Page 9 of 16:  Prev << 1 2 3 4 5 6 7 8 9  10 11 12 13 14 15 16  >> Next  (397 Items)

2.  III-Nitride Optoelectronic Devices: From ultraviolet detectors and visible emitters towards terahertz intersubband devices
M. Razeghi, C. Bayram, Z. Vashaei, E. Cicek and R. McClintock
IEEE Photonics Society 23rd Annual Meeting, November 7-10, 2010, Denver, CO, Proceedings, p. 351-352-- January 20, 2011 ...[Visit Journal]
III-nitride optoelectronic devices are discussed. Ultraviolet detectors and visible emitters towards terahertz intersubband devices are reported. Demonstration of single photon detection efficiencies of 33% in the ultraviolet regime, intersubband energy level as low as in the mid-infrared regime, and GaN-based resonant tunneling diodes with negative resistance of 67 Ω are demonstrated. [reprint (PDF)]
 
2.  Stranski-Krastanov growth of InGaN quantum dots emitting in green spectra
C. Bayram and M. Razeghi
Applied Physics A: Materials Science and Processing, Vol. 96, No. 2, p. 403-408-- August 1, 2009 ...[Visit Journal]
Self-assembled InGaN quantum dots (QDs) were grown on GaN templates by metalorganic chemical vapor deposition. 2D–3D growth mode transition through Stranski–Krastanov mode was observed via atomic force microscopy. The critical thickness for In0.67Ga0.33N QDs was determined to be four monolayers. The effects of growth temperature, deposition thickness, and V/III ratio on QD formation were examined. The capping of InGaN QDs with GaN was analyzed. Optimized InGaN quantum dots emitted in green spectra at room temperature. [reprint (PDF)]
 
2.  A detailed analysis of carrier transport in InAs0.3Sb0.7 layers grown on GaAs substrates by metalorganic chemical vapor deposition
C. Besikci, Y.H. Choi, G. Labeyrie, E. Bigan and M. Razeghi with J.B. Cohen, J. Carsello, and V.P. Dravid
Journal of Applied Physics 76 (10)-- November 15, 1994 ...[Visit Journal]
InAs0.3Sb0.7 layers with mirrorlike morphology have been grown on GaAs substrates by low‐pressure metalorganic chemical vapor deposition. A room‐temperature electron Hall mobility of 2×104 cm²/V· s has been obtained for a 2 μm thick layer. Low‐temperature resistivity of the layers depended on TMIn flow rate and layer thickness. Hall mobility decreased monotonically with decreasing temperature below 300 K. A 77 K conductivity profile has shown an anomalous increase in the sample conductivity with decreasing thickness except in the near vicinity of the heterointerface. In order to interpret the experimental data, the effects of different scattering mechanisms on carrier mobility have been calculated, and the influences of the lattice mismatch and surface conduction on the Hall measurements have been investigated by applying a three‐layer Hall‐effect model. Experimental and theoretical results suggest that the combined effects of the dislocations generated by the large lattice mismatch and strong surface inversion may lead to deceptive Hall measurements by reflecting typical n‐type behavior for a p‐type sample, and the measured carrier concentration may considerably be affected by the surface conduction up to near room temperature. A quantitative analysis of dislocation scattering has shown significant degradation in electron mobility for dislocation densities above 107 cm−2. The effects of dislocation scattering on hole mobility have been found to be less severe. It has also been observed that there is a critical epilayer thickness (∼1 μm) below which the surface electron mobility is limited by dislocation scattering. [reprint (PDF)]
 
2.  Improved performance of IR photodetectors with 3D gap engineering
J. Piotrowski and M. Razeghi
Optoelectronic Integrated Circuit Materials, Physics and Devices, SPIE Conference, San Jose, CA; Proceedings, Vol. 2397-- February 6, 1995 ...[Visit Journal]
The ultimate signal-to-noise performance of the semiconductor photodetector is limited by the statistical fluctuations of the thermal generation and recombination rates in photodetector material. Cooling is an effective but impractical way of suppression of the thermal processes. The performance of uncooled detectors can be improved by minimizing the thermal generation and recombination rates and reducing the actual volume of photodetector. This can be realized in 3D heterostructure devices. In these devices, the incident radiation is absorbed in small regions of narrow gap semiconductor, buried in wide gap volume and supplied with wide gap electric contacts and radiation concentrators. The practical near room-temperature 1 - 12 μm IR heterostructure photodetectors are reported. The devices are based on variable gap Hg1-xCdxTe. The 3D heterostructures have been obtained by Isothermal Vapor Growth Epitaxy in a reusable growth system which enables in situ doping during growth with foreign impurities. Ion milling was extensively used in preparation of the devices. Monolithic optical immersion has been applied for further improvement of performance. The 3D heterostructure devices exhibit performance exceeding that of conventional photodetectors. [reprint (PDF)]
 
2.  High performance Type-II InAs/GaSb superlattices for mid, long, and very long wavelength infrared focal plane arrays
M. Razeghi, Y. Wei, A. Gin, A. Hood, V. Yazdanpanah, M.Z. Tidrow, and V. Nathan
SPIE Conference, Orlando, FL, Vol. 5783, pp. 86-- March 28, 2005 ...[Visit Journal]
We present our most recent results and review our progress over the past few years regarding InAs/GaSb Type-II superlattices for photovoltaic detectors and focal plane arrays. Empirical tight binding methods have been proven to be very effective and accurate in designing superlattices for various cutoff wavelengths from 3.7 µm up to 32 µm. Excellent agreement between theoretical calculations and experimental results has been obtained. High quality material growths were performed using an Intevac modular Gen II molecular beam epitaxy system. The material quality was characterized using x-ray, atomic force microscopy, transmission electron microscope and photoluminescence, etc. Detector performance confirmed high material electrical quality. Details of the demonstration of 256×256 long wavelength infrared focal plane arrays are presented. [reprint (PDF)]
 
2.  Delta-doping optimization for high qualityp-type GaN
C. Bayram, J.L. Pau, R. McClintock and M. Razeghi
Journal of Applied Physics, Vol. 104, No. 8-- October 15, 2008 ...[Visit Journal]
Delta-doping is studied in order to achieve high quality p-type GaN. Atomic force microscopy, x-ray diffraction, photoluminescence, and Hall measurements are performed on the samples to optimize the delta-doping characteristics. The effect of annealing on the electrical, optical, and structural quality is also investigated for different delta-doping parameters. Optimized pulsing conditions result in layers with hole concentrations near 1018 cm−3 and superior crystal quality compared to conventional p-GaN. This material improvement is achieved thanks to the reduction in the Mg activation energy and self-compensation effects in delta-doped p-GaN. [reprint (PDF)]
 
2.  Cubic Phase GaN on Nano-grooved Si (100) via Maskless Selective Area Epitaxy
Bayram, C., Ott, J. A., Shiu, K.-T., Cheng, C.-W., Zhu, Y., Kim, J., Razeghi, M. and Sadana, D. K.
Adv. Funct. Mater. 2014-- April 1, 2014 ...[Visit Journal]
A method of forming cubic phase (zinc blende) GaN (referred as c-GaN) on a CMOS-compatible on-axis Si (100) substrate is reported. Conventional GaN materials are hexagonal phase (wurtzite) (referred as h-GaN) and possess very high polarization fields (∼MV/cm) along the common growth direction of <0001>. Such large polarization fields lead to undesired shifts (e.g., wavelength and current) in the performance of photonic and vertical transport electronic devices. The cubic phase of GaN materials is polarization-free along the common growth direction of <001>, however, this phase is thermodynamically unstable, requiring low-temperature deposition conditions and unconventional substrates (e.g., GaAs). Here, novel nano-groove patterning and maskless selective area epitaxy processes are employed to integrate thermodynamically stable, stress-free, and low-defectivity c-GaN on CMOS-compatible on-axis Si. These results suggest that epitaxial growth conditions and nano-groove pattern parameters are critical to obtain such high quality c-GaN. InGaN/GaN multi-quantum-well structures grown on c-GaN/Si (100) show strong room temperature luminescence in the visible spectrum, promising visible emitter applications for this technology. [reprint (PDF)]
 
2.  Influence of Residual Impurity Background on the Non-radiative Recombination Processes in High Purity InAs/GaSb superlattice Photodiodes
E.C.F. da Silva, D. Hoffman, A. Hood, B. Nguyen, P.Y. Delaunay and M. Razeghi
Applied Physics Letters, 89 (24)-- December 11, 2006 ...[Visit Journal]
The influence of the impurity background on the recombination processes in type-II InAs/GaSb superlattice photodiodes with a cutoff wavelength of approximately 4.8 μm was investigated by electroluminescence measurements. Using an iterative fitting procedure based on the dependence of the quantum efficiency of the electroluminescence on the injection current, the Auger and Shockley-Read-Hall lifetimes were determined [reprint (PDF)]
 
2.  Type-II superlattice dual-band LWIR imager with M-barrier and Fabry-Perot resonance
E.K. Huang, A. Haddadi, G. Chen, B.M. Nguyen, M.A. Hoang, R. McClintock, M. Stegall, and M. Razeghi
OSA Optics Letters, Vol. 36, No. 13, p. 2560-2562-- July 1, 2011 ...[Visit Journal]
We report a high performance long-wavelength IR dual-band imager based on type-II superlattices with 100% cutoff wavelengths at 9.5 μm (blue channel) and 13 μm (red channel). Test pixels reveal background-limited behavior with specific detectivities as high as ∼5×1011 Jones at 7.9 μm in the blue channel and ∼1×1011 Jones at 10.2 μm in the red channel at 77 K. These performances were attributed to low dark currents thanks to the M-barrier and Fabry–Perot enhanced quantum efficiencies despite using thin 2 μm absorbing regions. In the imager, the high signal-to-noise ratio contributed to median noise equivalent temperature differences of ∼20 mK for both channels with integration times on the order of 0.5 ms, making it suitable for high speed applications. [reprint (PDF)]
 
2.  Room-temperature continuous wave operation of distributed feedback quantum cascade lasers with watt-level power output
Q.Y. Lu, Y. Bai, N. Bandyopadhyay, Sl Slivken, and M. Razeghi
Applied Physics Letters, Vol. 97, No. 23, p. 231119-1-- December 6, 2010 ...[Visit Journal]
We demonstrate surface-grating distributed feedback quantum cascade lasers (QCLs) with a watt-level power output at 4.75 μm. A device with a 5 mm cavity length exhibits an output power of 1.1 W in room-temperature cw operation. Single-mode operation with a side mode suppression ratio of 30 dB is obtained in the working temperature of 15–105 °C. A double-lobed far field with negligible beam steering is observed. The significance of this demonstration lies in its simplicity and readiness to be applied to standard QCL wafers with the promise of high-power performances. [reprint (PDF)]
 
2.  High power photonic crystal distributed feedback quantum cascade lasers emitting at 4.5 micron
B. Gokden, S. Slivken and M. Razeghi
SPIE Proceedings, San Francisco, CA (January 22-28, 2010), Vol. 7608, p. 760806-1-- January 22, 2010 ...[Visit Journal]
Quantum cascade lasers possess very small linewidth enhancement factor, which makes them very prominent candidates for realization of high power, nearly diffraction limited and single mode photonic crystal distributed feedback broad area lasers in the mid-infrared frequencies. In this paper, we present room temperature operation of a two dimensional photonic crystal distributed feedback quantum cascade laser emitting at 4.5 µm. peak power up to ~0.9 W per facet is obtained from a 2 mm long laser with 100 µm cavity width at room temperature. The observed spectrum is single mode with a very narrow linewidth. Far-field profile has nearly diffraction limited single lobe with full width at half maximum of 3.5 degree normal to the facet. The mode selection and power output relationships are experimentally established with respect to different cavity lengths for photonic crystal distributed feedback quantum cascade lasers. [reprint (PDF)]
 
2.  High-performance, continuous-wave operation of λ ~ 4.6 μm quantum-cascade lasers above room temperature
J.S. Yu, S. Slivken, A. Evans and M. Razeghi
IEEE Journal of Quantum Electronics, Vol. 44, No. 8, p. 747-754-- August 1, 2008 ...[Visit Journal]
We report the high-performance continuous-wave (CW) operation of 10-μm-wide quantum-cascade lasers (QCLs) emitting at λ ~ 4.6 μm, based on the GaInAs–AlInAs material without regrowth, in epilayer-up and -down bonding configurations. The operational characteristics of QCLs such as the maximum average power, peak output power, CW output power, and maximum CW operating temperature are investigated, depending on cavity length. Also, important device parameters, i.e., the waveguide loss, the transparency current density, the modal gain, and the internal quantum efficiency, are calculated from length-dependent results. For a high-reflectivity (HR) coated 4-mm-long cavity with epilayer-up bonding, the highest maximum average output power of 633 mW is measured at 65% duty cycle, with 469 mW still observed at 100%. The laser exhibits the maximum wall-plug efficiencies of 8.6% and 3.1% at 298 K, in pulsed and CW operatons, respectively. From 298 to 393 K, the temperature dependent threshold current density in pulsed operation shows a high characteristic temperature of 200 K. The use of an epilayer-down bonding further improves the device performance. A CW output power of 685 mW at 288 K is achieved for the 4-micron-long cavity. At 298 K, the output power of 590 mW, threshold current density of 1.52 kA / cm2, and maximum wall-plug efficiency of 3.73% are obtained under CW mode, operating up to 363 K (90 °C). For HR coated 3-micron-long cavities, laser characteristics across the same processed wafer show a good uniformity across the area of 2 x 1 cm2, giving similar output powers, threshold current densities, and emission wavelengths. The CW beam full-width at half-maximum of far-field patterns are 25 degree and 46 degree for the parallel and the perpendicular directions, respectively. [reprint (PDF)]
 
2.  Nickel oxide growth on Si (111), c-Al2O3 and FTO/glass by pulsed laser deposition
V. E. Sandana ; D. J. Rogers ; F. Hosseini Teherani ; P. Bove ; R. McClintock ; M. Razeghi
03/07/2014-- March 7, 2014 ...[Visit Journal]
NiO was grown on Si (111), c-Al2O3 and FTO/glass substrates by pulsed laser deposition (PLD). X-Ray Diffraction (XRD) and scanning electron microscope (SEM) studies revealed that layers grown on c-Al2O3 were fcc NiO with a dense morphology of cubic grains that were strongly (111) oriented along the growth direction. The relatively low ω rocking curve linewidth, of 0.12°suggests that there may have been epitaxial growth on the c-Al2O3 substrate. XRD and SEM indicated that films grown on Si (111) were also fcc NiO, with cubic grains, but that the grain orientation was random. This is consistent with the presence of an amorphous SiO2 layer at the surface of the Si substrate, which precluded epitaxial growth. NiO grown at lower temperature (200°C) on temperature-sensitive FTO/glass substrates showed no evidence of crystallinity in XRD and SEM studies. After flash annealing in air, however, peaks characteristic of randomly oriented fcc NiO appeared in the XRD scans and the surface morphology became more granular in appearance. Such layers appear promising for the development of future dye-sensitised solar cell devices based on NiO grown by PLD. [reprint (PDF)]
 
2.  Photovoltaic MWIR type-II superlattice focal plane array on GaAs substrate
E.K. Huang, P.Y. Delaunay, B.M. Nguyen, S. Abdoullahi-Pour, and M. Razeghi
IEEE Journal of Quantum Electronics (JQE), Vol. 46, No. 12, p. 1704-1708-- December 1, 2010 ...[Visit Journal]
Recent improvements in the performance of Type-II superlattice (T2SL) photodetectors has spurred interest in developing low cost and large format focal plane arrays (FPA) on this material system. Due to the limitations of size and cost of native GaSb substrates, GaAs is an attractive alternative with 8” wafers commercially available, but is 7.8% lattice mismatched to T2SL. In this paper, we present a photovoltaic T2SL 320 x 256 focal plane array (FPA) in the MWIR on GaAs substrate. The FPA attained a median noise equivalent temperature difference (NEDT) of 13 mK and 10mK (F#=2.3) with integration times of 10.02 ms and 19.06 ms respectively at 67 K. [reprint (PDF)]
 
2.  Current status and potential of high power mid-infrared intersubband lasers
S. Slivken, Y. Bai, B. Gokden, S.R. Darvish and M. Razeghi
SPIE Proceedings, San Francisco, CA (January 22-28, 2010), Vol. 7608, p. 76080B-1-- January 22, 2010 ...[Visit Journal]
Some of the recent advances in high power quantum cascade laser development will be reviewed in this paper. Research areas explored include short wavelength (λ <4 µm) lasers, high performance strain-balanced heterostructures, and high power long wavelength (7< λ< 16 µm) lasers. Near λ=4.5 µm, highlights include demonstration of 18% continuous wave wallplug efficiency at room temperature, 53% pulsed wallplug efficiency at 40 K, and 120 W of peak power output from a single device at room temperature. Near λ ~10 µm, up to 0.6 W of continuous output power at room temperature has also been demonstrated, with pulsed efficiencies up to 9%. [reprint (PDF)]
 
2.  Demonstration of mid-infrared type-II InAs/GaSb superlattice photodiodes grown on GaAs substrate
B.M. Nguyen, D. Hoffman, E.K. Huang, S. Bogdanov, P.Y. Delaunay, M. Razeghi and M.Z. Tidrow
Applied Physics Letters, Vol. 94, No. 22-- June 8, 2009 ...[Visit Journal]
We report the growth and characterization of type-II InAs/GaSb superlattice photodiodes grown on a GaAs substrate. Through a low nucleation temperature and a reduced growth rate, a smooth GaSb surface was obtained on the GaAs substrate with clear atomic steps and low roughness morphology. On the top of the GaSb buffer, a p+-i-n+ type-II InAs/GaSb superlattice photodiode was grown with a designed cutoff wavelength of 4 μm. The detector exhibited a differential resistance at zero bias (R0A)in excess of 1600 Ω·cm2 and a quantum efficiency of 36.4% at 77 K, providing a specific detectivity of 6 X 1011 cm·Hz½/W and a background limited operating temperature of 100 K with a 300 K background. Uncooled detectors showed similar performance to those grown on GaSb substrates with a carrier lifetime of 110 ns and a detectivity of 6 X 108 cm·Hz½/W. [reprint (PDF)]
 
2.  Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency
Y. Bai, S. Slivken, S.R. Darvish, and M. Razeghi
Applied Physics Letters, Vol. 93, No. 2, p. 021103-1-- July 14, 2008 ...[Visit Journal]
An InP based quantum cascade laser heterostructure emitting at 4.6 µm was grown with gas-source molecular beam epitaxy. The wafer was processed into a conventional double-channel ridge waveguide geometry with ridge widths of 19.7 and 10.6 µm without semi-insulating InP regrowth. An uncoated, narrow ridge device with a 4.8 mm cavity length was epilayer down bonded to a diamond submount and exhibits 2.5 W maximum output power with a wall plug efficiency of 12.5% at room temperature in continuous wave operation. [reprint (PDF)]
 
2.  Geiger-mode operation of back-illuminated GaN avalanche photodiodes
J. L. Pau, R. McClintock, K. Minder, C. Bayram, P. Kung, M. Razeghi, E. Muñoz, and D. Silversmith
Applied Physics Letters, Vol. 91, No. 04, p. 041104 -1-- July 23, 2007 ...[Visit Journal]
We report the Geiger-mode operation of back-illuminated GaN avalanche photodiodes fabricated on transparent AlN templates specifically for back illumination in order to enhance hole-initiated multiplication. The spectral response in Geiger-mode operation was analyzed under low photon fluxes. Single photon detection capabilities were demonstrated in devices with areas ranging from 225 to 14,063 µm2. Single photon detection efficiency of 20% and dark count rate < 10 kHz were achieved in the smallest devices. [reprint (PDF)]
 
2.  Widely Tunable, Single-Mode, High-Power Quantum Cascade Lasers
M. Razeghi, B. Gokden, S. Tsao, A. Haddadi, N. Bandyopadhyay, and S. Slivken
SPIE Proceedings, Intergreated Photonics: Materials, Devices and Applications, SPIE Microtechnologies Symposium, Prague, Czech Republic, April 18-20, 2011, Vol. 8069, p. 806905-1-- May 31, 2011 ...[Visit Journal]
We demonstrate widely tunable high power distributed feedback quantum cascade laser array chips that span 190 nm and 200 nm from 4.4 um to 4.59 um and 4.5 um to 4.7 um respectively. The lasers emit single mode with a very narrow linewidth and side mode suppression ratio of 25 dB. Under pulsed operation power outputs up to 1.85 W was obtained from arrays with 3 mm cavity length and up to 0.95 W from arrays with 2 mm cavity length at room temperature. Continuous wave operation was also observed from both chips with 2 mm and 3 mm long cavity arrays up to 150 mW. The cleaved size of the array chip with 3 mm long cavities was around 4 mm x 5 mm and does not require sensitive external optical components to achieve wide tunability. With their small size and high portability, monolithically integrated DFB QCL Arrays are prominent candidates of widely tunable, compact, efficient and high power sources of mid-infrared radiation for gas sensing. [reprint (PDF)]
 
2.  Injector doping level dependent continuous-wave operation of InP-based QCLs at λ~ 7.3 µm above room temperature
J.S. Yu, S. Slivken, and M. Razeghi
Semiconductor Science and Technology (SST), Vol. 25, No. 12, p. 125015-- December 1, 2010 ...[Visit Journal]
We report the continuous-wave (CW) operation of InGaAs/InAlAs quantum cascade lasers (QCLs) operating at λ ~ 7.3 µm above room temperature. The injector doping level–dependent CW characteristics above room temperature are investigated for doping densities between 7 × 1016 cm−3 and 2 × 1017 cm−3. The device performance, i.e. threshold current density, output power, operating temperature and characteristic temperature, depends strongly on the injector doping density. For a relatively low injector doping density of 7 × 1016 cm−3, a high-reflectivity-coated 10 µm wide and 4 mm long laser exhibits an improved device performance with an output power of 152 mW and a threshold current density of 1.37 kA cm−2 at 298 K under CW mode, operating up to 343 K. The thermal characteristics are also analyzed by the estimation from the experimentally measured data for the QCLs with different injector doping densities. [reprint (PDF)]
 
2.  High-Performance InP-Based Mid-IR Quantum Cascade Lasers
M. Razeghi
IEEE Journal of Selected Topics in Quantum Electronics, Vol. 15, No. 3, May-June 2009, p. 941-951.-- June 5, 2009 ...[Visit Journal]
Quantum cascade lasers (QCLs) were once considered as inefficient devices, as the wall-plug efficiency (WPE) was merely a few percent at room temperature. But this situation has changed in the past few years, as dramatic enhancements to the output power andWPE have been made for InP-based mid-IR QCLs. Room temperature continuous-wave (CW) output power as high as 2.8 W and WPE as high as 15% have now been demonstrated for individual devices. Along with the fundamental exploration of refining the design and improving the material quality, a consistent determination of important device performance parameters allows for strategically addressing each component that can be improved potentially. In this paper, we present quantitative experimental evidence backing up the strategies we have adopted to improve the WPE for QCLs with room temperature CW operation. [reprint (PDF)]
 
2.  Buried heterostructure quantum cascade lasers with high continuous-wave wall plug efficiency
A. Evans, S.R. Darvish, S. Slivken, J. Nguyen, Y. Bai and M. Razeghi
Applied Physics Letters, Vol. 91, No. 7, p. 071101-1-- August 13, 2007 ...[Visit Journal]
The authors report on the development of ~4.7 µm strain-balanced InP-based quantum cascade lasers with high wall plug efficiency and room temperature continuous-wave operation. The use of narrow-ridge buried heterostructure waveguides and thermally optimized packaging is presented. Over 9.3% wall plug efficiency is reported at room temperature from a single device producing over 0.675 W of continuous-wave output power. Wall plug efficiencies greater than 18% are also reported for devices at a temperature of 150 K, with continuous-wave output powers of more than 1 W. [reprint (PDF)]
 
2.  Type II superlattice infrared detectors and focal plane arrays
Vaidya Nathan; Manijeh Razeghi
Proc. SPIE 6542, Infrared Technology and Applications XXXIII, 654209 (May 14, 2007)-- May 14, 2007 ...[Visit Journal]
Type II superlattce photodetectors have recently experienced significant improvements in both theoretical structure design and experimental realization. Empirical Tight Binding Method is initiated and developed for Type II superlattice. Growth characteristics such as group V segregation and incorporation phenomena are taken into account in the model and shown higher precision. A new Type II structure, called M-structure, is introduced and theoretically demonstrated high R0A, high quantum efficiency. Device design is optimized to improve the performance. As a result, 55% quantum efficiency and 10 Ohm·cm² R0A are achieved for an 11.7 μm cut-off photodetector at 77K. FPA imaging at longwavelength is demonstrated with a capability of imaging up to 171K. At 81K, the noise equivalent temperature difference presented a peak at 0.33K. [reprint (PDF)]
 
2.  High power, low divergent, substrate emitting quantum cascade ring laser in continuous wave operation
D. H. Wu and M. Razeghi
APL Materials 5, 035505 (2017)-- March 21, 2017 ...[Visit Journal]
We demonstrate a surface grating coupled substrate emitting quantum cascade ring laser with high power room temperature continuous wave operation at 4.64 μm μm . A second order surface metal/semiconductor distributed-feedback grating is used for in-plane feedback and vertical out-coupling. A device with 400 μm μm radius ring cavity exhibits an output power of 202 mW in room temperature continuous wave operation. Single mode operation with a side mode suppression ratio of 25 dB is obtained along with a good linear tuning with temperature. The far field measurement exhibits a low divergent concentric ring beam pattern with a lobe separation of ∼0.34°, which indicates that the device operates in fundamental mode (n = 1). [reprint (PDF)]
 
2.  Angled cavity broad area quantum cascade lasers
Y. Bai, S. Slivken, Q.Y. Lu, N. Bandyopadhyay, and M. Razeghi
Applied Physics Letters, Vol. 100, Np. 8, p. 081106-1-- August 20, 2012 ...[Visit Journal]
Angled cavity broad area quantum cascade lasers (QCLs) are investigated with surface gratingbased distributed feedback (DFB) mechanisms. It is found that an angled cavity incorporating a one dimensional DFB with grating lines parallel to the laser facet offers the simplest solution for single mode and diffraction limited emission in the facet normal direction. A room temperature single mode QCL with the highest output power for wavelengths longer than 10 micron is demonstrated. This structure could be applied to a wide range of laser structures for power scaling along with spectral and spatial beam control. [reprint (PDF)]
 

Page 9 of 16:  Prev << 1 2 3 4 5 6 7 8 9  10 11 12 13 14 15 16  >> Next  (397 Items)