About the CQD | News | Conferences | Publications | Books | Research | People | History | Patents | Contact | Channel | |
Page 7 of 28: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 >> Next (676 Items)
3. | Fabrication of nanostructured heterojunction LEDs using self-forming Moth-Eye Arrays of n-ZnO Nanocones Grown on p-Si (111) by PLD D.J. Rogers; V.E. Sandana; F. Hosseini Teherani; M. Razeghi; H.-J. Drouhin Proc. SPIE 7217, Zinc Oxide Materials and Devices IV, 721708 (February 17, 2009)-- February 17, 2009 ...[Visit Journal] ZnO nanostructures were grown on Si (111) substrates using Pulsed Laser Deposition. The impact of growth temperature (Ts) and Ar pressure (PAr) on the morphology, crystal structure and photoluminescence was investigated. Various types of ZnO nanostructures were obtained. Self-forming arrays of vertically-aligned nanorods and nanocones with strong c-axis crystallographic orientation and good optical response were obtained at higher Ts. The nanocone, or "moth-eye" type structures were selected for LED development because of their graded effective refractive index, which could facilitate improved light extraction at the LED/air interface. Such moth-eye arrays were grown on p-type Si (111) substrates to form heteroj unction LEDs with the n-type ZnO nanocones acting as an active component of the device. These nanostructured LEDs gave rectifying I/V characteristics with a threshold voltage of about 6V and a blueish-white electroluminescence, which was clearly visible to the naked eye. [reprint (PDF)] |
3. | High-Performance Type-II InAs/GaSb Superlattice Photodiodes with Cutoff Wavelength Around 7 µm Y. Wei, A. Hood, H. Yau, V. Yazdanpanah, M. Razeghi, M.Z. Tidrow and V. Nathan Applied Physics Letters, 86 (9)-- February 28, 2005 ...[Visit Journal] We report the most recent result in the area of type-II InAs/GaSb superlattice photodiodes that have a cutoff wavelength around 7 µm at 77 K. Superlattice with a period of 40 Å lattice matched to GaSb was realized using GaxIn1–x type interface engineering technique. Compared with significantly longer period superlattices, we have reduced the dark current density under reverse bias dramatically. For a 3 µm thick structure, using sulfide-based passivation, the dark current density reached 2.6×10–5 A/cm2 at –3 V reverse bias at 77 K. At this temperature the photodiodes have R0A of 9300 Ω·cm2 and a thermally limited zero bias detectivity of 1×1012 cm·Hz½/W. The 90%–10% cutoff energy width was only 16.5 meV. The devices did not show significant dark current change at 77 K after three months storage in the atmosphere. [reprint (PDF)] |
3. | Stable single mode terahertz semiconductor sources at room temperature M. Razeghi 2011 International Semiconductor Device Research Symposium, ISDRS [6135180] (2011).-- December 7, 2011 ...[Visit Journal] Terahertz (THz) range is an area of the electromagnetic spectra which has lots of applications but it suffers from the lack of simple working devices which can emit THz radiation, such as the high performance mid-infrared (mid-IR) quantum cascade lasers (QCLs) based on InP technology. The applications for the THz can be found in astronomy and space research, biology imaging, security, industrial inspection, etc. Unlike THz QCLs based on the fundamental oscillators, which are limited to cryogenic operations, semiconductor THz sources based on nonlinear effects of mid-IR QCLs do not suffer from operating temperature limitations, because mid-IR QCLs can operate well above room temperature. THz sources based on difference frequency generation (DFG) utilize nonlinear properties of asymmetric quantum structures, such as QCL structures. [reprint (PDF)] |
3. | Optoelectronic Integrated Circuits (OEICs) for Next Generation WDM Communications M. Razeghi and S. Slivken SPIE Conference, Boston, MA, -- July 29, 2002 ...[Visit Journal] This paper reviews some of the key enabling technologies for present and future optoelectronic intergrated circuits. This review concentrates mainly on technology for lasers, waveguides, modulators, and fast photodetectors as the basis for next generation communicatiosn systems. Emphasis is placed on intergrations of components and mass production of a generic intelligent tranciever. [reprint (PDF)] |
3. | Ga2O3 Metal-oxide-semiconductor Field Effect Transistors on Sapphire Substrate by MOCVD Ji-Hyeon Park, Ryan McClintock and Manijeh Razeghi Semiconductor Science and Technology, Volume 34, Number 8-- June 26, 2019 ...[Visit Journal] Si-doped gallium oxide (Ga2O3) thin films were grown on a c-plane sapphire substrate by metalorganic chemical vapor deposition (MOCVD) and fabricated into metal oxide semiconductor field effect transistors (MOSFETs). The Ga2O3 MOSFETs exhibited effective gate modulation of the drain current with a complete channel pinch-off for VG < −25 V, and the three-terminal off-state breakdown voltage was 390 V. The device shows a very low gate leakage current (~50 pA/mm), which led to a high on/off ratio of ~108. These transistor characteristics were stable from room temperature to 250 °C [reprint (PDF)] |
3. | Recent advances in mid infrared (3-5 μm) quantum cascade lasers Manijeh Razeghi; Neelanjan Bandyopadhyay; Yanbo Bai; Quanyong Lu; Steven Slivken Optical Materials Express, Vol. 3, Issue 11, pp. 1872-1884 (2013)-- November 2, 2013 ...[Visit Journal] Quantum cascade laser (QCL) is an important source of electromagnetic radiation in mid infrared region. Recent research in mid-IR QCLs has resulted in record high wallplug efficiency (WPE), high continuous wave (CW) output power, single mode operation and wide tunability. CW output power of 5.1 W with 21% WPE has been achieved at room temperature (RT). A record high WPE of 53% at 40K has been demonstrated. Operation wavelength of QCL in CW at RT has been extended to as short as 3μm. Very high peak power of 190 W has been obtained from a broad area QCL of ridge width 400μm. 2.4W RT, CW power output has been achieved from a distributed feedback (DFB) QCL. Wide tuning based on dual section sample grating DFB QCLs has resulted in individual tuning of 50cm-1 and 24 dB side mode suppression ratio with continuous wave power greater than 100 mW. [reprint (PDF)] |
3. | Photoluminescence linewidth narrowing in Yb-doped GaN and InGaN thin films K. Dasari, J. Wang, W.M. Jadwisienczak, V. Dierolf, M. Razeghi, R. Palai Journal of Luminescence Volume 209, May 2019, Pages 237-243-- January 14, 2019 ...[Visit Journal] We report on photoluminescence (PL) properties of GaN, GaN:Yb, InGaN, and InGaN:Yb thin films grown on (0001) sapphire substrates by plasma assisted molecular beam epitaxy (MBE). X-ray diffraction pattern of the films confirms c-axis oriented growth. The concentration of Yb and In was obtained by X-ray photoelectron spectroscopy (XPS) and was found to be 5 (+/- 0.5) at.% and 30 (+/- 1.5) at.%, respectively. The GaN:Yb and InGaN:Yb thin films show a significant linewidth narrowing in PL spectra compared to GaN and InGaN thin films. This could be attributed to the reduction of the defect related non-radiative recombination paths and suppression of the structural defects and dislocations because of the in situ rare earth (Yb)-doping during the growth. The temperature dependent photoluminescence of GaN:Yb thin film follows the Varshni model, whereas InGaN:Yb film shows a complex S-shaped like behavior, which can be explained by the localization effect using the Band-Tail model. [reprint (PDF)] |
3. | Low Noise Short Wavelength Infrared Avalanche Photodetector Using SB-Based Strained Layer Superlattice Arash Dehzangi, Jiakai Li, Manijeh Razeghi Photonics 2021, 8(5), 148; https://doi.org/10.3390/photonics8050148 Received: 8 March 2021 / Revised: 12 April 2021 / Accepted: 25 April 2021 / Published: 30 April 2021 ...[Visit Journal] We demonstrate low noise short wavelength infrared (SWIR) Sb-based type II superlattice (T2SL) avalanche photodiodes (APDs). The SWIR GaSb/(AlAsSb/GaSb) APD structure was designed based on impact ionization engineering and grown by molecular beam epitaxy on a GaSb substrate. At room temperature, the device exhibits a 50% cut-off wavelength of 1.74 µm. The device was revealed to have an electron-dominated avalanching mechanism with a gain value of 48 at room temperature. The electron and hole impact ionization coefficients were calculated and compared to give a better prospect of the performance of the device. Low excess noise, as characterized by a carrier ionization ratio of ~0.07, has been achieved. [reprint (PDF)] |
3. | Observation of Room Temperature Surface-Emitting Stimulated Emission from GaN:Ge by Optical pumping X. Zhang, P. Kung, A. Saxler, D. Walker, and M. Razeghi Journal of Applied Physics 80 (11)-- December 1, 1996 ...[Visit Journal] Optically pumped surface-emitting stimulated emission at room temperature was observed from GaN:Ge grown by metalorganic chemical vapor deposition. The sample was optically pumped perpendicularly on the top surface while the stimulated emission was collected from the back colinearly with the pump beam. The cavity was formed by the GaN/air and GaN/sapphire interfaces without any other structure. The stimulated emission was gain guided by the pump beam. The threshold optical pump density for stimulated emission was approximately 2.8 MW/cm² and the linewidth was 2.5 nm. The emission from GaN:Ge showed a redshift as the pump density increased. The comparison between theoretical calculations and experimental results suggested that many-body interactions can account well for the redshift. [reprint (PDF)] |
3. | Quantum-dot infrared photodetectors and focal plane arrays M. Razeghi, H. Lim, S. Tsao, M. Taguchi, W. Zhang, and A.A. Quivy SPIE Infrared Technology and Applications Conference, April 17-21, 2006, Orlando, FL Proceedings – Infrared Technology and Applications XXXII, Vol. 6206, p. 62060I-1-- April 21, 2006 ...[Visit Journal] We report our recent results about mid-wavelength infrared quantum-dot infrared photodetectors (QDIPs) grown by low-pressure metalorganic chemical vapor deposition. A very high responsivity and a very low dark current were obtained. A high peak detectivity of the order of 3×1012 Jones was achieved at 77 K. The temperature dependent device performance was also investigated. The improved temperature insensitivity compared to QWIPs was attributed to the properties of quantum dots. The device showed a background limited performance temperature of 220 K with a 45° field of view and 300K background. [reprint (PDF)] |
3. | InSb Infrared Photodetectors on Si Substrates Grown by Molecular Beam Epitaxy E. Michel, J. Xu, J.D. Kim, I. Ferguson, and M. Razeghi IEEE Photonics Technology Letters 8 (5) pp. 673-- May 1, 1996 ...[Visit Journal] The InSb infrared photodetectors grown heteroepitaxially on Si substrates by molecular beam epitaxy (MBE) are reported. Excellent InSb material quality is obtained on 3-in Si substrates (with a GaAs predeposition) as confirmed by structural, optical, and electrical analysis. InSb infrared photodetectors on Si substrates that can operate from 77 K to room temperature have been demonstrated. The peak voltage-responsitivity at 4 μm is about 1.0×103 V/W and the corresponding Johnson-noise-limited detectivity is calculated to be 2.8×1010 cm·Hz½/W. This is the first important stage in developing InSb detector arrays or monolithic focal plane arrays (FPAs) on silicon. The development of this technology could provide a challenge to traditional hybrid FPA's in the future. [reprint (PDF)] |
3. | Radiative recombination of confined electrons at the MgZnO/ ZnO heterojunction interface Sumin Choi, David J. Rogers, Eric V. Sandana, Philippe Bove, Ferechteh H. Teherani, Christian Nenstiel, Axel Hoffmann, Ryan McClintock, Manijeh Razeghi, David Look, Angus Gentle, Matthew R. Phillips & Cuong Ton-That Nature Scientific Reports 7, pp. 7457-- August 7, 2017 ...[Visit Journal] We investigate the optical signature of the interface in a single MgZnO/ZnO heterojunction, which exhibits two orders of magnitude lower resistivity and 10 times higher electron mobility compared with the MgZnO/Al2O3 film grown under the same conditions. These impressive transport properties are attributed to increased mobility of electrons at the MgZnO/ZnO heterojunction interface. Depthresolved cathodoluminescence and photoluminescence studies reveal a 3.2 eV H-band optical emission from the heterointerface, which exhibits excitonic properties and a localization energy of 19.6 meV. The emission is attributed to band-bending due to the polarization discontinuity at the interface, which leads to formation of a triangular quantum well and localized excitons by electrostatic coupling. [reprint (PDF)] |
3. | High-power, room-temperature and continuous-wave operation of distributed-feedback quantum-cascade lasers at λ = 4.8 µm J.S. Yu, S. Slivken, S.R. Darvish, A. Evans, B. Gokden and M. Razeghi Applied Physics Letters, 87 (4)-- July 25, 2005 ...[Visit Journal] The authors present high-power continuous-wave (cw) operation of distributed-feedback quantum-cascade lasers. Continuous-wave output powers of 56 mW at 25 °C and 15 mW at 40 °C are obtained. Single-mode emission near 7.8 µm with a side-mode suppression ratio of >=30 dB and a tuning range of 2.83 cm−1 was obtained between 15 and 40 °C. The device exhibits no beam steering with a full width at half maximum of 27.4° at 25 °C in cw mode. [reprint (PDF)] |
3. | Comparison of ZnO nanostructures grown using pulsed laser deposition, metal organic chemical vapor deposition, and physical vapor transport V.E. Sandana, D.J. Rogers, F. Hosseini Teherani, R. McClintock, C. Bayram, M. Razeghi, H-J Drouhin, M.C. Clochard, V. Sallett, G. Garry, and F. Falyouni Journal of Vacuum Science and Technology B, Vol. 27, No. 3, May/June, p. 1678-1683-- May 29, 2009 ...[Visit Journal] This article compares the forms and properties of ZnO nanostructures grown on Si (111) and c-plane
sapphire (c-Al2O3) substrates using three different growth processes: metal organic chemical vapor
deposition (MOCVD), pulsed laser deposition (PLD), and physical vapor transport (PVT). A very
wide range of ZnO nanostructures was observed, including nanorods, nanoneedles, nanocombs, and
some novel structures resembelling “bevelled” nanowires. PVT gave the widest family of
nanostructures. PLD gave dense regular arrays of nanorods with a preferred orientation
perpendicular to the substrate plane on both Si and c-Al2O3 substrates, without the use of a catalyst.
X-ray diffraction (XRD) studies confirmed that nanostructures grown by PLD were better
crystallized and more highly oriented than those grown by PVT and MOCVD. Samples grown on
Si showed relatively poor XRD response but lower wavelength emission and narrower linewidths in
PL studies. [reprint (PDF)] |
3. | Passivation of Type-II InAs/GaSb superlattice photodetectors A. Hood, Y. Wei, A. Gin, M. Razeghi, M. Tidrow, and V. Nathan SPIE Conference, Jose, CA, Vol. 5732, pp. 316-- January 22, 2005 ...[Visit Journal] Leakage currents limit the operation of high performance Type-II InAs/GaSb superlattice photodiode technology. Surface leakage current becomes a dominant limiting factor, especially at the scale of a focal plane array pixel (< 25 µm) and must be addressed. A reduction of the surface state density, unpinning the Fermi level at the surface, and appropriate termination of the semiconductor crystal are all aims of effective passivation. Recent work in the passivation of Type-II InAs\GaSb superlattice photodetectors with aqueous sulfur-based solutions has resulted in increased R0A products and reduced dark current densities by reducing the surface trap density. Additionally, photoluminescence of similarly passivated Type-II InAs/GaSb superlattice and InAs GaSb bulk material will be discussed. [reprint (PDF)] |
3. | High brightness ultraviolet light-emitting diodes grown on patterned silicon substrate Yoann Robin, Kai Ding, Ilkay Demir, Ryan McClintock, Sezai Elagoz, Manijeh Razeghi Materials Science in Semiconductor Processing 90, pp. 87–91-- November 5, 2018 ...[Visit Journal] We report on the fabrication of high brightness AlGaN-based ultraviolet light emitting diodes (UV-LED) on patterned silicon. Using the lateral epitaxial overgrowth
approach, we demonstrate the growth of a 6 μm thick AlN layer of high crystalline quality. X-ray diffraction characterization showed a rocking curve with a full width
at half maximum of 553 and 768″ for the (00.2) and (10.2) planes, respectively. The low dislocation density of the AlN template enabled the growth of bright AlGaN/
GaN quantum wells emitting at 336 nm. By appropriate flip-chip bonding and silicon substrate removal processing steps, the patterned AlN surface was exposed and
efficient bottom-emission UV-LEDs were realized. Improvement of the AlN quality and the structure design allowed the optical output power to reach the milliwatt
range under pulsed current, exceeding the previously reported maximum efficiency. Further investigations of the optical power at different pulsed currents and duty
cycles show that thermal management in this device structure is still challenging, especially in continuous wave mode operation. The strategy presented here is of
interest, since AlN crystalline quality improvement and optimization of the light extraction are the main issues inhibiting efficient UV emitter on silicon fabrication. [reprint (PDF)] |
3. | Type-II superlattice-based extended short-wavelength infrared focal plane array with an AlAsSb/GaSb superlattice etch-stop layer to allow near-visible light detection Romain Chevallier, Arash Dehzangi, Abbas Haddadi, and Manijeh Razeghi Optics Letters Vol. 42, Iss. 21, pp. 4299-4302-- October 17, 2017 ...[Visit Journal] A versatile infrared imager capable of imaging the near-visible to the extended short-wavelength infrared (e-SWIR) is demonstrated using e-SWIR InAs/GaSb/AlSb type-II superlattice-based photodiodes. A bi-layer etch-stop scheme consisting of bulk InAs0.91Sb0.09 and AlAs0.1Sb0.9/GaSb superlattice layers is introduced for substrate removal from the hybridized back-side illuminated photodetectors. The implementation of this new technique on an e-SWIR focal plane array results in a significant enhancement in the external quantum efficiency (QE) in the 1.8–0.8μm spectral region, while maintaining a high QE at wavelengths longer than 1.8μm. Test pixels exhibit 100% cutoff wavelengths of ∼2.1 and ∼2.25μm at 150 and 300K, respectively. They achieve saturated QE values of 56% and 68% at 150 and 300K, respectively, under back-side illumination and without any anti-reflection coating. At 150K, the photodetectors (27μm×27μm area) exhibit a dark current density of 4.7×10−7 A/cm2 under a −50 mV applied bias providing a specific detectivity of 1.77×1012 cm·Hz1/2/W. At 300K, the dark current density reaches 6.6×10−2 A/cm2 under −50 mV bias, providing a specific detectivity of 5.17×109 cm·Hz1/2/W. [reprint (PDF)] |
3. | High-performance InP-based midinfrared quantum cascade lasers at Northwestern University M. Razeghi, Y. Bai, S. Slivken, and S.R. Darvish SPIE Optical Engineering, Vol. 49, No. 11, November 2010, p. 111103-1-- November 15, 2010 ...[Visit Journal] We present recent performance highlights of midinfrared quantum cascade lasers (QCLs) based on an InP material system. At a representative wavelength around 4.7 µm, a number of breakthroughs have been achieved with concentrated effort. These breakthroughs include watt-level continuous wave operation at room temperature, greater than 50% peak wall plug efficiency at low temperatures, 100-W-level pulsed mode operation at room temperature, and 10-W-level pulsed mode operation of photonic crystal distributed feedback quantum cascade lasers at room temperature. Since the QCL technology is wavelength adaptive in nature, these demonstrations promise significant room for improvement across a wide range of mid-IR wavelengths. [reprint (PDF)] |
3. | Fabrication and characterization of novel hybrid green light emitting didoes based on substituting n-type ZnO for n-type GaN in an inverted p-n junction C. Bayram, D. Rogers, F. H. Teherani, and M. Razeghi Journal of Vacuum Science and Technology B, Vol. 27, No. 3, May/June, p. 1784-1788-- May 29, 2009 ...[Visit Journal] Details of the fabrication and characterization of hybrid green light emitting diodes, composed of
n-ZnO/(InGaN/GaN) multi-quantum-wells/p-GaN on AlN/sapphire, are reported. Scanning electron
microscope, atomic force microscopy, high resolution x-ray diffraction, and photoluminescence
were used to study the hybrid device. The effects of solvents, annealing, and etching on n-ZnO are
discussed. Successful hybridization of ZnO and (In)GaN into a green light emitting diode was
realized. [reprint (PDF)] |
3. | Short Wavelength (λ~ 4.3 μm) High-Performance Continuous-Wave Quantum-Cascade Lasers J.S. Yu, A. Evans, S. Slivken, S.R. Darvish, and M. Razeghi IEEE Photonics Technology Letters, 17 (6)-- June 1, 2005 ...[Visit Journal] We report continuous-wave (CW) operation of a 4.3-μm quantum-cascade laser from 80 K to 313 K. For a high-reflectivity-coated 11-μm-wide and 4-mm-long laser, CW output powers of 1.34 W at 80 K and 26 mW at 313 K are achieved. At 298 K, the CW threshold current density of 1.5 kA/cm2 is observed with a CW output power of 166 mW and maximum wall-plug efficiency of 1.47%. The CW emission wavelength varies from 4.15 μm at 80 K to 4.34 μm at 298 K, corresponding to a temperature-tuning rate of 0.87 nm/K. The beam full-width at half-maximum values for the parallel and the perpendicular far-field patterns are 26° and 49° in CW mode, respectively. [reprint (PDF)] |
3. | High brightness angled cavity quantum cascade lasers D. Heydari, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi Applied Physics Letters 106, 091105-- March 6, 2015 ...[Visit Journal] A quantum cascade laser (QCL) with an output power of 203 W is demonstrated in pulsed mode at
283 K with an angled cavity. The device has a ridge width of 300 μm, a cavity length of 5.8 mm, and a tilt angle of 12°. The back facet is high reflection coated, and the front facet is anti-reflection coated. The emitting wavelength is around 4.8 μm. In distinct contrast to a straight cavity broad area QCL, the lateral far field is single lobed with a divergence angle of only 3°. An ultrahigh brightness value of 156 MW cm²·sr-1 is obtained, which marks the brightest QCL to date. [reprint (PDF)] |
3. | Hybrid green LEDs with n-type ZnO substituted for N-type GaN in an inverted P-N junction F. Hosseini Teherani; M. Razeghi; D.J. Rogers; Can Bayram; R. McClintock LEOS Annual Meeting Conference Proceedings, LEOS '09. IEEE, [5343231] (2009) -- October 4, 2009 ...[Visit Journal] Recently, the GaN and ZnO materials systems have attracted considerable attention because of their use in a broad range of emerging applications including light-emitting diodes (LEDs) and solar cells. GaN and ZnO are similar materials with direct wide bandgaps, wurtzite crystal structure, high thermal stability and comparable thermal expansion coefficients, which makes them well suited for heterojunction fabrication. Two important advantages of GaN over ZnO are the reliable p-type doping and the mature know-how for bandgap engineering. Thus GaN-based LEDs can be made to emit from the deep UV right into the green through alloying with Al and In, respectively. The performance is not identical at all wavelengths, however, and the performance of InGaN-based green LEDs is still relatively poor. [reprint (PDF)] |
3. | Continuous wave, room temperature operation of λ ~ 3μm quantum cascade laser N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken and M. Razeghi SPIE Proceedings, Vol. 8631, p. 86310M-1, Photonics West, San Francisco, CA-- February 3, 2013 ...[Visit Journal] Quantum Cascade Lasers (QCLs), operating in continuous wave (CW) at room temperature(RT) in 3-3.5 μm spectral range, which overlaps the spectral fingerprint region of many hydrocarbons, is essential in spectroscopic trace gas detection, environment monitoring, and pollution control. A
3 μm QCL, operating in CW at RT is demonstrated. This initial result makes it possible, for the most
popular material system (AlInAs/GaInAs on InP) used in QCLs in mid-infrared and long-infrared, to cover the entire spectral range of mid-infrared atmospheric window (3-5 μm).
In0.79Ga0.21As/In0.11Al0.89As strain balanced superlattice, which has a large conduction band offset, was grown. The strain was balanced with composite barriers (In0.11Al0.89As /In0.4Al0.6As) in the injector region, to eliminate the need of extremely high compressively strained GaInAs, whose pseudomorphic growth is very difficult. [reprint (PDF)] |
3. | Type-II superlattice-based heterojunction phototransistors for high speed applications Jiakai Li, Arash Dehzangi, Donghai Wu, Ryan McClintock, Manijeh Razeghi Infrared Physics and Technology 108, 1033502-- May 2, 2020 ...[Visit Journal] In this study, high speed performance of heterojunction phototransistors (HPTs) based on InAs/GaSb/AlSb type-II superlattice with 30 nm base thickness and 50% cut-off wavelength of 2.0 μm at room temperature are demonstrated. We studied the relationship between -3 dB cut-off frequency of these HPT versus mesa size, applied bias, and collector layer thickness. For 8 μm diameter circular mesas HPT devices with a 0.5 μm collector layer, under 20 V applied bias voltage, we achieved a -3 dB cut-off frequency of 2.8 GHz.
[reprint (PDF)] |
3. | Modeling the electronic band-structure of strained long-wavelength Type-II superlattices using the scattering matrix method Abbas Haddadi,Gail Brown,Manijeh Razeghi Abbas Haddadi,Brown Gail and Razeghi Manijeh.Modeling the electronic band-structure of strained long-wavelength Type-II superlattices using the scattering matrix method[J].Journal of Infrared and Millimeter Waves,2025,44(3):345~350 ...[Visit Journal] This study introduces a comprehensive theoretical framework for accurately calculating the electronic
band-structure of strained long-wavelength InAs/GaSb type-II superlattices. Utilizing an eight-band k ⋅ p Hamilto⁃
nian in conjunction with a scattering matrix method, the model effectively incorporates quantum confinement,
strain effects, and interface states. This robust and numerically stable approach achieves exceptional agreement with experimental data, offering a reliable tool for analyzing and engineering the band structure of complex multi⁃
layer systems |
Page 7 of 28: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 >> Next (676 Items)
|