Page 8 of 11:  Prev << 1 2 3 4 5 6 7 8  9 10 11  >> Next  (258 Items)

1.  Angled cavity broad area quantum cascade lasers
Y. Bai, S. Slivken, Q.Y. Lu, N. Bandyopadhyay, and M. Razeghi
Applied Physics Letters, Vol. 100, Np. 8, p. 081106-1-- August 20, 2012 ...[Visit Journal]
Angled cavity broad area quantum cascade lasers (QCLs) are investigated with surface gratingbased distributed feedback (DFB) mechanisms. It is found that an angled cavity incorporating a one dimensional DFB with grating lines parallel to the laser facet offers the simplest solution for single mode and diffraction limited emission in the facet normal direction. A room temperature single mode QCL with the highest output power for wavelengths longer than 10 micron is demonstrated. This structure could be applied to a wide range of laser structures for power scaling along with spectral and spatial beam control. [reprint (PDF)]
 
1.  High operating temperature MWIR photon detectors based on Type II InAs/GaSb superlattice
M. Razeghi, S. Abdollahi Pour, E.K. Huang, G. Chen, A. Haddadi and B.M. Nguyen
SPIE Proceedings, Infrared Technology and Applications XXXVII, Orlando, FL, Vol. 8012, p. 80122Q-1-- April 26, 2011 ...[Visit Journal]
Recent efforts have been paid to elevate the operating temperature of Type II superlattice Mid Infrared photon detectors. Using M-structure superlattice, novel device architectures have been developed, resulting in significant improvement of the device performances. In this paper, we will compare different photodetector architectures and discuss the optimization scheme which leads to almost one order of magnitude of improvement to the electrical performance. At 150K, single element detectors exhibit a quantum efficiency above 50%, and a specific detectivity of 1.05x10(12) cm.Hz(1/2)/W. BLIP operation with a 300K background and 2π FOV can be reached with an operating temperature up to 180K. High quality focal plane arrays were demonstrated with a noise equivalent temperature difference (NEDT) of 11mK up to 120K. Human body imaging is achieved at 150K with NEDT of 150mK. [reprint (PDF)]
 
1.  Investigation of impurities in type-II InAs/GaSb superlattices via capacitance-voltage measurement
G. Chen, A. M. Hoang, S. Bogdanov, A. Haddadi, P. R. Bijjam, B.-M. Nguyen, and M. Razeghi
Applied Physics Letters 103, 033512 (2013)-- July 17, 2013 ...[Visit Journal]
Capacitance-voltage measurement was utilized to characterize impurities in the non-intentionally doped region of Type-II InAs/GaSb superlattice p-i-n photodiodes. Ionized carrier concentration versus temperature dependence revealed the presence of a kind of defects with activation energy below 6 meV and a total concentration of low 1015 cm−3. Correlation between defect characteristics and superlattice designs was studied. The defects exhibited a p-type behavior with decreasing activation energy as the InAs thickness increased from 7 to 11 monolayers, while maintaining the GaSb thickness of 7 monolayers. With 13 monolayers of InAs, the superlattice became n-type and the activation energy deviated from the p-type trend. [reprint (PDF)]
 
1.  High power operation of λ ∼ 5.2–11 μm strain balanced quantum cascade lasers based on the same material composition
N. Bandyopadhyay, Y. Bai, S. Slivken, and M. Razeghi
Appl. Phys. Lett. 105, 071106 (2014)-- August 20, 2014 ...[Visit Journal]
A technique based on composite quantum wells for design and growth of strain balanced Al0.63In0.37As/Ga0.35In0.65As/Ga0.47In0.53As quantum cascade lasers (QCLs) by molecular beam epitaxy (MBE), emitting in 5.2–11 μm wavelength range, is reported. The strained Al0.63In0.37As provides good electron confinement at all wavelengths, and strain balancing can be achieved through composite wells of Ga0.35In0.65As/Ga0.47In0.53As for different wavelength. The use of these fixed composition materials can avoid the need for frequent calibration of a MBE reactor to grow active regions with different strain levels for different wavelengths. Experimental results for QCLs emitting at 5.2, 6.7, 8.2, 9.1, and 11 μm exhibit good wall plug efficiencies and power across the whole wavelength range. It is shown that the emission wavelength can be predictably changed using the same design template. These lasers are also compatible with a heterogeneous broadband active region, consisting of multiple QCL cores, which can be produced in a single growth run. [reprint (PDF)]
 
1.  Semiconductor ultraviolet detectors
M. Razeghi and A. Rogalski
Journal of Applied Physics Applied Physics Review 79 (10)-- May 15, 1996 ...[Visit Journal]
In this review article a comprehensive analysis of the developments in ultraviolet (UV) detector technology is described. At the beginning, the classification of UV detectors and general requirements imposed on these detectors are presented. Further considerations are restricted to modern semiconductor UV detectors, so the basic theory of photoconductive and photovoltaic detectors is presented in a uniform way convenient for various detector materials. Next, the current state of the art of different types of semiconductor UV detectors is presented. Hitherto, the semiconductor UV detectors have been mainly fabricated using Si. Industries such as the aerospace, automotive, petroleum, and others have continuously provided the impetus pushing the development of fringe technologies which are tolerant of increasingly high temperatures and hostile environments. As a result, the main efforts are currently directed to a new generation of UV detectors fabricated from wide band-gap semiconductors the most promising of which are diamond and AlGaN. The latest progress in development of AlGaN UV detectors is finally described in detail. [reprint (PDF)]
 
1.  Background limited long wavelength infrared type-II InAs/GaSb superlattice photodiodes operating at 110 K
B.M. Nguyen, D. Hoffman, E.K. Huang, P.Y. Delaunay, and M. Razeghi
Applied Physics Letters, Vol. 93, No. 12, p. 123502-1-- September 22, 2008 ...[Visit Journal]
The utilization of the P+-pi-M-N+ photodiode architecture in conjunction with a thick active region can significantly improve long wavelength infrared Type-II InAs/GaSb superlattice photodiodes. By studying the effect of the depletion region placement on the quantum efficiency in a thick structure, we achieved a topside illuminated quantum efficiency of 50% for an N-on-P diode at 8.0 µm at 77 K. Both the double heterostructure design and the application of polyimide passivation greatly reduce the surface leakage, giving an R0A of 416 Ω·cm2 for a 1% cutoff wavelength of 10.52 µm, a Shot–Johnson detectivity of 8.1×1011 cm·Hz½/W at 77 K, and a background limited operating temperature of 110 K with 300 K background. [reprint (PDF)]
 
1.  Quantum cascade lasers that emit more light than heat
Y. Bai, S. Slivken, S. Kuboya, S.R. Darvish and M. Razeghi
Nature Photonics, February 2010, Vol. 4, p. 99-102-- February 1, 2010 ...[Visit Journal]
For any semiconductor lasers, the wall plug efficiency, that is, the portion of the injected electrical energy that can be converted into output optical energy, is one of the most important figures of merit. A device with a higher wall plug efficiency has a lower power demand and prolonged device lifetime due to its reduced self-heating. Since its invention, the power performance of the quantum cascade laser has improved tremendously. However, although the internal quantum efficiency can be engineered to be greater than 80% at low temperatures, the wall plug efficiency of a quantum cascade laser has never been demonstrated above 50% at any temperature. The best wall plug efficiency reported to date is 36% at 120 K. Here, we overcome the limiting factors using a single-well injector design and demonstrate 53% wall plug efficiency at 40 K with an emitting wavelength of 5 µm. In other words, we demonstrate a quantum cascade laser that produces more light than heat. [reprint (PDF)]
 
1.  Comparison of type-II superlattice and HgCdTe infrared detector technologies
Jagmohan Bajaj; Gerry Sullivan; Don Lee; Ed Aifer; Manijeh Razeghi
Proc. SPIE 6542, Infrared Technology and Applications XXXIII, 65420B (May 14, 2007)-- May 14, 2007 ...[Visit Journal]
Performance of HgCdTe detector technology surpasses all others in the mid-wave and long-wave infrared spectrum. This technology is relatively mature with current effort focused on improving uniformity, and demonstrating increased focal plane array (FPA) functionality. Type-II superlattice (InAs-GaSb and related alloys) detector technology has seen rapid progress over the past few years. The merits of the superlattice material system rest on predictions of even higher performance than HgCdTe and of engineering advantages. While no one has demonstrated Type-II superlattice detectors with performance superior to HgCdTe detectors, the difference in performance between these two technologies is decreasing. In this paper, we review the status and highlight relative merits of both HgCdTe and Type-II superlattice based detector technologies. [reprint (PDF)]
 
1.  Current status and potential of high power mid-infrared intersubband lasers
S. Slivken, Y. Bai, B. Gokden, S.R. Darvish and M. Razeghi
SPIE Proceedings, San Francisco, CA (January 22-28, 2010), Vol. 7608, p. 76080B-1-- January 22, 2010 ...[Visit Journal]
Some of the recent advances in high power quantum cascade laser development will be reviewed in this paper. Research areas explored include short wavelength (λ <4 µm) lasers, high performance strain-balanced heterostructures, and high power long wavelength (7< λ< 16 µm) lasers. Near λ=4.5 µm, highlights include demonstration of 18% continuous wave wallplug efficiency at room temperature, 53% pulsed wallplug efficiency at 40 K, and 120 W of peak power output from a single device at room temperature. Near λ ~10 µm, up to 0.6 W of continuous output power at room temperature has also been demonstrated, with pulsed efficiencies up to 9%. [reprint (PDF)]
 
1.  Substrate removal for high quantum efficiency back side illuminated type-II InAs/GaSb photodetectors
P.Y. Delaunay, B.M. Nguyen, D. Hoffman and M. Razeghi
Applied Physics Letters, Vol. 91, No. 23, p. 231106-- December 3, 2007 ...[Visit Journal]
A substrate removal technique using an InAsSb etch stop layer improves by a factor of 2 the quantum efficiency of back side illuminated type-II InAs/GaSb superlattice photodetectors. After etching of the GaSb substrate with a CrO3 based solution, the quantum efficiency of the diodes presents Fabry-Pérot oscillations averaging at 56%. Due to the confinement of the infrared light inside the devices, the quantum efficiency for certain devices reaches 75% at 8.5 µm. The implementation of this new technique to a focal plane array resulted in a decrease of the integration time from 0.23 to 0.08 ms. [reprint (PDF)]
 
1.  High-performance InAs quantum-dot infrared photodetectors grown on InP substrate operating at room temperature
H. Lim, S. Tsao, W. Zhang, and M. Razeghi
Applied Physics Letters, Vol. 90, No. 13, p. 131112-1-- March 26, 2007 ...[Visit Journal]
The authors report a room temperature operating InAs quantum-dot infrared photodetector grown on InP substrate. The self-assembled InAs quantum dots and the device structure were grown by low-pressure metal-organic chemical vapor deposition. The detectivity was 2.8×1011 cm·Hz1/2/W at 120 K and a bias of −5 V with a peak detection wavelength around 4.1 μm and a quantum efficiency of 35%. Due to the low dark current and high responsivity, a clear photoresponse has been observed at room temperature, which gives a detectivity of 6.7×107 cm·Hz1/2/W. [reprint (PDF)]
 
1.  Passivation of Type-II InAs/GaSb superlattice photodetectors
A. Hood, Y. Wei, A. Gin, M. Razeghi, M. Tidrow, and V. Nathan
SPIE Conference, Jose, CA, Vol. 5732, pp. 316-- January 22, 2005 ...[Visit Journal]
Leakage currents limit the operation of high performance Type-II InAs/GaSb superlattice photodiode technology. Surface leakage current becomes a dominant limiting factor, especially at the scale of a focal plane array pixel (< 25 µm) and must be addressed. A reduction of the surface state density, unpinning the Fermi level at the surface, and appropriate termination of the semiconductor crystal are all aims of effective passivation. Recent work in the passivation of Type-II InAs\GaSb superlattice photodetectors with aqueous sulfur-based solutions has resulted in increased R0A products and reduced dark current densities by reducing the surface trap density. Additionally, photoluminescence of similarly passivated Type-II InAs/GaSb superlattice and InAs GaSb bulk material will be discussed. [reprint (PDF)]
 
1.  Beryllium compensation doping of InAs/GaSb infrared superlattice photodiodes
D. Hoffman, B.M. Nguyen, P.Y. Delaunay, A. Hood, M. Razeghi and J. Pellegrino
Applied Physics Letters, Vol. 91, No. 14, p. 143507-1-- October 1, 2007 ...[Visit Journal]
Capacitance-voltage measurements in conjunction with dark current measurements on InAs/GaSb long wavelength infrared superlattice photodiodes grown by molecular-beam epitaxy on GaSb substrates are reported. By varying the beryllium concentration in the InAs layer of the active region, the residually n-type superlattice is compensated to become slightly p-type. By adjusting the doping, the dominant dark current mechanism can be varied from diffusion to Zener tunneling. Minimization of the dark current leads to an increase of the zero-bias differential resistance from less than 4 to 32 cm2 for a 100% cutoff of 12.05 µm [reprint (PDF)]
 
1.  Optoelectronic Devices Based on III-V Compound Semiconductors Which Have Made a Major Scientific and Technological Impact in the Past 20 Years
M. Razeghi
IEEE Journal of Selected Topics in Quantum Electronics 6 (6), pp.1344 - 1354 -- November 1, 2000 ...[Visit Journal]
This paper reviews some of our pioneering contributions to the field of III–V compound semiconductor materials and low-dimensional optoelectronic devices. These contributions span from the ultraviolet (200 nm) up to the far-infrared (25 μm) portion of the electromagnetic spectrum and have had a major scientific and technological impact on the semiconductor world in the past 20 years. [reprint (PDF)]
 
1.  High Power 280 nm AlGaN Light Emitting Diodes Based on an Asymmetric Single Quantum Well
K. Mayes, A. Yasan, R. McClintock, D. Shiell, S.R. Darvish, P. Kung, and M. Razeghi
Applied Physics Letters, 84 (7)-- February 16, 2004 ...[Visit Journal]
We demonstrate high-power AlGaN-based ultraviolet light-emitting diodes grown on sapphire with an emission wavelength of 280 nm using an asymmetric single-quantum-well active layer configuration on top of a high-quality AlGaN/AlN template layer. An output power of 1.8 mW at a pulsed current of 400 mA was achieved for a single 300 µm×300 µm diode. This device reached a high peak external quantum efficiency of 0.24% at 40 mA. An array of four diodes produced 6.5 mW at 880 mA of pulsed current. [reprint (PDF)]
 
1.  High-performance InP-based midinfrared quantum cascade lasers at Northwestern University
M. Razeghi, Y. Bai, S. Slivken, and S.R. Darvish
SPIE Optical Engineering, Vol. 49, No. 11, November 2010, p. 111103-1-- November 15, 2010 ...[Visit Journal]
We present recent performance highlights of midinfrared quantum cascade lasers (QCLs) based on an InP material system. At a representative wavelength around 4.7 µm, a number of breakthroughs have been achieved with concentrated effort. These breakthroughs include watt-level continuous wave operation at room temperature, greater than 50% peak wall plug efficiency at low temperatures, 100-W-level pulsed mode operation at room temperature, and 10-W-level pulsed mode operation of photonic crystal distributed feedback quantum cascade lasers at room temperature. Since the QCL technology is wavelength adaptive in nature, these demonstrations promise significant room for improvement across a wide range of mid-IR wavelengths. [reprint (PDF)]
 
1.  Polarity inversion of Type-II InAs/GaSb superlattice photodiodes
B.M. Nguyen, D. Hoffman, P.Y. Delaunay, M. Razeghi and V. Nathan
Applied Physics Letters, Vol. 91, No. 10, p. 103503-1-- September 3, 2007 ...[Visit Journal]
The authors demonstrated the realization of p-on-n Type-II InAs/GaSb superlattice photodiodes. Growth condition for high quality InAsSb layer lattice matched to GaSb was established for the use of an effective n-contact layer. By studying the effect of various GaSb capping layer thicknesses on the optical and electrical performances, an optimized thickness of 160 nm was determined. In comparison to as grown n-on-p superlattice photodiodes, this inverted design of p on n has shown similar quality. Finally, by analyzing Fabry-Perot interference fringes in the front side illuminated spectral measurement, the refractive index of the superlattice was determined to be approximately 3.8. [reprint (PDF)]
 
1.  Photovoltaic MWIR type-II superlattice focal plane array on GaAs substrate
E.K. Huang, P.Y. Delaunay, B.M. Nguyen, S. Abdoullahi-Pour, and M. Razeghi
IEEE Journal of Quantum Electronics (JQE), Vol. 46, No. 12, p. 1704-1708-- December 1, 2010 ...[Visit Journal]
Recent improvements in the performance of Type-II superlattice (T2SL) photodetectors has spurred interest in developing low cost and large format focal plane arrays (FPA) on this material system. Due to the limitations of size and cost of native GaSb substrates, GaAs is an attractive alternative with 8” wafers commercially available, but is 7.8% lattice mismatched to T2SL. In this paper, we present a photovoltaic T2SL 320 x 256 focal plane array (FPA) in the MWIR on GaAs substrate. The FPA attained a median noise equivalent temperature difference (NEDT) of 13 mK and 10mK (F#=2.3) with integration times of 10.02 ms and 19.06 ms respectively at 67 K. [reprint (PDF)]
 
1.  Thermal Conductivity of InAs/GaSb Type II Superlattice
C. Zhou, B.M. Nguyen, M. Razeghi and M. Grayson
Journal of Electronic Materials, Vol. 41, No. 9, p. 2322-2325-- August 1, 2012 ...[Visit Journal]
The cross-plane thermal conductivity of a type II InAs/GaSb superlattice(T2SL) is measured from 13 K to 300 K using the 3x method. Thermal conductivity is reduced by up to two orders of magnitude relative to the GaSb bulk substrate. The low thermal conductivity of around 1 W/m K to 8 W/m K may serve as an advantage for thermoelectric applications at low temperatures, while presenting a challenge for T2SL interband cascade lasers and highpower photodiodes. We describe a power-law approximation to model nonlinearities in the thermal conductivity, resulting in increased or decreased peak temperature for negative or positive exponents, respectively. [reprint (PDF)]
 
1.  Dark current suppression in Type-II InAs/GaSb superlattice long wavelength infrared photodiodes with M-structure barrier
B.M. Nguyen, D. Hoffman, P.Y. Delaunay, and M. Razeghi
Applied Physics Letters, Vol. 91, No. 16, p. 163511-1-- October 15, 2007 ...[Visit Journal]
We presented an alternative design of Type-II superlattice photodiodes with the insertion of a mid-wavelength infrared M-structure AlSb/GaSb/InAs/GaSb/AlSb superlattice for the reduction of dark current. The M-structure superlattice has a larger carrier effective mass and a greater band discontinuity as compared to the standard Type-II superlattices at the valence band. It acts as an effective medium that weakens the diffusion and tunneling transport at the depletion region. As a result, a 10.5 µm cutoff Type-II superlattice with 500 nm M-superlattice barrier exhibited a R0A of 200 cm2 at 77 K, approximately one order of magnitude higher than the design without the barrier. The quantum efficiency of such structures does not show dependence on either barrier thickness or applied bias. [reprint (PDF)]
 
1.  Advanced Monolithic Quantum Well Infrared Photodetector Focal Plane Array Integrated with Silicon Readout Integrated Circuit
J. Jiang, S. Tsao, K. Mi, M. Razeghi, G.J. Brown, C. Jelen and M.Z. Tidrow
Infrared Physics and Technology, 46 (3)-- January 1, 2005 ...[Visit Journal]
Today, most infrared focal plane arrays (FPAs) utilize a hybrid scheme. To achieve higher device reliability and lower cost, monolithic FPAs with Si based readout integrated circuits (ROICs) are the trend of the future development. In this paper, two approaches for monolithic FPAs are proposed: double sided integration and selective epitaxy integration. For comparison, the fabrication process for hybrid quantum well infrared photodetectors (QWIP) FPAs are also described. Many problems, such as the growth of QWIPs on Si substrate and processing incompatibility between Si and III–V semiconductors, need to be solved before monolithic FPAs can be realized. Experimental work on GaInAs/InP QWIP-on-Si is given in this paper. A record high detectivity of 2.3×109 jones was obtained for one QWIP-on-Si detector at 77 K. [reprint (PDF)]
 
1.  Molecular Beam Epitaxial Growth of High Quality InSb for p-i-n Photodetectors
G. Singh, E. Michel, C. Jelen, S. Slivken, J. Xu, P. Bove, I. Ferguson, and M. Razeghi
Journal of Vacuum Science and Technology B, 13 (2)-- March 1, 1995 ...[Visit Journal]
The InSb infrared photodetectors grown heteroepitaxially on Si substrates by molecular beam epitaxy (MBE) are reported. Excellent InSb material quality is obtained on 3-inch Si substrates (with a GaAs predeposition) as confirmed by structural, optical, and electrical analysis. InSb infrared photodetectors on Si substrates that can operate from 77 K to room temperature have been demonstrated. The peak voltage-responsitivity at 4 μm is about 1.0×103 V/W and the corresponding Johnson-noise-limited detectivity is calculated to be 2.8×1010 cm·Hz½/W. This is the first important stage in developing InSb detector arrays or monolithic focal plane arrays (FPAs) on silicon. The development of this technology could provide a challenge to traditional hybrid FPA's in the future. [reprint (PDF)]
 
1.  Modeling of Type-II InAs/GaSb Superlattices Using Empirical Tight-Binding Method and Interface Engineering
Y. Wei and M. Razeghi
Physical Review B, 69 (8)-- February 15, 2004 ...[Visit Journal]
We report the most recent work on the modeling of type-II InAs/GaSb superlattices using the empirical tight binding method in an sp3s* basis. After taking into account the antimony segregation in the InAs layers, the modeling accuracy of the band gap has been improved. Our calculations agree with our experimental results within a certain growth uncertainty. In addition, we introduce the concept of GaxIn1-x type interface engineering in order to reduce the lattice mismatch between the superlattice and the GaSb (001) substrate to improve the overall superlattice material quality. [reprint (PDF)]
 
1.  Type-II Antimonide-based Superlattices for the Third Generation Infrared Focal Plane Arrays
Manijeh Razeghi, Edward Kwei-wei Huang, Binh-Minh Nguyen, Siamak Abdollahi Pour, and Pierre-Yves Delaunay
SPIE Proceedings, Infrared Technology and Applications XXXVI, Vol. 7660, pp. 76601F-- May 10, 2010 ...[Visit Journal]
In recent years, the Type-II superlattice (T2SL) material platform has seen incredible growth in the understanding of its material properties which has lead to unprecedented development in the arena of device design. Its versatility in band-structure engineering is perhaps one of the greatest hallmarks of the T2SL that other material platforms are lacking. In this paper, we discuss advantages of the T2SL, specifically the M-structure T2SL, which incorporates AlSb in the traditional InAs/GaSb superlattice. Using the M-structure, we present a new unipolar minority electron detector coined as the p-M-p, the letters which describe the composition of the device. Demonstration of this device structure with a 14 μm cutoff attained a detectivity of 4x1010 Jones (-50 mV) at 77 K. As device performance improves year after year with novel design contributions from the many researchers in this field, the natural progression in further enabling the ubiquitous use of this technology is to reduce cost and support the fabrication of large infrared imagers. In this paper, we also discuss the use of GaAs substrates as an enabling technology for third generation imaging on T2SLs. Despite the 7.8% lattice mismatch between the native GaSb and alternative GaAs substrates, T2SL photodiodes grown on GaAs at the MWIR and LWIR have been demonstrated at an operating temperature of 77 K [reprint (PDF)]
 
1.  High-power, room-temperature and continuous-wave operation of distributed-feedback quantum-cascade lasers at λ = 4.8 µm
J.S. Yu, S. Slivken, S.R. Darvish, A. Evans, B. Gokden and M. Razeghi
Applied Physics Letters, 87 (4)-- July 25, 2005 ...[Visit Journal]
The authors present high-power continuous-wave (cw) operation of distributed-feedback quantum-cascade lasers. Continuous-wave output powers of 56 mW at 25 °C and 15 mW at 40 °C are obtained. Single-mode emission near 7.8 µm with a side-mode suppression ratio of >=30 dB and a tuning range of 2.83 cm−1 was obtained between 15 and 40 °C. The device exhibits no beam steering with a full width at half maximum of 27.4° at 25 °C in cw mode. [reprint (PDF)]
 

Page 8 of 11:  Prev << 1 2 3 4 5 6 7 8  9 10 11  >> Next  (258 Items)