Page 9 of 14:  Prev << 1 2 3 4 5 6 7 8 9  10 11 12 13 14  >> Next  (326 Items)

1.  High Power, Continuous-Wave, Quantum Cascade Lasers for MWIR and LWIR Applications
S. Slivken, A. Evans, J.S. Yu, S.R. Darvish and M. Razeghi
SPIE Conference, San Jose, CA, Vol. 6127, pp. 612703-- January 23, 2006 ...[Visit Journal]
Over the past several years, our group has endeavored to develop high power quantum cascade lasers for a variety of remote and high sensitivity infrared applications. The systematic optimization of laser performance has allowed for demonstration of high power, continuous-wave quantum cascade lasers operating above room temperature. Since 2002, the power levels for individual devices have jumped from 20 mW to 600 mW. Expanding on this development, we have able to demonstrate continuous wave operation at many wavelengths throughout the mid- and far-infrared spectral range, and have now achieved >100 mW output in the 4.0 to 9.5 µm range. [reprint (PDF)]
 
1.  Low frequency noise in 1024 x 1024 long wavelength infrared focal plane array base on Type-II InAs/GaSb superlattice
A. Haddadi, S.R. Darvish, G. Chen, A.M. Hoang, B.M. Nguyen and M. Razeghi
SPIE Proceedings, Vol. 8268, p. 82680X-- January 22, 2012 ...[Visit Journal]
Recently, the type-II InAs/GaSb superlattice (T2SL) material platform is considered as a potential alternative for HgCdTe technology in long wavelength infrared (LWIR) imaging. This is due to the incredible growth in the understanding of its material properties and improvement of device processing which leads to design and fabrication of better devices. In this paper, we report electrical low frequency noise measurement on a high performance type-II InAs/GaSb superlattice 1024×1024 LWIR focal plane array. [reprint (PDF)]
 
1.  Low irradiance background limited type-II superlattice MWIR M-barrier imager
E.K. Huang, S. Abdollahi Pour, M.A. Hoang, A. Haddadi, M. Razeghi and M.Z. Tidrow
OSA Optics Letters (OL), Vol. 37, No. 11, p. 2025-2027-- June 1, 2012 ...[Visit Journal]
We report a type-II superlattice mid-wave infrared 320 × 256 imager at 81 K with the M-barrier design that achieved background limited performance (BLIP) and ∼99%operability. The 280 K blackbody’s photon irradiance was limited by an aperture and a band-pass filter from 3.6 μm to 3.8 μm resulting in a total flux of ∼5 × 1012 ph·cm−2·s−1. Under these low-light conditions, and consequently the use of a 13.5 ms integration time, the imager was observed to be BLIP thanks to a ∼5 pA dark current from the 27 μm wide pixels. The total noise was dominated by the photon flux and read-out circuit which gave the imager a noise equivalent input of ∼5 × 1010 ph·cm−2·s−1 and temperature sensitivity of 9 mK with F∕2.3 optics. Excellent imagery obtained using a 1-point correction alludes to the array’s uniform responsivity. [reprint (PDF)]
 
1.  Effects of well width and growth temperature on optical and structural characteristics of AlN/GaN superlattices grown by metal-organic chemical vapor deposition
C. Bayram, N. Pere-Laperne, and M. Razeghi
Applied Physics Letters, Vol. 95, No. 20, p. 201906-1-- November 16, 2009 ...[Visit Journal]
AlN/GaN superlattices (SLs) employing various well widths (from 1.5 to 7.0 nm) are grown by metal-organic chemical vapor deposition technique at various growth temperatures (Ts) (from 900 to 1035 °C). The photoluminescence (PL), x-ray diffraction, and intersubband (ISB) absorption characteristics of these SLs and their dependency on well width and growth temperature are investigated. Superlattices with thinner wells (grown at the same Ts) or grown at lower Ts (employing the same well width) are shown to demonstrate higher strain effects leading to a higher PL energy and ISB absorption energy. Simulations are employed to explain the experimental observations. ISB absorptions from 1.04 to 2.15 µm are demonstrated via controlling well width and growth temperature. [reprint (PDF)]
 
1.  Superlattice sees colder objects in two colors and high resolution
M. Razeghi
SPIE Newsroom-- February 10, 2012 ...[Visit Journal]
A special class of semiconductor material can now detect two wavebands of light with energies less than a tenth of an electron volt in high resolution using the same IR camera. [reprint (PDF)]
 
1.  Optical Investigations of GaAs-GaInP Quantum Wells Grown on the GaAs, InP, and Si Substrates
H. Xiaoguang, M. Razeghi
Applied Physics Letters 61 (14)-- October 5, 1992 ...[Visit Journal]
We report the first photoluminescence investigation of GaAs‐Ga0.51In0.49P lattice matched multiquantum wells grown by the low pressure metalorganic chemical vapor deposition simultaneously in the same run on GaAs, Si, and InP substrates. The sharp photoluminescence peaks indicate the high quality of the samples on three different substrates. The temperature dependence of the photoluminescence indicates that the intrinsic excitonic transitions dominate at low temperature and free‐carrier recombinations at room temperature. The photoluminescence peaks of the samples grown on Si and InP substrates shift about 15 meV from the corresponding peaks of the sample grown on the GaAs substrate. Two possible interpretations are provided for the observed energy shift. One is the diffusion of In along the dislocation threads from GaInP to GaAs and another is the localized strain induced by defects and In segregations. [reprint (PDF)]
 
1.  Solar-blind photodetectors based on Ga2O3 and III-nitrides
Ryan McClintock; Alexandre Jaud; Lakshay Gautam; Manijeh Razeghi
Proc. SPIE 11288, Quantum Sensing and Nano Electronics and Photonics XVII, 1128803-- January 31, 2020 ...[Visit Journal]
Recently, there has been a surge of interest in the wide bandgap semiconductors for solar blind photo detectors (SBPD). This work presents our recent progress in the growth/doping of AlGaN and Ga2O3 thin films for solar blind detection applications. Both of these thin films grown are grown by metal organic chemical vapor deposition (MOCVD) in the same Aixtron MOCVD system. Solar-blind metal-semiconductor-metal photodetectors were fabricated with Ga2O3. Spectral responsivity studies of the MSM photodetectors revealed a peak at 261 nm and a maximum EQE of 41.7% for a −2.5 V bias. We have also demonstrated AlGaN based solar-blind avalanche photodiodes with a gain in excess of 57,000 at ~100 volts of reverse bias. This gain can be attributed to avalanche multiplication of the photogenerated carriers within the device. Both of these devices show the potential of wide bandgap semiconductors for solar blind photo detectors. [reprint (PDF)]
 
1.  Type-II superlattice photodetectors for MWIR to VLWIR focal plane arrays
M. Razeghi, Y. Wei, A. Hood, D. Hoffman, B.M. Nguyen, P.Y. Delaunay, E. Michel and R. McClintock
SPIE Infrared Technology and Applications Conference, April 17-21, 2006, Orlando, FL Proceedings – Infrared Technology and Applications XXXII, Vol. 6206, p. 62060N-1-- April 21, 2006 ...[Visit Journal]
Results obtained on GaSb/InAs Type-II superlattices have shown performance comparable to HgCdTe detectors, with the promise of higher performance due to reduced Auger recombination and dark current through improvements in device design and material quality. In this paper, we discuss advancements in Type-II IR sensors that cover the 3 to > 30 µm wavelength range. Specific topics covered will be device design and modeling using the Empirical Tight Binding Method (ETBM), material growth and characterization, device fabrication and testing, as well as focal plane array processing and imaging. Imaging has been demonstrated at room temperature for the first time with a 5 µm cutoff wavelength 256×256 focal plane array. [reprint (PDF)]
 
1.  Fabrication of Indium Bumps for Hybrid Infrared Focal Plane Array Applications
J. Jiang, S. Tsao, T. O'Sullivan, M. Razeghi, and G.J. Brown
Infrared Physics and Technology, 45 (2)-- March 1, 2004 ...[Visit Journal]
Hybrid infrared focal plane arrays (FPAs) have found many applications. In hybrid IR FPAs, FPA and Si read out integrated circuits (ROICs) are bonded together with indium bumps by flip-chip bonding. Taller and higher uniformity indium bumps are always being pursued in FPA fabrication. In this paper, two indium bump fabrication processes based on evaporation and electroplating techniques are developed. Issues related to each fabrication technique are addressed in detail. The evaporation technique is based on a unique positive lithography process. The electroplating method achieves taller indium bumps with a high aspect ratio by a unique “multi-stack” technique. This technique could potentially benefit the fabrication of multi-color FPAs. Finally, a proposed low-cost indium bump fabrication technique, the “bump transfer”, is given as a future technology for hybrid IR FPA fabrication. [reprint (PDF)]
 
1.  Continuous-wave operation of λ ~ 4.8 µm quantum-cascade lasers at room temperature
A. Evans, J.S. Yu, S. Slivken, and M. Razeghi
Applied Physics Letters, 85 (12)-- September 20, 2004 ...[Visit Journal]
Continuous-wave (cw) operation of quantum-cascade lasers emitting at λ~4.8 µm is reported up to a temperature of 323 K. Accurate control of layer thickness and strain-balanced material composition is demonstrated using x-ray diffraction. cw output power is reported to be in excess of 370 mW per facet at 293 K, and 38 mW per facet at 323 K. Room-temperature average power measurements are demonstrated with over 600 mW per facet at 50% duty cycle with over 300 mW still observed at 100% (cw) duty cycle. [reprint (PDF)]
 
1.  Inductively coupled plasma etching and processing techniques for type-II InAs/GaSb superlattices infrared detectors toward high fill factor focal plane arrays
E.K. Huang, B.M. Nguyen, D. Hoffman, P.Y. Delaunay and M. Razeghi
SPIE Proceedings, San Jose, CA Volume 7222-0Z-- January 26, 2009 ...[Visit Journal]
A challenge for Type-II InAs/GaSb superlattice (T2SL) photodetectors is to achieve high fill factor, high aspect ratio etching for third generation focal plane arrays (FPAs). Initially, we compare the morphological and electrical results of single element T2SL photodiodes after BCl3/Ar inductively coupled plasma (ICP) and electron cyclotron resonance (ECR) dry etching. Using a Si3N4 hard mask, ICP-etched structures exemplify greater sidewall verticality and smoothness, which are essential toward the realization of high fill factor FPAs. ICP-etched single element devices with SiO2 passivation that are 9.3 µm in cutoff wavelength achieved vertical sidewalls of 7.7 µm in depth with a resistance area product at zero bias of greater than 1,000 Ω·cm2 and maximum differential resistance in excess of 10,000 Ω·cm2 at 77 K. By only modifying the etching technique in the fabrication steps, the ICP-etched photodiodes showed an order of magnitude decrease in their dark current densities in comparison to the ECR-etched devices. Finally, high aspect ratio etching is demonstrated on mutli-element arrays with 3 µm-wide trenches that are 11 µm deep. [reprint (PDF)]
 
1.  High-Power Distributed-Feedback Quantum Cascade Lasers
W.W. Bewley, I. Vurgaftman, C.S. Kim, J.R. Meyer, J. Nguyen, A.J. Evans, J.S. Yu, S.R. Darvish, S. Slivken and M. Razeghi
SPIE Conference, San Jose, CA, Vol. 6127, pp. 612704-- January 23, 2006 ...[Visit Journal]
Recently, a distributed-feedback quantum cascade laser operating in a single spectral mode at 4.8 µm and at temperatures up to 333 K has been reported. In the present work, we provide detailed measurements and modeling of its performance characteristics. The sidemode suppression ratio exceeds 25 dB, and the emission remains robustly single-mode at all currents and temperatures tested. Cw output powers of 99 mW at 298 K and 357 mW at 200 K are obtained at currents well below the thermal rollover point. [reprint (PDF)]
 
1.  Photoconductance measurements on InTlSb/InSb/GaAs grown by low-pressure metalorganic chemical vapor deposition
P.T. Staveteig, Y.H. Choi, G. Labeyrie, E. Bigan, and M. Razeghi
Applied Physics Letters 64 (4)-- January 24, 1994 ...[Visit Journal]
We report infrared photoconductors based on InTlSb/InSb grown by low‐pressure metalorganic chemical vapor deposition on semi-insulating GaAs substrates. The photoresponse spectrum extends up to 8 μm at 77 K. The absolute magnitude of the photoresponse is measured as a function of bias. The specific detectivity is estimated to be 3×108 Hz½·cm·W-1 at 7 μm wavelength. [reprint (PDF)]
 
1.  III-nitride based avalanche photo detectors
R. McClintock, E. Cicek, Z. Vashaei, C. Bayram, M. Razeghi and M. Ulmer
Proceedings, Vol. 7780, p. 77801B, SPIE Optics and Photonics Symposium, Conference on Detectors and Imaging Devices: Infrared, Focal Plane and Single Photon, San Diego, CA -- August 4, 2010 ...[Visit Journal]
Research into III-Nitride based avalanche photodiodes (APDs) is motivated by the need for high sensitivity ultraviolet (UV) detectors in numerous civilian and military applications. By designing III-Nitride photodetectors that utilize low-noise impact ionization high internal gain can be realized-GaN APDs operating in Geiger mode can achieve gains exceeding 1×107. Thus with careful design, it becomes possible to count photons at the single photon level. In this paper we review the current state of the art in III-Nitride visible-blind APDs and discuss the critical design choices necessary to achieve high performance Geiger mode devices. Other major technical issues associated with the realization of visible-blind Geiger mode APDs are also discussed in detail and future prospects for improving upon the performance of these devices are outlined. The photon detection efficiency, dark count rate, and spectral response of or most recent Geiger-mode GaN APDs on free-standing GaN substrates are studied under low photon fluxes, with single photon detection capabilities being demonstrated. We also present our latest results regarding linear mode gain uniformity: the study of gain uniformity helps reveal the spatial origins of gain so that we can better understand the role of defects. [reprint (PDF)]
 
1.  Recent advances in LWIR type-II InAs/GaSb superlattice photodetectors and focal plane arrays at the Center for Quantum Devices
M. Razeghi, D. Hoffman, B.M. Nguyen, P.Y. Delaunay, E.K. Huang, and M.Z. Tidrow
SPIE Porceedings, Vol. 6940, Orlando, FL 2008, p. 694009-- March 17, 2008 ...[Visit Journal]
In recent years, Type-II InAs/GaSb superlattice photo-detectors have experienced significant improvements in material quality, structural designs, and imaging applications. They now appear to be a possible alternative to the state-of-the-art HgCdTe (MCT) technology in the long and very long wavelength infrared regimes. At the Center for Quantum Devices,we have successfully realized very high quantum efficiency, very high dynamic differential resistance R0A - product LWIR Type – II InAs/GaSb superlattice photodiodes with efficient surface passivation techniques. The demonstration of high quality LWIR Focal Plane Arrays that were 100 % fabricated in - house reaffirms the pioneer position of this university-based laboratory. [reprint (PDF)]
 
1.  High power continuous wave operation of single mode quantum cascade lasers up to 5 W spanning λ∼3.8-8.3 µm
Quanyong Lu, Steven Slivken, Donghai Wu, and Manijeh Razeghi
Optics Express Vol. 28, Issue 10, pp. 15181-15188-- May 4, 2020 ...[Visit Journal]
In this work, we report high power continuous wave room-temperature operation single mode quantum cascade lasers in the mid-infrared spectral range from 3.8 to 8.3 µm. Single mode robustness and dynamic range are enhanced by optimizing the distributed feedback grating coupling design and the facet coatings. High power single mode operation is secured by circumventing the over-coupling issue and spatial hole burning effect. Maximum single-facet continuous-wave output power of 5.1 W and wall plug efficiency of 16.6% is achieved at room temperature. Single mode operation with a side mode suppression ratio of 30 dB and single-lobed far field with negligible beam steering is observed. The significantly increased power for single mode emission will boost the QCL applications in long-range free-space communication and remote sensing of hazardous chemicals. [reprint (PDF)]
 
1.  Intermixing of GaInP/GaAs Multiple Quantum Wells
C. Francis, M.A. Bradley, P. Boucaud, F.H. Julien and M. Razeghi
Applied Physics Letters 62 (2)-- January 11, 1993 ...[Visit Journal]
The intermixing of GaInP‐GaAs superlattices induced by a heat treatment is investigated as a function of the annealing temperature and duration. Photoluminescence experiments reveal a large red shift of the effective band gap of the annealed quantum wells thus indicating a dominant self‐diffusion of the group III atoms which is confirmed by secondary ion mass spectroscopic measurements. For long enough annealing durations, the red shift saturates and even decreases due to the competing slower self‐diffusion of the group V atoms. Experiments are well understood based on a simple diffusion model. [reprint (PDF)]
 
1.  Widely tuned room temperature terahertz quantum cascade laser sources
Q.Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai and M. Razeghi
SPIE Proceedings, Vol. 8631, p. 863108-1, Photonics West, San Francisco, CA-- February 3, 2013 ...[Visit Journal]
Room temperature THz quantum cascade laser sources with a broad spectral coverage based on intracavity difference frequency generation are demonstrated. Two mid-infrared active cores in the longer mid-IR wavelength range (9-11 micron)based on the single-phonon resonance scheme are designed with a second-order difference frequency nonlinearity specially optimized for the high operating fields that correspond to the highest mid-infrared output powers. A Čerenkov phase-matching scheme along with integrated dual-period distributed feedback gratings are used for efficient THz extraction and spectral purification. Single mode emissions from 1.0 to 4.6 THz with a side-mode suppression ratio and output power up to 40 dB and 32 μW are obtained, respectively. [reprint (PDF)]
 
1.  Generalized k·p perturbation theory for atomic-scale superlattices
H. Yi and M. Razeghi
Physical Review B 56 (7)-- August 15, 1997 ...[Visit Journal]
We present a generalized k⋅p perturbation method that is applicable for atomic-scale superlattices. The present model is in good quantitative agreement with full band theories with local-density approximation, and approaches results of the conventional k⋅p perturbation method (i.e., Kane’s Hamiltonian) with the envelope function approximation for superlattices with large periods. The indirect band gap of AlAs/GaAs superlattices with short periods observed in experiments is explained using this method. [reprint (PDF)]
 
1.  High performance InGaAs/InGaP quantum dot infrared photodetector achieved through doping level optimization
S. Tsao, K. Mi, J. Szafraniec, W. Zhang, H. Lim, B. Movaghar, and M. Razeghi
SPIE Conference, Jose, CA, Vol. 5732, pp. 334-- January 22, 2005 ...[Visit Journal]
We report an InGaAs/InGaP/GaAs quantum dot infrared photodetector grown by metalorganic chemical vapor deposition with detectivity of 1.3x1011 cm·Hz½/W at 77K and 1.2x1010 ccm·Hz½/W at 120K. Modeling of the Quantum dot energy levels showed us that increased photoresponse could be obtained by doping the quantum dots to 4 electrons per dot instead of the usual 2 electrons per dot. This happens because the primary photocurrent transition is from the first excited state to a higher excited state. Increasing the quantum doping in our device yielded significant responsivity improvement and much higher detectivity as a result. This paper discusses the performance of this higher doping device and compares it to our previously reported device with lower doping. [reprint (PDF)]
 
1.  Study on the effects of minority carrier leakage in InAsSb/InPAsSb double heterostructure
B. Lane, D. Wu, H.J. Yi, J. Diaz, A. Rybaltowski, S. Kim, M. Erdtmann, H. Jeon and M. Razeghi
Applied Physics Letters 70 (11)-- April 17, 1997 ...[Visit Journal]
InAsxSb1−x/InP1−x−yAsxSby double heterostructures have been grown on InAs substrates by metal-organic chemical vapor deposition. The minority carrier leakage to the cladding layers was studied with photoluminescence measurements on the InAsSb/InPAsSb double heterostructures. A carrier leakage model is used to extract parameters related to the leakage current (diffusion-coefficient and length) from experimental results. Using the obtained parameters, the temperature dependence of the threshold current density of InAsSb/InPAsSb double heterostructure lasers is predicted and compared with experimental results. [reprint (PDF)]
 
1.  Quntum Cascade Laser Breakthrough for Advanced Remote Detection
Manijeh Razeghi, Wenjia Zhou, Donghai Wu, Ryan McClintock, and Steven Slivken
Photonics Spectra, November issue-- November 1, 2016 ...[Visit Journal]
The atoms in a molecule can bend, stretch and rotate with respect to one an­other, and these excitations are largely optically active. Most molecules, from simple to moderately complex, have a characteristic absorption spectrum in the 3- to 14-µrn wavelength range that can be uniquely identified and quantified in real time. Infrared spectroscopy has been used to study these absorption features and de­velop different molecular "fingerprints."
 
1.  High Performance Solar-Blind Ultraviolet Focal Plane Arrays Based on AlGaN
Erdem Cicek, Ryan McClintock, Abbas Haddadi, William A. Gaviria Rojas, and Manijeh Razeghi
IEEE Journal of Quantum Electronics, Vol. 50, Issue 8, p 591-595-- August 1, 2014 ...[Visit Journal]
We report on solar-blind ultraviolet, AlxGa1-x N- based,p-i-n,focal plane array (FPA) with 92% operability. At the peak detection wavelength of 278 nm, 320×256-FP A-pixel showed unbiased peak external quantum efficiency (EQE) and responsivity of 49% and 109 mA/W, respectively, increasing to 66% under 5 volts of reverse bias. Electrical measurements yielded a low-dark current density: <7×10-9A/cm², at FPA operating voltage of 2 volts of reverse bias. [reprint (PDF)]
 
1.  Gain-length scaling in quantum dot/quantum well infrared photodetectors
T. Yamanaka, B. Movaghar, S. Tsao, S. Kuboya, A. Myzaferi and M. Razeghi
Applied Physics Letters, Vol. 95, No. 9-- August 31, 2009 ...[Visit Journal]
The gain in quantum dot/quantum well infrared photodetectors is investigated. The scaling of the gain with device length has been analyzed, and the behavior agrees with the previously proposed model. We conclude that we understand the gain in the low bias region, but in the high field region, discrepancies remain. An extension of the gain model is presented to cover the very high electric field region. The high field data are compared to the extended model and discussed. [reprint (PDF)]
 
1.  InAsSbP/InAsSb/InAs Laser Diodes λ = 3.2 μm) Grown by Low-Pressure Metalorganic Chemical Vapor Deposition
J. Diaz, G. Lukas, D. Wu, S. Kim, M. Erdtmann, E. Kaas, and M. Razeghi
Applied Physics Letters 70 (1)-- January 6, 1997 ...[Visit Journal]
We report metal–organic chemical-vapor deposition-grown double heterostructure InAsSbP/InAsSb/InAs diode lasers emitting at 3.2 μm operating at temperatures up to 220 K with threshold current density of 40 A/cm² at 77 K and characteristic temperature up to 42 K. Output powers as high as 260 mW in pulse mode and 60 mW in continuous wave operation have been obtained from an uncoated 100 μm stripe-width broad-area laser at 77 K. Comparison with theory shows that there is no significant nonradiative recombination mechanism for these lasers at 77 K. [reprint (PDF)]
 

Page 9 of 14:  Prev << 1 2 3 4 5 6 7 8 9  10 11 12 13 14  >> Next  (326 Items)