Page 8 of 12:  Prev << 1 2 3 4 5 6 7 8  9 10 11 12  >> Next  (276 Items)

1.  Ridge-Width Dependence on High-Temperature Continuous-Wave Quantum-Cascade Laser Operation
S. Slivken, J.S. Yu, A. Evans, L. Doris, J. David, and M. Razeghi
IEEE Photonics Technology Letters, 16 (3)-- March 1, 2004 ...[Visit Journal]
We report continuous-wave (CW) operation of quantum-cascade lasers (λ=6 μm) up to a temperature of 313 K (40°C). The maximum CW optical output powers range from 212 mW at 288 K to 22 mW at 313 K and are achieved with threshold current densities of 2.21 and 3.11 kA/cm2, respectively, for a high-reflectivity-coated 12-μm-wide and 2-mm-long laser. At room temperature (298 K), the power output is 145 mW at 0.87 A, corresponding to a power conversion efficiency of 1.68%. The maximum CW operating temperature of double-channel ridge waveguide lasers mounted epilayer-up on copper heatsinks is analyzed in terms of the ridge width, which is varied between 12 and 40 μm. A clear trend of improved performance is observed as the ridge narrows. [reprint (PDF)]
 
1.  Low-threshold and high power (~9.0 μm) quantum cascade lasers operating at room temperature
A. Matlis, S. Slivken, A. Tahraoui, K.J. Luo, J. Diaz, Z. Wu, A. Rybaltowski, C. Jelen, and M. Razeghi
Applied Physics Letters 77 (12)-- September 18, 2000 ...[Visit Journal]
We report a low threshold current density and high power for λ ∼ 9 μm AlInAs/GaInAs quantum cascade lasers operating at room temperature. The threshold current density is 1.95 kA/cm² at 300 K and 0.61 kA/cm² at 80 K for 5 μs pulses at 200 Hz repetition rate. The peak output power is 700 mW at room temperature and 1.3 W at 80 K per two facets for cavity length is 3 mm with a stripe width of 20 μm. The characteristic temperature T0 is 185 °C. The slope efficiency is 450 and 800 mW/A at 300 and 80 K, respectively. In continuous wave operation, the output power is more than 150 mW at 80 K and 25 mW at 140 K. This high performance was achieved by improving the material growth and processing technology. [reprint (PDF)]
 
1.  Optimized structure for InGaAsP/GaAs 808nm high power lasers
H. Yi, J. Diaz, L.J. Wang, I. Eliashevich, S. Kim, R. Williams, M. Erdtmann, X. He, E. Kolev and M. Razeghi
Applied Physics Letters 66 (24)-- June 12, 1995 ...[Visit Journal]
The optimized structure for the InGaAsP/GaAs quaternary material lasers (λ=0.808 μm) is investigated for the most efficient high‐power operation through an experiment and theoretical study. A comparative study is performed of threshold current density Jth and differential efficiency ηd dependence on cavity length (L) for two different laser structures with different active layer thickness (150 and 300 Å) as well as for laser structures with different multiple quantum well structures. A theoretical model with a more accurate formulation for minority leakage phenomenon provides explanation for the experimental results and sets general optimization rules for other lasers with similar restrictions on the band gap and refractive index difference between the active layer and the cladding layers. [reprint (PDF)]
 
1.  III-Nitride Optoelectronic Devices: From ultraviolet detectors and visible emitters towards terahertz intersubband devices
M. Razeghi, C. Bayram, Z. Vashaei, E. Cicek and R. McClintock
IEEE Photonics Society 23rd Annual Meeting, November 7-10, 2010, Denver, CO, Proceedings, p. 351-352-- January 20, 2011 ...[Visit Journal]
III-nitride optoelectronic devices are discussed. Ultraviolet detectors and visible emitters towards terahertz intersubband devices are reported. Demonstration of single photon detection efficiencies of 33% in the ultraviolet regime, intersubband energy level as low as in the mid-infrared regime, and GaN-based resonant tunneling diodes with negative resistance of 67 Ω are demonstrated. [reprint (PDF)]
 
1.  High Detectivity InGaAs/InGaP Quantum-Dot Infrared Photodetectors Grown by Low Pressure Metalorganic Chemical Vapor Deposition
J. Jiang, S. Tsao, T. O'Sullivan, W. Zhang, H. Lim, T. Sills, K. Mi, M. Razeghi, G.J. Brown, and M.Z. Tidrow
Virtual Journal of Nanoscale Science and Technology 9 (12)-- March 29, 2004 ...[Visit Journal][reprint (PDF)]
 
1.  High performance LWIR Type-II InAs/GaSb superlattice photodetectors and infrared focal plane array
Y. Wei, A. Hood, A. Gin, V. Yazdanpanah, M. Razeghi and M. Tidrow
SPIE Conference, Jose, CA, Vol. 5732, pp. 309-- January 22, 2005 ...[Visit Journal]
We report on the demonstration of a focal plane array based on Type-II InAs-GaSb superlattices grown on n-type GaSb substrate with a 50% cutoff wavelength at 10 μm. The surface leakage occurring after flip-chip bonding and underfill in the Type-II devices was suppressed using a double heterostructure design. The R0A of diodes passivated with SiO2 was 23 Ω·cm2 after underfill. A focal plane array hybridized to an Indigo readout integrated circuit demonstrated a noise equivalent temperature difference of 33 mK at 81 K, with an integration time of 0.23 ms. [reprint (PDF)]
 
1.  High Power, Room Temperature, Continuous-Wave Operation of Quantum Cascade Lasers Grown by GasMBE
A. Evans, J. David, L. Doris, J.S. Yu, S. Slivken and M. Razeghi
SPIE Conference, Jose, CA, Vol. 5359, pp. 188-- January 25, 2004 ...[Visit Journal]
Very high power continuous-wave quantum cascade lasers are demonstrated in the mid-infrared (3 - 6 µm) wavelength range. λ~6 µm high-reflectivity coated QCLs are demonstrated producing over 370 mW continuous-wave power at room temperature with continuous-wave operation up to 333 K. Advanced heterostructure geometries, including the use of a thick electroplated gold, epilayer-side heat sink and a buried-ridge heterostructure are demonstrated to improve laser performance significantly when combined with narrow laser ridges. Recent significant improvements in CW operation are presented and include the development if narrow (9 µm-wide) ridges for high temperature CW operation. GasMBE growth of the strain-balanced λ~6 µm QCL heterostructure is discussed. X-ray diffraction measurements are presented and compared to computer simulations that indicate excellent layer and compositional uniformity of the structure. [reprint (PDF)]
 
1.  Low-Threshold 7.3 μm Quantum Cascade Lasers Grown by Gas-Source Molecular Beam Epitaxy
S. Slivken, A. Matlis, A. Rybaltowski, Z. Wu and M. Razeghi
Applied Physics Letters 74 (19)-- May 19, 1999 ...[Visit Journal]
We report low-threshold 7.3 μm superlattice-based quantum cascade lasers. The threshold current density is 3.4 kA/cm² at 300 K and 1.25 kA/cm² at 79 K in pulsed mode for narrow (∼20 μm), 2 mm-long laser diodes. The characteristic temperature (T0) is 210 K. The slope efficiencies are 153 and 650 mW/A at 300 and 100 K, respectively. Power output is in excess of 100 mW at 300 K. Laser far-field intensity measurements give divergence angles of 64° and 29° in the growth direction and in the plane of the quantum wells, respectively. Far-field simulations show excellent agreement with the measured results. [reprint (PDF)]
 
1.  High quality AlN and GaN epilayers grown on (00*1) sapphire, (100) and (111) silicon substrates
P. Kung, A. Saxler, X. Zhang, D. Walker, T.C. Wang, I. Ferguson, and M. Razeghi
Applied Physics Letters 66 (22)-- May 29, 1995 ...[Visit Journal]
The growth of high quality AlN and GaN thin films on basal plane sapphire, (100), and (111) silicon substrates is reported using low pressure metalorganic chemical vapor deposition. X-ray rocking curve linewidths of about 100 and 30 arcsec were obtained for AlN and GaN on sapphire, respectively. Room‐temperature optical transmission and photoluminescence (of GaN) measurements confirmed the high quality of the films. The luminescence at 300 and 77 K of the GaN films grown on basal plane sapphire, (100), and (111) silicon was compared. [reprint (PDF)]
 
1.  III-Nitride Optoelectronic Devices: From Ultraviolet Toward Terahertz
M. Razeghi
IEEE Photonics Journal-Breakthroughs in Photonics 2010, Vol. 3, No. 2, p. 263-267-- April 26, 2011 ...[Visit Journal]
We review III-Nitride optoelectronic device technologies with an emphasis on recent breakthroughs. We start with a brief summary of historical accomplishments and then report the state-of-the-art in three key spectral regimes: (1) Ultraviolet (AlGaN-based avalanche photodiodes, single photon detectors, focal plane arrays, and light emitting diodes), (2) Visible (InGaN-based solid state lighting, lasers, and solar cells), and (3) Near-, mid-infrared, and terahertz (AlGaN/GaN-based gap-engineered intersubband devices). We also describe future trends in III-Nitride optoelectronic devices. [reprint (PDF)]
 
1.  Multi-color 4–20 μm In-P-based Quantum Well Infrared Photodetectors
C. Jelen, S. Slivken, G.J. Brown, and M. Razeghi
SPIE Conference, San Jose, CA, -- January 27, 1999 ...[Visit Journal]
In order to tune the wavelength of lattice-matched QWIP detectors over the range from 4 - 20 &mum, new designs are demonstrated for the first time which combine InGaAlAs and InGaAsP layers lattice-matched to InP and grown by gas-source molecular beam epitaxy. We demonstrate the first long-wavelength quantum well infrared photodetectors using the lattice-matched n-doped InGaAlAs/InP materials system. Samples with AlAs mole fractions of 0.0, 0.1, and 0.15 result in cutoff wavelengths of 8.5, 13.3, and 19.4 μm, respectively. A 45 degree facet coupled illumination responsivity of R equals 0.37 A/W and detectivity of D*(λ) equals 1x109 cm·Hz½·W-1 at T = 77 K, for a cutoff wavelength λc equals 13.3 μm have been achieved. Based on the measured intersubband photoresponse wavelength, a null conduction band offset is expected for In0.52Ga0.21Al0.27As/InP heterojunctions. We also report quantum well infrared photodetector structures of In0.53Ga0.47As/Al0.48In0.52As grown on InP substrate with photoresponse at 4 μm suitable for mid-wavelength infrared detectors. These detectors exhibit a constant peak responsivity of 30 mA/W independent of temperature in the range from T equals 77 K to T equals 200 K. Combining these two materials, we report the first multispectral detectors that combine lattice-matched quantum wells of InGaAs/InAlAs and InGaAs/InP. Utilizing two contacts, a voltage tunable detector with (lambda) p equals 8 micrometer at a bias of V equals 5 V and λp equals 4 μm at V equals 10 V is demonstrated. [reprint (PDF)]
 
1.  Reliability in room-temperature negative differential resistance characteristics of low-aluminum contact AlGaN/GaN double-barrier resonant tunneling diodes
C. Bayram, Z. Vashaei, and M. Razeghi
Applied Physics Letters, Vol. 97, No. 18, p. 181109-1-- November 1, 2010 ...[Visit Journal]
AlGaN/GaN resonant tunneling diodes (RTDs), consisting of 20% (10%) aluminum-content in double-barrier (DB) active layer, were grown by metal-organic chemical vapor deposition on freestanding polar (c-plane) and nonpolar (m-plane) GaN substrates. RTDs were fabricated into 35-μm-diameter devices for electrical characterization. Lower aluminum content in the DB active layer and minimization of dislocations and polarization fields increased the reliability and reproducibility of room-temperature negative differential resistance (NDR). Polar RTDs showed decaying NDR behavior, whereas nonpolar ones did not significantly. Averaging over 50 measurements, nonpolar RTDs demonstrated a NDR of 67 Ω, a current-peak-to-valley ratio of 1.08, and an average oscillator output power of 0.52 mW. [reprint (PDF)]
 
1.  Electroluminescence at 375 nm from a Zn0/GaN:Mg/c-Al2O3 heterojunction light emitting diodes
D.J. Rogers, F.Hosseini Teherani, A. Yasan, K. Minder, P. Kung, and M. Razeghi
Applied Physics Letters, 88 (14)-- April 13, 2006 ...[Visit Journal]
n-ZnO/p-GaN:Mg heterojunction light emitting diode (LED) mesas were fabricated on c-Al2O3 substrates using pulsed laser deposition for the ZnO and metal organic chemical vapor deposition for the GaN:Mg. Room temperature (RT) photoluminescence (PL) showed an intense main peak at 375 nm and a negligibly low green emission indicative of a near band edge excitonic emission from a ZnO layer with low dislocation/defect density. The LEDs showed I-V characteristics confirming a rectifying diode behavior and a RT electroluminescence (EL) peaked at about 375 nm. [reprint (PDF)]
 
1.  High-temperature high-power continuous-wave operation of buried heterostructure quantum-cascade lasers
A. Evans, J.S. Yu, J. David, L. Doris, K. Mi, S. Slivken, and M. Razeghi
Applied Physics Letters, 84 (3)-- January 19, 2004 ...[Visit Journal]
We report cw operation of buried heterostructure quantum-cascade lasers (λ=6 µm) using a thick electroplated Au top contact layer and epilayer-up bonding on a copper heat sink up to a temperature of 333 K (60 °C). The high cw optical output powers of 446 mW at 293 K, 372 mW at 298 K, and 30 mW at 333 K are achieved with threshold current densities of 2.19, 2.35, and 4.29 kA/cm2 respectively, for a high-reflectivity-coated, 9-µm-wide and 3-mm-long laser [reprint (PDF)]
 
1.  High Temperature Continuous Wave Operation of ~8 μm Quantum Cascade Lasers
S. Slivken, A. Matlis, C. Jelen, A. Rybaltowski, J. Diaz, and M. Razeghi
Applied Physics Letters 74 (2)-- January 11, 1999 ...[Visit Journal]
We report single-mode continuous-wave operation of a λ∼8 μm quantum cascade laser at 140 K. The threshold current density is 4.2 kA/cm² at 300 K in pulsed mode and 2.5 kA/cm² at 140 K in continuous wave for 2 mm long index-guided laser cavities of 20 μm width. Wide stripe (W ∼ 100 μm), index-guided lasers from the same wafer in pulsed operation demonstrate an average T0 of 210 K with other wafers demonstrating a T0 as high as 290 K for temperatures from 80 to 300 K. This improvement in high-temperature performance is a direct result of three factors: excellent material quality, a low-loss waveguide design, and a low-leakage index-guided laser geometry. [reprint (PDF)]
 
1.  Effect of the spin split-off band on optical absorption in p-type Ga1 xInxAsyP1-y quantum-well infrared detectors
J.R. Hoff, M. Razeghi and G. Brown
Physical Review B 54 (15)-- October 15, 1996 ...[Visit Journal]
Experimental investigations of p-type Ga1-xInxAsyP1-y quantum-well intersubband photodetectors (QWIP’s) led to the discovery of unique features in photoresponse spectra of these devices. In particular, the strong 2–5 μm photoresponse of these QWIP’s was not anticipated based on previous experimental and theoretical results for p-type GaAs/AlxGa1-xAs QWIP’s. Our theoretical modeling of p-type QWIP’s based on the Ga1-xInxAsyP1-y system revealed that the intense short-wavelength photoresponse was due to a much stronger coupling to the spin-orbit split-off components in the continuum than occurs for GaAs/AlxGa1-xAs QWIP’s. Due to the strong influence of the spin split-off band, an eight-band Kane Hamiltonian was required to accurately model the measured photoresponse spectra. This theoretical model is first applied to a standard p-type GaAs/Al0.3Ga0.7As QWIP, and then to a series of GaAs/Ga0.51In0.49P, GaAs/Ga0.62In0.38As0.22P0.78, Ga0.79In0.21As0.59P0.41/Ga0.51In0.49P, and Ga0.79In0.21As0.59P0.41/Ga0.62In0.38As0.22P0.78 QWIP’s. Through this analysis, the insignificance of spin split-off absorption in GaAs/AlxGa1-xAs QWIP’s is verified, as is the dual role of light-hole extended-state and spin split-off hole-extended-state absorption on the spectral shape of Ga1-xInxAsyP1-y QWIP’s. [reprint (PDF)]
 
1.  High performance mid-wavelength quantum dot infrared photodetectors for focal plane arrays
M. Razeghi, H. Lim, S. Tsao, M. Taguchi, W. Zhang and A.A. Quivy
SPIE Conference, San Diego, CA, Vol. 6297, pp. 62970C-- August 13, 2006 ...[Visit Journal]
Quantum dot infrared photodetectors (QDIPs) have recently emerged as promising candidates for detection in the middle wavelength infrared (MWIR) and long wavelength infrared (LWIR) ranges. Here, we report our recent results for mid-wavelength QDIPs grown by low-pressure metalorganic chemical vapor deposition. Three monolayer of In0.68Ga0.32As self-assembled via the Stranski-Krastanov growth mode and formed lens-shaped InGaAs quantum dots with a density around 3×1010 cm-2. The peak responsivity at 77 K was measured to be 3.4 A/W at a bias of -1.9 V with 4.7 µm peak detection wavelength. Focal plane arrays (FPAs) based on these devices have been developed. The preliminary result of FPA imaging is presented. [reprint (PDF)]
 
1.  Influence of Residual Impurity Background on the Non-radiative Recombination Processes in High Purity InAs/GaSb superlattice Photodiodes
E.C.F. da Silva, D. Hoffman, A. Hood, B. Nguyen, P.Y. Delaunay and M. Razeghi
Applied Physics Letters, 89 (24)-- December 11, 2006 ...[Visit Journal]
The influence of the impurity background on the recombination processes in type-II InAs/GaSb superlattice photodiodes with a cutoff wavelength of approximately 4.8 μm was investigated by electroluminescence measurements. Using an iterative fitting procedure based on the dependence of the quantum efficiency of the electroluminescence on the injection current, the Auger and Shockley-Read-Hall lifetimes were determined [reprint (PDF)]
 
1.  InAs/InAs1-XSbx Type-II Superlattices for High-Performance Long-Wavelength Infrared Medical Thermography
Manijeh Razeghi, Abbas Haddadi, Guanxi Chen, Romain Chevallier and Ahn Minh Hoang
ECS Trans. 2015 66(7): 109-116-- June 1, 2015 ...[Visit Journal]
We present the demonstration of a high-performance long-wavelength infrared nBn photodetectors based on InAs/InAs1-xSbx type-II superlattices on GaSb substrate. The photodetector’s 50% cut-off wavelength was ~10 μm at 77K. The photodetector with a 6 μm-thick absorption region exhibited a peak responsivity of 4.47 A/W at 7.9 μm, corresponding to a quantum efficiency of 54% at -90 mV applied bias voltage under front-side illumination and without any anti-reflection coating. With an R×A of 119 Ω·cm² and a dark current density of 4.4×10-4 A/cm² under -90 mV applied bias voltage at 77 K, the photodetector exhibited a specific detectivity of 2.8×1011 Jones. This photodetector opens a new horizon for making infrared imagers with higher sensitivity for medical thermography.
 
1.  High power photonic crystal distributed feedback quantum cascade lasers emitting at 4.5 micron
B. Gokden, S. Slivken and M. Razeghi
SPIE Proceedings, San Francisco, CA (January 22-28, 2010), Vol. 7608, p. 760806-1-- January 22, 2010 ...[Visit Journal]
Quantum cascade lasers possess very small linewidth enhancement factor, which makes them very prominent candidates for realization of high power, nearly diffraction limited and single mode photonic crystal distributed feedback broad area lasers in the mid-infrared frequencies. In this paper, we present room temperature operation of a two dimensional photonic crystal distributed feedback quantum cascade laser emitting at 4.5 µm. peak power up to ~0.9 W per facet is obtained from a 2 mm long laser with 100 µm cavity width at room temperature. The observed spectrum is single mode with a very narrow linewidth. Far-field profile has nearly diffraction limited single lobe with full width at half maximum of 3.5 degree normal to the facet. The mode selection and power output relationships are experimentally established with respect to different cavity lengths for photonic crystal distributed feedback quantum cascade lasers. [reprint (PDF)]
 
1.  InGaAs/InGaP Quantum-Dot Photodetector with a High Detectivity
H. Lim, S. Tsao, M. Taguchi, W. Zhang, A. Quivy and M. Razeghi
SPIE Conference, San Jose, CA, Vol. 6127, pp. 61270N-- January 23, 2006 ...[Visit Journal]
Quantum-dot infrared photodetectors (QDIPs) have recently been considered as strong candidates for numerous applications such as night vision, space communication, gas analysis and medical diagnosis involving middle and long wavelength infrared (MWIR and LWIR respectively) operation. This is due to their unique properties arising from their 3-dimensional confinement potential that provides a discrete density of states. They are expected to outperform quantum-well infrared photodetectors (QWIPs) as a consequence of their natural sensitivity to normal incident radiation, their higher responsivity and their higher-temperature operation. So far, most of the QDIPs reported in the literature were based on the InAs/GaAs system and were grown by molecular beam epitaxy (MBE). Here, we report on the growth of a high detectivity InGaAs/InGaP QDIP grown on a GaAs substrate using low-pressure metalorganic chemical vapor deposition (MOCVD). [reprint (PDF)]
 
1.  High-Performance InP-Based Mid-IR Quantum Cascade Lasers
M. Razeghi
IEEE Journal of Selected Topics in Quantum Electronics, Vol. 15, No. 3, May-June 2009, p. 941-951.-- June 5, 2009 ...[Visit Journal]
Quantum cascade lasers (QCLs) were once considered as inefficient devices, as the wall-plug efficiency (WPE) was merely a few percent at room temperature. But this situation has changed in the past few years, as dramatic enhancements to the output power andWPE have been made for InP-based mid-IR QCLs. Room temperature continuous-wave (CW) output power as high as 2.8 W and WPE as high as 15% have now been demonstrated for individual devices. Along with the fundamental exploration of refining the design and improving the material quality, a consistent determination of important device performance parameters allows for strategically addressing each component that can be improved potentially. In this paper, we present quantitative experimental evidence backing up the strategies we have adopted to improve the WPE for QCLs with room temperature CW operation. [reprint (PDF)]
 
1.  Cavity Length Effects of High-Temperature High-Power Continuous Wave Characteristics in Quantum-Cascade Lasers
J.S. Yu, A. Evans, J. David, L. Doris, S. Slivken, and M. Razeghi
Applied Physics Letters, 83 (25)-- December 22, 2003 ...[Visit Journal]
We report the cavity-length dependent high-temperature high-power cw characteristics in λ=6 µm quantum-cascade lasers with a thick electroplated Au top contact layer. For a high-reflectivity (HR) coated 15 µm wide and 3 mm long laser, the cw operation is achieved up to 313 K (40 °C) with an output power of 17 mW. At 298 K, a very high cw output power of 213 mW is obtained for a HR coated 15 µm wide and 4 mm long laser. Thermal resistance is analyzed at temperatures above 283 K for HR coated lasers with different cavities. [reprint (PDF)]
 
1.  8.5 μm Room Temperature Quantum Cascade Lasers Grown by Gas-Source Molecular Beam Epitaxy
S. Slivken and M. Razeghi
SPIE Conference, San Jose, CA, -- January 28, 1998 ...[Visit Journal]
We report room-temperature pulsed-mode operation of 8.5 μm quantum cascade lasers grown by gas-source molecular beam epitaxy. The theory necessary to understand the operation of the laser is presented and current problems are analyzed. Very good agreement is shown to exist between theoretical and experimental emission wavelengths. The high- temperature operation is achieved with 1 μs pulses at a repetition rate of 200 Hz. Peak output power in these conditions is in excess of 700 mW per 2 facets at 79 K and 25 mW at 300 K. Threshold current as a function of temperature shows an exponential dependence with T0 equals 188 K for a 1.5 mm cavity. [reprint (PDF)]
 
1.  III-Nitride photon counting avalanche photodiodes
R. McClintock, J.L. Pau, K. Minder, C. Bayram and M. Razeghi
SPIE Conference, January 20-25, 2008, San Jose, CA Proceedings – Quantum Sensing and Nanophotonic Devices V, Vol. 6900, p. 69000N-1-11.-- February 1, 2008 ...[Visit Journal]
In order for solar and visible blind III-Nitride based photodetectors to effectively compete with the detective performance of PMT there is a need to develop photodetectors that take advantage of low noise avalanche gain. Furthermore, in certain applications, it is desirable to obtain UV photon counting performance. In this paper, we review the characteristics of III-nitride visible-blind avalanche photodetectors (APDs), and present the state-of-the-art results on photon counting based on the Geiger mode operation of GaN APDs. The devices are fabricated on transparent AlN templates specifically for back-illumination in order to enhance hole-initiated multiplication. The spectral response and Geiger-mode photon counting performance are analyzed under low photon fluxes, with single photon detection capabilities being demonstrated in smaller devices. Other major technical issues associated with the realization of high-quality visible-blind APDs and Geiger mode APDs are also discussed in detail and solutions to the major problems are described where available. Finally, future prospects for improving upon the performance of these devices are outlined. [reprint (PDF)]
 

Page 8 of 12:  Prev << 1 2 3 4 5 6 7 8  9 10 11 12  >> Next  (276 Items)