focal plane array (FPA) functionality. Type-II superlattice (InAs-GaSb and related alloys) detector technology has seen rapid progress over the past few years. The merits of the superlattice material system rest on predictions of even higher performance than HgCdTe and of engineering advantages. While no one has demonstrated Type-II superlattice detectors with performance superior to HgCdTe detectors, the difference in performance between these two technologies is decreasing. In this paper, we review the status and highlight relative merits of both HgCdTe and Type-II superlattice based detector technologies. reprint
 
275.  Self-assembled semiconductor quantum dot infrared photodetector operating at room temperature and focal plane array
Ho-Chul Lim; Stanley Tsao; Wei Zhang; Manijen Razeghi
Proc. SPIE 6542, Infrared Technology and Applications XXXIII, 65420R (May 14, 2007)-- May 14, 2007
Self-assembled semiconductor quantum dots have attracted much attention because of their novel properties and thus possible practical applications including the lasers, detectors and modulators. Especially the photodetectors which have quantum dots in their active region have been developed and show promising performances such as high operation temperature due to three dimensional confinement of the carriers and normal incidence in contrast to the case of quantum well detectors which require special optical coupling schemes. Here we report our recent results for mid-wavelength infrared quantum dot infrared photodetector grown by low-pressure metalorganic chemical vapor deposition. The material system we have investigated consists of 25 period self-assembled InAs quantum dot layers on InAlAs barriers, which are lattice-matched to InP substrates, covered with InGaAs quantum well layers and InAlAs barriers. This active region was sandwiched by highly doped InP contact layers. The device operates at 4.1 μm with a peak detectivity of 2.8×1011 cm·Hz1/2/W at 120 K and a quantum efficiency of 35 %. The photoresponse can be observed even at room temperature resulting in a peak detectivity of 6×107 cm·Hz1/2/W. A 320×256 focal plane array has been fabricated in this kind of device. Its performance will also be discussed here. reprint
 

Page 11 of 27:  Prev << 1 2 3 4 5 6 7 8 9 10 11  12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27  >> Next  (673 Items)