| About the CQD | | News | | Conferences | | Publications | | Books | | Research | | People | | History | | Patents | | Contact | Channel | |
Page 7 of 21: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 >> Next (517 Items)
| 2. | High performance InGaAs/InGaP quantum dot infrared photodetector achieved through doping level optimization S. Tsao, K. Mi, J. Szafraniec, W. Zhang, H. Lim, B. Movaghar, and M. Razeghi SPIE Conference, Jose, CA, Vol. 5732, pp. 334-- January 22, 2005 ...[Visit Journal] We report an InGaAs/InGaP/GaAs quantum dot infrared photodetector grown by metalorganic chemical vapor deposition with detectivity of 1.3x1011 cm·Hz½/W at 77K and 1.2x1010 ccm·Hz½/W at 120K. Modeling of the Quantum dot energy levels showed us that increased photoresponse could be obtained by doping the quantum dots to 4 electrons per dot instead of the usual 2 electrons per dot. This happens because the primary photocurrent transition is from the first excited state to a higher excited state. Increasing the quantum doping in our device yielded significant responsivity improvement and much higher detectivity as a result. This paper discusses the performance of this higher doping device and compares it to our previously reported device with lower doping. [reprint (PDF)] |
| 2. | EPR Investigations of a Structural Phase Change in Lead Phosphate M. RAZEGHI M. RAZEGHI: EPR Investigations of a Structural Phase Change phys. stat. sol. (b) 108, 175 (1981)-- November 1, 1981 ...[Visit Journal] The temperature dependence of the EPR line width of the Mn2+ and Gd3+ in Pb3(PO4)2 is investigated from -270 to 500 °C. At the first-order ferroelastic transition point (180 °C), an abrupt change in the fine-structure splitting as well as in the resonance line width is observed. Various contributions to fine structure D and E parameters of Mn2+ and Gd3+ are computed, using a point-multipole model. For temperatures near to Tc the correlation time of the fluctuations is estimated to be greater than 10−9. [reprint (PDF)] |
| 2. | Substrate removal for high quantum efficiency back side illuminated type-II InAs/GaSb photodetectors P.Y. Delaunay, B.M. Nguyen, D. Hoffman and M. Razeghi Applied Physics Letters, Vol. 91, No. 23, p. 231106-- December 3, 2007 ...[Visit Journal] A substrate removal technique using an InAsSb etch stop layer improves by a factor of 2 the quantum efficiency of back side illuminated type-II InAs/GaSb superlattice photodetectors. After etching of the GaSb substrate with a CrO3 based solution, the quantum efficiency of the diodes presents Fabry-Pérot oscillations averaging at 56%. Due to the confinement of the infrared light inside the devices, the quantum efficiency for certain devices reaches 75% at 8.5 µm. The implementation of this new technique to a focal plane array resulted in a decrease of the integration time from 0.23 to 0.08 ms. [reprint (PDF)] |
| 2. | High-brightness LWIR quantum cascade lasers F. Wang, S. Slivken, and M. Razeghi F. Wang, S. Slivken, and M. Razeghi, High-brightness LWIR quantum cascade lasers, Optics Letters, vol. 46, No. 20, 5193 ...[Visit Journal] Long-wave infrared (LWIR, lambda~8-12 um) quantum cascade lasers (QCLs) are drawing increasing interest, as they provide the possibility of long-distance transmission of light through the atmosphere owing to the reduced water absorption. However, their development has been lagging behind the shorter wavelength QCLs due to much bigger technological challenges. In this Letter, through band structure engineering based on a highly localized diagonal laser transition strategy and out-coupler design using an electrically isolated taper structure, we demonstrate high beam quality single-mode LWIR QCLs with high-brightness (2.0 MW cm-2 sr-1 for lambda~10 um, 2.2 MW cm-2 sr-1 for lambda~9 um, 5.0 MW cm-2 sr-1 for lambda~8 um) light extraction from a single facet in continuous-wave operation at 15 oC. These results mark an important milestone in exploring the lighting capability of inter-sub-band semiconductor lasers in the LWIR spectral range. [reprint (PDF)] |
| 2. | Sb-based third generation at Center for Quantum Devices Razeghi, Manijeh SPIE Proceedings Volume 11407, Infrared Technology and Applications XLVI; 114070T-- April 23, 2020 ...[Visit Journal] Sb-based III-V semiconductors are a promising alternative to HgCdTe. They can be produced with a similar bandgap to HgCdTe, but take advantage of the strong bonding between group III and group V elements which leads to very stable materials, good radiation hardness, and high uniformity. In this paper, we will discuss the recent progress of our research and present the main contributions of the Center for Quantum Devices to the Sb-based 3th generation imagers. [reprint (PDF)] |
| 2. | Stability of far fields in double heterostructure and multiple quantum well InAsSb/InPAsSb/InAs midinfrared lasers H. Yi, A. Rybaltowski, J. Diaz, D. Wu, B. Lane, Y. Xiao, and M. Razeghi Applied Physics Letters 70 (24)-- June 16, 1997 ...[Visit Journal] Far fields in perpendicular direction to the junction are investigated in double heterostructure (DH) and multiple quantum well (MQW) midwave-infrared InAsSb/InPAsSb/InAs lasers (λ = 3.2–3.6 μm). Strong broadening of the far fields in the DH lasers was observed with increases in temperature and/or current. On the contrary, MQW lasers with otherwise identical structure exhibit very stable far fields as narrow as 23° for all the operating conditions investigated. Our experiment and theoretical modeling suggest that these different behaviors of far fields in DH and MQW lasers are attributed to the refractive index fluctuation in the InAsSb laser active region. [reprint (PDF)] |
| 2. | The importance of band alignment in VLWIR type-II InAs/GaSb heterodiodes containing the M-structure barrier D. Hoffman, B.M. Nguyen, E.K. Huang, P.Y. Delaunay, S. Bogdanov, P. Manukar, M. Razeghi, and V. Nathan SPIE Proceedings, San Jose, CA Volume 7222-15-- January 26, 2009 ...[Visit Journal] The Type-II InAs/GaSb superlattice photon detector is an attractive alternative to HgCdTe photodiodes and QWIPS. The use of p+ - pi - M - N+ heterodiode allows for greater flexibility in enhancing the device performance. The utilization of the Empirical Tight Binding method gives the band structure of the InAs/GaSb superlattice and the new M- structure (InAs/GaSb/AlSb/GaSb) superlattice allowing for the band alignment between the binary superlattice and the M- superlattice to be determined and see how it affects the optical performance. Then by modifying the doping level of the M- superlattice an optimal level can be determined to achieve high detectivity, by simultaneously improving both photo-response and reducing dark current for devices with cutoffs greater than 14.5 µm. [reprint (PDF)] |
| 2. | Gain and recombination dynamics of quantum-dot infrared photodetectors H. Lim, B. Movaghar, S. Tsao, M. Taguchi, W. Zhang, A.A. Quivy, and M. Razeghi Physical Review B, 74 (20)-- November 15, 2006 ...[Visit Journal] In this paper we present a theory of diffusion and recombination in QDIPs which is an attempt to explain the recently reported values of gain in these devices. We allow the kinetics to encompass both the diffusion and capture rate limited regimes of carrier relaxation using rigorous random walk and diffusion methods. The photoconductive gains are calculated and compared with the experimental values obtained from InGaAs/InGaP/GaAs and InAs/InP QDIPs using the generation-recombination noise analysis. [reprint (PDF)] |
| 2. | High Performance Quantum Cascade Lasers at λ ~ 6 μm M. Razeghi, S. Slivken, J. Yu, A. Evans, and J. David Microelectronics Journal, 34 (5-8)-- May 1, 2003 ...[Visit Journal] This talk will focus on the recent efforts at the Center for Quantum Devices to deliver a high average power quantum cascade laser source at λ ~6 μm. Strain-balancing is used to reduce leakage for these shorter wavelength quantum cascade lasers. Further, the effect of reducing the doping in the injector is explored relative to the threshold current density and maximum average output power. Lastly, to demonstrate more of the potential of these devices, epilayer down bonding is explored as a technique to significantly enhance device performance. [reprint (PDF)] |
| 2. | High operability 1024 x 1024 long wavelength infrared focal plane array base on Type-II InAs/GaSb superlattice A. Haddadi, S.R. Darvish, G. Chen, A.M. Hoang, B.M. Nguyen and M. Razeghi AIP Conference Proceedings, Vol. 1416, p. 56-58_NGS15 Conf_Blacksburg, VA_Aug 1-5, 2011-- December 31, 2011 ...[Visit Journal] Fabrication and characterization of a high performance 1024×1024 long wavelength infrared type‐II superlattice focal plane array are described. The FPA performs imaging at a continous rate of 15.00 frames/sec. Each pixel has pitch of 18μm with a fill factor of 71.31%. It demonstrates excellent operability of 95.8% and 97.4% at 81 and 68K operation temperature. The external quantum efficiency is ∼81% without any antireflective coating. Using F∕2 optics and an integration time of 0.13ms, the FPA exhibits an NEDT as low as 27 and 19mK at operating temperatures of 81 and 68K respectively. [reprint (PDF)] |
| 2. | High Power, Continuous-Wave, Quantum Cascade Lasers for MWIR and LWIR Applications S. Slivken, A. Evans, J.S. Yu, S.R. Darvish and M. Razeghi SPIE Conference, San Jose, CA, Vol. 6127, pp. 612703-- January 23, 2006 ...[Visit Journal] Over the past several years, our group has endeavored to develop high power quantum cascade lasers for a variety of remote and high sensitivity infrared applications. The systematic optimization of laser performance has allowed for demonstration of high power, continuous-wave quantum cascade lasers operating above room temperature. Since 2002, the power levels for individual devices have jumped from 20 mW to 600 mW. Expanding on this development, we have able to demonstrate continuous wave operation at many wavelengths throughout the mid- and far-infrared spectral range, and have now achieved >100 mW output in the 4.0 to 9.5 µm range. [reprint (PDF)] |
| 2. | High-speed free-space optical communications based on quantum cascade lasers and type-II superlattice detectors Stephen M. Johnson; Emily Dial; M. Razeghi Proc. SPIE 11288, Quantum Sensing and Nano Electronics and Photonics XVII, 1128814-- January 31, 2020 ...[Visit Journal] Free-space optical communications (FSOC) is a promising avenue for point-to-point, high-bandwidth, and high-security communication links. It has the potential to solve the “last mile” problem modern communication systems face, allowing for high-speed communication links without the expensive and expansive infrastructure required by fiber optic and
wireless technologies 1 . Although commercial FSOC systems currently exist, due to their operation in the near infrared and short infrared ranges, they are necessarily limited by atmospheric absorption and scattering losses 2 . Mid-infrared (MWIR) wavelengths are desirable for free space communications systems because they have lower atmospheric scattering losses compared to near-infrared communication links. This leads to increased range and link uptimes. Since this portion of the EM spectrum is unlicensed, link establishment can be implemented quickly. Quantum cascade lasers
(QCL) are ideal FSOC transmitters because their emission wavelength is adjustable to MWIR 3 . Compared to the typical VCSEL and laser diodes used in commercial NIR and SWIR FSOC systems, however, they require increased threshold and modulation currents 4 . Receivers based on type-II superlattice (T2SL) detectors are desired in FSOC for their low
dark current, high temperature operation, and band gap tunable to MWIR 5. In this paper, we demonstrate the implementation of a high-speed FSOC system using a QCL and a T2SL detector. [reprint (PDF)] |
| 2. | Direct growth of thick AlN layers on nanopatterned Si substrates by cantilever epitaxy Ilkay Demir, Yoann Robin, Ryan McClintock, Sezai Elagoz, Konstantinos Zekentes, and Manijeh Razeghi Phys. Status Solidi A, pp. 1–6-- September 30, 2016 ...[Visit Journal] AlN layers have been grown on 200 nm period of nanopatterned Si (111) substrates by cantilever epitaxy and compared with AlN layers grown by maskless lateral epitaxial overgrowth (LEO) on micropatterned Si (111) substrates. The material quality of 5–10 µm thick AlN grown by LEO is comparable to that of much thinner layers (2 µm) grown by cantilever epitaxy on the nanopatterned substrates. Indeed, the latter exhibited root mean square (RMS) roughness of 0.65 nm and X-ray diffraction full width at half-maximum (FWHM) of 710 arcsec along the (0002) reflection and 930 arcsec along the (10̅15) reflection. The corresponding room temperature photoluminescence spectra was dominated by a sharp band edge peak. Back emission ultra violet light emitting diodes (UV LEDs) were fabricated by flip chip bonding to patterned AlN heat sinks followed by complete Si (111) substrate removal demonstrating a peak pulsed power of ∼0.7 mW at 344 nm peak emission wavelength. The demonstrated UV LEDs were fabricated on a cost effective epitaxial structure grown on the nanopatterned Si substrate with a total thickness of 3.3 µm [reprint (PDF)] |
| 2. | Photovoltaic MWIR type-II superlattice focal plane array on GaAs substrate E.K. Huang, P.Y. Delaunay, B.M. Nguyen, S. Abdoullahi-Pour, and M. Razeghi IEEE Journal of Quantum Electronics (JQE), Vol. 46, No. 12, p. 1704-1708-- December 1, 2010 ...[Visit Journal] Recent improvements in the performance of Type-II superlattice (T2SL) photodetectors has spurred interest in developing low cost and large format focal plane arrays (FPA) on this material system. Due to the limitations of size and cost of native GaSb substrates, GaAs is an attractive alternative with 8” wafers commercially available, but is 7.8% lattice mismatched to T2SL. In this paper, we present a photovoltaic T2SL 320 x 256 focal plane array (FPA) in the MWIR on GaAs substrate. The FPA attained a median noise equivalent temperature difference (NEDT) of 13 mK and 10mK (F#=2.3) with integration times of 10.02 ms and 19.06 ms respectively at 67 K. [reprint (PDF)] |
| 2. | Roadmap of Semiconductor Infrared Lasers and Detectors for the 21st Century M. Razeghi SPIE Conference, San Jose, CA, -- January 27, 1999 ...[Visit Journal] Since the first discovery, semiconductor infrared lasers and detectors have found many various applications in military, communications, medical, and industry sections. In this paper, the current status of semiconductor infrared lasers and detectors will be reviewed. Advantages and disadvantages of different methods and techniques is discussed later. Some basic physical limitations of current technology are studied and the direction to overcome these problems will be suggested. [reprint (PDF)] |
| 2. | The correlation between x-ray diffraction patterns and strain distribution inside GaInP/GaAs superlattices X.G. He, M. Erdtmann, R. Williams, S. Kim, and M. Razeghi Applied Physics Letters 65 (22)-- November 28, 1994 ...[Visit Journal] Strong correlation between x‐ray diffraction characteristics and strain distribution inside GaInP/GaAs superlattices has been reported. It is found that the symmetry of (002) diffraction patterns can be used to evaluate the interface strain status. A sample with no interfacial strains has a symmetric (002) diffraction pattern and weak (004) diffraction pattern. It is also demonstrated that strain distribution in superlattices can be readily estimated qualitatively by analyzing x-ray diffraction patterns. [reprint (PDF)] |
| 2. | High-Power (~9 μm) Quantum Cascade Lasers S. Slivken, Z. Huang, A. Evans, and M. Razeghi Applied Physics Letters 80 (22)-- June 3, 2002 ...[Visit Journal] High-power quantum cascade lasers emitting at λ > 9 μm are demonstrated. Accurate control of layer thickness and interfaces is evidenced by x-ray diffraction. Excellent peak power for uncoated lasers, up to 3.5 W per facet for a 25 μm emitter width, is obtained at 300 K for 75 period structures. The threshold current density at 300 K is only 1.4 kA/cm². From 300 to 425 K, the laser exhibits a characteristic temperature, T0, of 167 K. Over 150 mW of average power is measured per facet for a duty cycle of 6%. Simulation of the average power output reveals a thermal resistance of 12 K/W for epilayer-up mounted ridges. [reprint (PDF)] |
| 2. | High performance antimony based type-II superlattice photodiodes on GaAs substrates B.M. Nguyen, D. Hoffman, E.K. Huang, P.Y. Delaunay, and M. Razeghi SPIE Porceedings, Vol. 7298, Orlando, FL 2009, p. 72981T-- April 13, 2009 ...[Visit Journal] In recent years, Type-II InAs/GaSb superlattices grown on GaSb substrate have achieved significant
advances in both structural design and material growth, making Type-II superlattice infrared detector a rival competitor to the state-of-the-art MCT technology. However, the limited size and strong
infrared absorption of GaSb substrates prevent large format type-II superlattice infrared imagers from
being realized. In this work, we demonstrate type-II superlattices grown on GaAs substrates, which is a significant step toward third generation infrared imaging at low cost. The device performances of Type-II superalttice photodetectors grown on these two substrates are compared. [reprint (PDF)] |
| 2. | Quantum Devices Based on Modern Band Structure Engineering and Epitaxial Technology M. Razeghi Modern Physics Letters B, Vol. 22, No. 24, p. 2343-2371-- September 20, 2008 ...[Visit Journal] Modern band structure engineering is based both on the important discoveries of the past century and modern epitaxial technology. The general goal is to control the behavior of charge carriers on an atomic scale, which affects how they interact with each other and their environment. Starting from the basic semiconductor heterostructure, band structure engineering has evolved into a powerful discipline, employing lower dimensionality to demonstrate new material properties. Several modern technologies under development are used as examples of how this discipline is enabling new types of devices and new functionality in areas with immediate application. |
| 2. | Very high quality p-type AlxGa1-xN/GaN superlattice A. Yasan and M. Razeghi special ISDRS issue of Solid State Electronics Journal, 47-- January 1, 2003 ...[Visit Journal] Very high quality p-type AlxGa1−xN/GaN superlattice has been achieved through optimization of Mg flow and period of superlattice. Theoretical model was used to optimize the structure of superlattice by choosing suitable Al compositions and superlattice periods. The experiments show that for x=0.26, the resistivity is as low as 0.19 Ω cm and hole concentration is as high as 4.2×1018 cm−3, the highest values ever reported for p-type AlGaN/GaN superlattices. Hall effect measurement and admittance spectroscopy on the samples confirm the high quality of the superlattices. The activation energy calculated for p-type GaN and p-type A0.1Ga0.9N/GaN superlattice is estimated to be not, vert, similar 125 and 3 meV respectively. [reprint (PDF)] |
| 2. | High Performance InAs/InAsSb Type-II Superlattice Mid-Wavelength Infrared Photodetectors with Double Barrier Donghai Wu, Jiakai Li, Arash Dehzangi, Manijeh Razeghi Infrared Physics &Technology 103439-- July 18, 2020 ...[Visit Journal] By introducing a double barrier design, a high performance InAs/InAsSb type-II superlattice mid-wavelength infrared photodetector has been demonstrated. The photodetector exhibits a cut-off wavelength of ~4.50 µm at 150 K. At 150 K and −120 mV applied bias, the photodetector exhibits a dark current density of 1.21 × 10−5 A/cm2, a quantum efficiency of 45% at peak responsivity (~3.95 µm), and a specific detectivity of 6.9 × 1011 cm·Hz1/2/W. The photodetector shows background-limited operating temperature up to 160 K. [reprint (PDF)] |
| 2. | Hybrid green LEDs based on n-ZnO/(InGaN/GaN) multi-quantum-wells/p-GaN C. Bayram, F. Hosseini Teherani, D.J. Rogers and M. Razeghi SPIE Proceedings, San Jose, CA Volume 7217-0P-- January 26, 2009 ...[Visit Journal] Hybrid green light-emitting diodes (LEDs) comprised of n-ZnO/(InGaN/GaN) multi-quantum-wells/p-GaN were grown on semi-insulating AlN/sapphire using pulsed laser deposition for the n-ZnO and metal organic chemical vapor deposition for the other layers. X-ray diffraction revealed that high crystallographic quality was preserved after the n- ZnO growth. LEDs showed a turn-on voltage of 2.5 V and a room temperature electroluminescence (EL) centered at 510 nm. A blueshift and narrowing of the EL peak with increasing current was attributed to bandgap renormalization. The results indicate that hybrid LED structures could hold the prospect for the development of green LEDs with superior performance. [reprint (PDF)] |
| 2. | InAs/InAs1-xSbx type-II superlattices for high performance long wavelength infrared detection M. Razeghi, A. Haddadi, A. M. Hoang, R. Chevallier, S. Adhikary, A. Dehzangi Proc. SPIE 9819, Infrared Technology and Applications XLII, 981909-- May 20, 2016 ...[Visit Journal] We report InAs/InAs1-xSbx type-II superlattice base photodetector as high performance long-wavelength infrared nBn device grown on GaSb substrate. The device has 6 μm-thick absorption region, and shows optical performance with a peak responsivity of 4.47 A/W at 7.9 μm, which is corresponding to the quantum efficiency of 54% at a bias voltage of negative 90 mV, where no anti-reflection coating was used for front-side illumination. At 77K, the photodetector’s 50% cut-off wavelength was ~10 μm. The device shows the detectivity of 2.8x1011 cm•Hz½/W at 77 K, where RxA and dark current density were 119 Ω•cm² and 4.4x10-4 A/cm² , respectively, under -90 mV applied bias voltage [reprint (PDF)] |
| 2. | High-performance bias-selectable dual-band mid-/long-wavelength infrared photodetectors and focal plane arrays based on InAs/GaSb Type-II superlattices M. Razeghi; A. Haddadi; A.M. Hoang; G. Chen; S. Ramezani-Darvish; P. Bijjam Proc. SPIE 8704, Infrared Technology and Applications XXXIX, 87040S (June 11, 2013)-- June 11, 2013 ...[Visit Journal] We report a bias selectable dual-band mid-wave infrared (MWIR) and long-wave infrared (LWIR) co-located detector with 3 μm active region thickness per channel that is highly selective and can perform under high operating temperatures for the MWIR band. Under back-side illumination, a temperature evolution study of the MWIR detector's electro-optical performance found the 300 K background-limit with 2π field-of-view to be achieved below operating temperatures of 160 K, at which the temperature's 50% cutoff wavelength was 5.2 μm. The measured current reached the system limit of 0.1 pA at 110 K for 30 μm pixel-sized diodes. At 77 K, where the LWIR channel operated with a 50% cutoff wavelength at 11.2 μm, an LWIR selectivity of ∼17% was achieved in the MWIR wave band between 3 and 4.7 μm, making the detector highly selective. [reprint (PDF)] |
| 2. | Materials characterization of n-ZnO/p-GaN:Mg/c-Al(2)O(3) UV LEDs grown by pulsed laser deposition and metal-organic chemical vapor deposition D. Rogers, F.H. Teherani, P. Kung, K. Minder, and M. Razeghi Superlattices and Microstructures-- April 1, 2007 ...[Visit Journal] n-ZnO/p-GaN:Mg hybrid heterojunctions grown on c-Al2O3 substrates showed 375 nm room temperature electroluminescence. It was suggested that the high materials and interface quality obtained using pulsed laser deposition for the n-ZnO growth and metal–organic chemical vapor deposition for the p-GaN:Mg were key factors enabling the injection of holes and the radiative near band edge recombination in the ZnO. In this paper we present the materials characterization of this structure using x-ray diffraction, scanning electron microscopy and atomic force microscopy. [reprint (PDF)] |
Page 7 of 21: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 >> Next (517 Items)
|