Page 7 of 27:  Prev << 1 2 3 4 5 6 7  8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27  >> Next  (672 Items)

2.  Demonstration of long wavelength infrared Type-II InAs/InAs1-xSbx superlattices photodiodes on GaSb substrate grown by metalorganic chemical vapor deposition
D. H. Wu, A. Dehzangi, Y. Y. Zhang, M. Razeghi
Applied Physics Letters 112, 241103-- June 12, 2018 ...[Visit Journal]
We report the growth and characterization of long wavelength infrared type-II InAs/InAs1−xSbx superlattices photodiodes with a 50% cut-off wavelength at 8.0 μm on GaSb substrate grown by metalorganic chemical vapor deposition. At 77 K, the photodiodes exhibited a differential resistance at zero bias (R0A) 8.0 Ω·cm2, peak responsivity of 1.26 A/W corresponding to a quantum efficiency of 21%. A specific detectivity of 5.4×1010 cm·Hz1/2/W was achieved at 7.5 μm. [reprint (PDF)]
 
2.  High operating temperature MWIR photon detectors based on Type-II InAs/GaSb superlattice
M. Razeghi, B.M. Nguyen, P.Y. Delaunay, S. Abdollahi Pour, E.K.W. Huang, P. Manukar, S. Bogdanov, and G. Chen
SPIE Proceedings, San Francisco, CA (January 22-28, 2010), Vol. 7608, p. 76081Q-1-- January 22, 2010 ...[Visit Journal]
Recent efforts have been paid to elevate the operating temperature of Type-II InAs/GaSb superlattice Mid Infrared photon detectors. Optimized growth parameters and interface engineering technique enable high quality material with a quantum efficiency above 50%. Intensive study on device architecture and doping profile has resulted in almost one order of magnitude of improvement to the electrical performance and lifted up the 300 K-background BLIP operation temperature to 166 K. At 77 K, the ~4.2 µm cut-off devices exhibit a differential resistance area product in excess of the measurement system limit (106 Ω·cm²) and a detectivity of 3x1013 cm·Hz½·W−1. High quality focal plane arrays were demonstrated with a noise equivalent temperature of 10 mK at 77 K. Uncooled camera is capable to capture hot objects such as soldering iron. [reprint (PDF)]
 
2.  High-Power Continuous-Wave Operation of Quantum-Cascade Lasers Up to 60 °C
J.S. Yu, A. Evans, J. David, L. Doris, S. Slivken and M. Razeghi
IEEE Photonics Technology Letters, 16 (3)-- March 1, 2004 ...[Visit Journal]
High-temperature high-power continuous-wave (CW) operation of high-reflectivity-coated 12 μm wide quantum-cascade lasers emitting at λ = 6 μm with a thick electroplated Au top contact layer is reported for different cavity lengths. For a 3 mm long laser, the CW optical output powers of 381 mW at 293 K and 22 mW at maximum operating temperature of 333 K (60°C) are achieved with threshold current densities of 1.93 and 3.09 kA/cm2, respectively. At 298 K, the same cavity gives a maximum wall plug efficiency of 3.17% at 1.07 A. An even higher CW optical output power of 424 mW at 293 K is obtained for a 4-mm-long laser and the device also operates up to 332 K with an output power of 14 mW. Thermal resistance is also analyzed at threshold as a function of cavity length. [reprint (PDF)]
 
2.  Surface Emitting, Tunable, Mid-Infrared Laser with High Output Power and Stable Output Beam
Steven Slivken, Donghai Wu & Manijeh Razeghi
Scientific Reports volume 9, Article number: 549-- January 24, 2019 ...[Visit Journal]
A reflective outcoupler is demonstrated which can allow for stable surface emission from a quantum cascade laser and has potential for cost-effective wafer-scale manufacturing. This outcoupler is integrated with an amplified, electrically tunable laser architecture to demonstrate high power surface emission at a wavelength near 4.9 μm. Single mode peak power up to 6.7 W is demonstrated with >6 W available over a 90 cm−1 (215 nm) spectral range. A high quality output beam is realized with a simple, single-layer, anti-reflective coating. The beam shape and profile are shown to be independent of wavelength. [reprint (PDF)]
 
2.  Demonstration of 256x256 Focal Plane Arrays Based on Al-free GaInAs/InP QWIP
J. Jiang, K. Mi, R. McClintock, M. Razeghi, G.J. Brown, and C. Jelen
IEEE Photonics Technology Letters 15 (9)-- September 1, 2003 ...[Visit Journal]
We report the first demonstration of an infrared focal plane array based on aluminum-free GaInAs-InP quantum-well infrared photodetectors (QWIPs).A unique positive lithography method was developed to perform indium-bump liftoff. The noise equivalent differential temperature (NEΔT) of 29 mK was achieved at 70 K with f/2 optics. [reprint (PDF)]
 
2.  High power broad area quantum cascade lasers
Y. Bai, S. Slivken, S.R. Darvish, A. Haddadi, B. Gokden and M. Razeghi
Applied Physics Letters, Vol. 95, No. 22, p. 221104-1-- November 30, 2009 ...[Visit Journal]
Broad area quantum cascade lasers (QCLs) are studied with ridge widths up to 400 µm, in room temperature pulsed mode operation at an emission wavelength around 4.45 µm. The peak output power scales linearly with the ridge width. A maximum total peak output power of 120 W is obtained from a single 400-µm-wide device with a cavity length of 3 mm. A stable far field emission characteristic is observed with dual lobes at ±38° for all tested devices, which suggests that these broad area QCLs are highly resistant to filamentation. [reprint (PDF)]
 
2.  Negative luminescence of long-wavelength InAs/GaSb superlattice photodiodes
D. Hoffman, A. Hood, Y. Wei, A. Gin, F. Fuchs, and M. Razeghi
Applied Physics Letters 87 (20)-- November 14, 2005 ...[Visit Journal]
The electrically pumped emission behavior of binary type-II InAs/GaSb superlattice photodiodes has been studied in the spectral range between 8 µm and 13 µm. With a radiometric calibration of the experimental setup, the internal and external quantum efficiency has been determined in the temperature range between 80 K and 300 K for both, the negative and positive luminescence. The negative luminescence efficiency approaches values as high as 35% without antireflection coating. The temperature dependence of the internal quantum efficiency near zero-bias voltage allows for the determination of the electron-hole-electron Auger recombination coefficient of Γn=1×1024 cm6 s–1. [reprint (PDF)]
 
2.  Optical losses of Al-free lasers for λ = 0.808 and 0.98 μm
H. Yi, J. Diaz, B. Lane, and M. Razeghi
Applied Physics Letters 69 (20)-- November 11, 1996 ...[Visit Journal]
In this work, we study the origin of the optical losses in Al‐free InGaAsP/GaAs (λ=0.808 μm) and InGaAs/GaAs/InGaP (λ=0.980 μm) lasers. Theoretical modeling and the experimental results indicate that the scattering of the laser beam by refractive index fluctuation in the alloys is the dominant loss in our lasers, and the loss due to the free‐carrier absorption and scattering by interface roughness are negligible. [reprint (PDF)]
 
2.  Very high quantum efficiency in type-II InAs/GaSb superlattice photodiode with cutoff of 12 µm
B.M. Nguyen, D. Hoffman, Y. Wei, P.Y. Delaunay, A. Hood and M. Razeghi
Applied Physics Letters, Vol. 90, No. 23, p. 231108-1-- June 4, 2007 ...[Visit Journal]
The authors report the dependence of the quantum efficiency on device thickness of Type-II InAs/GaSb superlattice photodetectors with a cutoff wavelength around 12 µm. The quantum efficiency and responsivity show a clear delineation in comparison to the device thickness. An external single-pass quantum efficiency of 54% is obtained for a 12 µm cutoff wavelength photodiodes with a -region thickness of 6.0 µm. The R0A value is kept stable for the range of structure thicknesses allowing for a specific detectivity (2.2×1011 cm·Hz½/W). [reprint (PDF)]
 
2.  Efficiency of photoluminescence and excess carrier confinement in InGaAsP/GaAs structures prepared by metal-organic chemical vapor deposition
J. Diaz, H.J. Yi, M. Erdtmann, X. He, E. Kolev, D. Garbuzov, E. Bigan, and M. Razeghi
Journal of Applied Physics 76 (2)-- July 15, 1994 ...[Visit Journal]
Special double‐ and separate‐confinement InGaAsP/GaAs heterostructures intended for photoluminescence measurements have been grown by low‐pressure metal‐organic chemical‐vapor deposition. The band gap of the active region quaternary material was close to 1.5 eV, and the waveguide of the separate‐confinement structures was near 1.8 eV. Measurement of the integrated luminescence efficiency at 300 K has shown that over a wide range of excitation level (10–103 W/cm²) radiative transitions are the dominant mechanism for excess carrier recombination in the active region of the structures studied. As determined by spectral measurements, the excess carrier concentration in the waveguide of the separate‐confinement heterostructures and the intensity of the waveguide emission band correspond to a condition of thermal equilibrium of the excess carrier populations in the active region and the waveguide. The ratio of the intensity of the waveguide emission to the active region emission fits a model which assumes that the barrier height for minority carriers (holes) is equal to the difference in band gaps between the active region and the waveguide region. [reprint (PDF)]
 
2.  Room temperature continuous wave THz frequency comb based on quantum cascade lasers
M. Razeghi; Q. Y. Lu; F. H. Wang; D. H. Wu; S. Slivken
Proc. SPIE 11124, Terahertz Emitters, Receivers, and Applications X, 1112407-- September 6, 2019 ...[Visit Journal]
Frequency combs, spectra of phase-coherent equidistant lines, have revolutionized time and frequency metrology. The recently developed quantum cascade laser (QCL) comb has exhibits great potential with high power and broadband spectrum. However, in the terahertz (THz) range, cryogenic cooling has to be applied for THz QCL combs. We report a room temperature THz frequency comb at 3.0 THz based on difference-frequency generation from a mid-IR QCL comb. A largely detuned distributed-feedback grating is integrated into the QCL cavity to provide the single mode operation as well as enhanced spatial hole-burning effect for multimode comb operation. Multiheterodyne spectroscopy with multiple equally spaced lines by beating it with a reference Fabry-Pérot comb confirms the THz comb operation. This type of THz comb provides a new solution to chip-based high-speed high-resolution THz spectroscopy with compact size at room temperature. [reprint (PDF)]
 
2.  Sandwich method to grow high quality AlN by MOCVD
Demir , H Li, Y Robin, R McClintock, S Elagoz and M Razeghi
Journal of Physics D: Applied Physics 51, pp. 085104-- February 7, 2018 ...[Visit Journal]
We report pulsed atomic layer epitaxy growth of a very high crystalline quality, thick (~2 µm) and crack-free AlN material on c-plane sapphire substrates via a sandwich method using metal organic chemical vapor deposition. This sandwich method involves the introduction of a relatively low temperature (1050 °C) 1500 nm thick AlN layer between two 250 nm thick AlN layers which are grown at higher temperature (1170 °C). The surface morphology and crystalline quality remarkably improve using this sandwich method. A 2 µm thick AlN layer was realized with 33 arcsec and 136 arcsec full width at half maximum values for symmetric and asymmetric reflections of ω-scan, respectively, and it has an atomic force microscopy root-mean-square surface roughness of ~0.71 nm for a 5  ×  5 µm² surface area. [reprint (PDF)]
 
2.  High-Power CW Mid-IR Quantum Cascade Lasers
J.R. Meyer, W.W. Bewley, J.R. Lindle, I. Vurgaftman, A.J. Evans, J.S. Yu, S. Slivken, and M. Razeghi
SPIE Conference, Jose, CA, -- January 22, 2005 ...[Visit Journal]
We report the cw operation of quantum cascade lasers that do not require cryogenic cooling and emit at λ = 4.7-6.2 µm. At 200 K, more than 1 W of output power is obtained from 12-µm-wide stripes, with a wall-plug efficiency (ηwall) near 10%. Room-temperature cw operation has also been demonstrated, with a maximum output power of 640 mW (ηwall = 4.5%) at 6 µm and 260 mW (ηwall = 2.3%) at 4.8 µm. Far-field characterization indicates that whereas the beam quality remains close to the diffraction limit in all of the tested lasers, in the devices emitting at 6.2 µm the beam tends to steer by as much as 5-10° degrees in either direction with varying temperature and pump current. [reprint (PDF)]
 
2.  Low frequency noise in 1024 x 1024 long wavelength infrared focal plane array base on Type-II InAs/GaSb superlattice
A. Haddadi, S.R. Darvish, G. Chen, A.M. Hoang, B.M. Nguyen and M. Razeghi
SPIE Proceedings, Vol. 8268, p. 82680X-- January 22, 2012 ...[Visit Journal]
Recently, the type-II InAs/GaSb superlattice (T2SL) material platform is considered as a potential alternative for HgCdTe technology in long wavelength infrared (LWIR) imaging. This is due to the incredible growth in the understanding of its material properties and improvement of device processing which leads to design and fabrication of better devices. In this paper, we report electrical low frequency noise measurement on a high performance type-II InAs/GaSb superlattice 1024×1024 LWIR focal plane array. [reprint (PDF)]
 
2.  High-power high-wall plug efficiency mid-infrared quantum cascade lasers based on InP/GaInAs/InAlAs material system
M. Razeghi
SPIE Proceedings, San Jose, CA Volume 7230-11-- January 26, 2009 ...[Visit Journal]
The latest result at the Center for Quantum Devices about high power, high wall plug efficiency, mid-infrared quantum cascade lasers (QCLs) is presented. At an emitting wavelength of 4.8 µm, an output power of 3.4 W and a wall plug efficiency of 16.5% are demonstrated from a single device operating in continuous wave at room temperature. At a longer wavelength of 10.2 µm, average power as high as 2.2 W is demonstrated at room temperature. Gas-source molecular beam epitaxy is used to grow the QCL core in an InP/GaInAs/InAlAs material system. Fe-doped semiinsulating regrowth is performed by metal organic chemical vapor deposition for efficient heat removal and low waveguide loss. This accomplishment marks an important milestone in the development of high performance midinfrared QCLs. [reprint (PDF)]
 
2.  Growth of AlGaN on silicon substrates: a novel way to make back-illuminated ultraviolet photodetectors
Ryan McClintock ; Manijeh Razeghi
Proc. SPIE 9555, Optical Sensing, Imaging, and Photon Counting: Nanostructured Devices and Applications, 95550U-- August 28, 2015 ...[Visit Journal]
AlGaN, with its tunable wide-bandgap is a good choice for the realization of ultraviolet photodetectors. AlGaN films tend to be grown on foreign substrates such as sapphire, which is the most common choice for back-illuminated devices. However, even ultraviolet opaque substrates like silicon holds promise because, silicon can be removed by chemical treatment to allow back-illumination,1 and it is a very low-cost substrate which is available in large diameters up to 300 mm. However, Implementation of silicon as the solar-blind PD substrates requires overcoming the lattice-mismatch (17%) with the AlxGa1-xN that leads to high density of dislocation and crack-initiating stress. In this talk, we report the growth of thick crack-free AlGaN films on (111) silicon substrates through the use of a substrate patterning and mask-less selective area regrowth. This technique is critical as it decouples the epilayers and the substrate and allows for crack-free growth; however, the masking also helps to reduce the dislocation density by inclining the growth direction and encouraging dislocations to annihilate. A back-illuminated p-i-n PD structure is subsequently grown on this high quality template layer. After processing and hybridizing the device we use a chemical process to selectively remove the silicon substrate. This removal has minimal effect on the device, but it removes the UV-opaque silicon and allows back-illumination of the photodetector. We report our latest results of back-illuminated solar-blind photodetectors growth on silicon. [reprint (PDF)]
 
2.  Transport properties in n-type InSb films grown by metalorganic chemical vapor deposition
S.N. Song, J.B. Ketterson, Y.H. Choi, R. Sudharsanan, and M. Razeghi
Applied Physics Letters 63 (7)-- August 16, 1993 ...[Visit Journal]
We have measured the temperature and magnetic field dependence of the Hall mobility and transverse magnetoresistance in n-type InSb films epitaxially grown on GaAs substrates by metalorganic chemical vapor deposition. The films show a giant magnetoresistance: e.g., at 240 K the resistivity increases over 20 times at a magnetic field of 5 T; the low field coefficient of resistivity at 77 K is as high as 47.5 μ·Ω· cm/G. The Hall mobility decreases with magnetic field and saturates at higher fields. By taking the interface carrier transport into account, the observed field dependence of the Hall mobility and magnetoresistance may be understood based on a two-layer model. [reprint (PDF)]
 
2.  Type-II InAs/GaSb/AlSb superlatticebased heterojunction phototransistors: back to the future
Abbas Haddadi, Arash Dehzangi, Romain Chevallier, Thomas Yang, Manijeh Razeghi
Proc. SPIE 10540, Quantum Sensing and Nano Electronics and Photonics XV- Page-1054004-1-- January 26, 2018 ...[Visit Journal]
Most of reported HPTs in literatures are based on InGaAs compounds that cover NIR spectral region. However, InGaAs compounds provide limited cut-off wavelength tunability. In contrast, type-II superlattices (T2SLs) are a developing new material system with intrinsic advantages such as great flexibility in bandgap engineering, low growth and manufacturing cost, high-uniformity, auger recombination suppression, and high carrier effective mass that are becoming an attractive candidate for infrared detection and imaging from short-wavelength infrared to very long wavelength infrared regime. We present the recent advancements in T2SL-based heterojunction phototransistors in e– SWIR, MWIR and LWIR spectral ranges. A mid-wavelength infrared heterojunction phototransistor based on type-II InAs/AlSb/GaSb superlattices on GaSb substrate has been demonstrated. Then, we present the effect of vertical scaling on the optical and electrical performance of heterojunction phototransistors, where the performance of devices with different base width was compared as the base was scaled from 60 down to 40 nm. [reprint (PDF)]
 
2.  Surface plasmon enhanced light emission from AlGaN-based ultraviolet light-emitting diodes grown on Si (111)
Chu-Young Cho, Yinjun Zhang, Erdem Cicek, Benjamin Rahnema, Yanbo Bai, Ryan McClintock, and Manijeh Razeghi
Appl. Phys. Lett. 102, 211110 (2013)-- May 31, 2013 ...[Visit Journal]
We report on the development of surface plasmon (SP) enhanced AlGaN-based multiple quantum wells (MQWs) ultraviolet (UV) light-emitting diodes (LEDs) grown on silicon (111) substrates. In order to generate SP-coupling with the radiating dipoles in MQWs, an aluminum layer is selectively deposited in holes etched in the top p-AlGaN to p-GaN layers. After flip-chip bonding and substrate removal, an optical output power of ∼1.2 mW is achieved at an emission wavelength of 346 nm; the output power of these UV LEDs with Al layer is increased by 45% compared to that of conventional UV LEDs without Al layer. This enhancement can be attributed to an increase in the spontaneous emission rate and improved internal quantum efficiency via resonance coupling between excitons in MQWs and SPs in the aluminum layer. [reprint (PDF)]
 
2.  Investigation of impurities in type-II InAs/GaSb superlattices via capacitance-voltage measurement
G. Chen, A. M. Hoang, S. Bogdanov, A. Haddadi, P. R. Bijjam, B.-M. Nguyen, and M. Razeghi
Applied Physics Letters 103, 033512 (2013)-- July 17, 2013 ...[Visit Journal]
Capacitance-voltage measurement was utilized to characterize impurities in the non-intentionally doped region of Type-II InAs/GaSb superlattice p-i-n photodiodes. Ionized carrier concentration versus temperature dependence revealed the presence of a kind of defects with activation energy below 6 meV and a total concentration of low 1015 cm−3. Correlation between defect characteristics and superlattice designs was studied. The defects exhibited a p-type behavior with decreasing activation energy as the InAs thickness increased from 7 to 11 monolayers, while maintaining the GaSb thickness of 7 monolayers. With 13 monolayers of InAs, the superlattice became n-type and the activation energy deviated from the p-type trend. [reprint (PDF)]
 
2.  Photoluminescence Study of AlGaN-based 280 nm Ultraviolet Light-Emitting Diodes
A. Yasan, R. McClintock, K. Mayes, D.H. Kim, P. Kung, and M. Razeghi
Applied Physics Letters, 83 (20)-- November 17, 2003 ...[Visit Journal]
We investigated optical properties of single quantum well AlGaN-based UV 280 nm light-emitting diodes using temperature-dependent photoluminescence (PL) measurement. We found an "S-shaped" temperature dependence of the peak energy. From the Arrhenius plot of integrated PL intensity, we speculate that dislocations as well as thermal emission of carriers out of the quantum well are responsible for the PL quenching behavior. Also a second nonradiative channel with much lower activation energy was found, the origin of which we believe to be quenching of the bound excitons [reprint (PDF)]
 
2.  High performance antimony based type-II superlattice photodiodes on GaAs substrates
B.M. Nguyen, D. Hoffman, E.K. Huang, P.Y. Delaunay, and M. Razeghi
SPIE Porceedings, Vol. 7298, Orlando, FL 2009, p. 72981T-- April 13, 2009 ...[Visit Journal]
In recent years, Type-II InAs/GaSb superlattices grown on GaSb substrate have achieved significant advances in both structural design and material growth, making Type-II superlattice infrared detector a rival competitor to the state-of-the-art MCT technology. However, the limited size and strong infrared absorption of GaSb substrates prevent large format type-II superlattice infrared imagers from being realized. In this work, we demonstrate type-II superlattices grown on GaAs substrates, which is a significant step toward third generation infrared imaging at low cost. The device performances of Type-II superalttice photodetectors grown on these two substrates are compared. [reprint (PDF)]
 
2.  Growth and characterization of InAs/GaSb Type-II superlattices for long-wavelength infrared detectors
H. Mohseni, E. Michel, M. Razeghi, W. Mitchel, and G. Brown
SPIE Conference, San Jose, CA, -- January 28, 1998 ...[Visit Journal]
We report the molecular beam epitaxial growth and characterization of InAs/GaSb superlattices grown on semi- insulating GaAs substrate for long wavelength IR detectors. Photoconductive detectors fabricated from the superlattices showed 80% cut-off at 11.6 μm and peak responsivity of 6.5 V/W with Johnson noise limited detectivity of 2.36 x 109 cm·Hz½/W at 10.7 μm at 78 K. The responsivity decreases at higher temperatures with a T-2 behavior rather than exponential decay, and at room temperature the responsivity is about 660 mV/W at 11 μm. Lower Auger recombination rate in this system provides comparable detectivity to the best HgCdTe detectors at 300K. Higher uniformity over large areas, simpler growth and the possibility of having read-out circuits in the same GaAs chip are the advantages of this system over HgCdTe detectors for near room temperature operation. [reprint (PDF)]
 
2.  Low irradiance background limited type-II superlattice MWIR M-barrier imager
E.K. Huang, S. Abdollahi Pour, M.A. Hoang, A. Haddadi, M. Razeghi and M.Z. Tidrow
OSA Optics Letters (OL), Vol. 37, No. 11, p. 2025-2027-- June 1, 2012 ...[Visit Journal]
We report a type-II superlattice mid-wave infrared 320 × 256 imager at 81 K with the M-barrier design that achieved background limited performance (BLIP) and ∼99%operability. The 280 K blackbody’s photon irradiance was limited by an aperture and a band-pass filter from 3.6 μm to 3.8 μm resulting in a total flux of ∼5 × 1012 ph·cm−2·s−1. Under these low-light conditions, and consequently the use of a 13.5 ms integration time, the imager was observed to be BLIP thanks to a ∼5 pA dark current from the 27 μm wide pixels. The total noise was dominated by the photon flux and read-out circuit which gave the imager a noise equivalent input of ∼5 × 1010 ph·cm−2·s−1 and temperature sensitivity of 9 mK with F∕2.3 optics. Excellent imagery obtained using a 1-point correction alludes to the array’s uniform responsivity. [reprint (PDF)]
 
2.  III-Nitride Avalanche Photodiodes
P. Kung, R. McClintock, J. Pau Vizcaino, K. Minder, C. Bayram and M. Razeghi
SPIE Conference, January 25-29, 2007, San Jose, CA Proceedings – Quantum Sensing and Nanophotonic Devices IV, Vol. 6479, p. 64791J-1-12-- January 29, 2007 ...[Visit Journal]
Wide bandgap III-Nitride semiconductors are a promising material system for the development of ultraviolet avalanche photodiodes (APDs) that could be a viable alternative to photomultiplier tubes. In this paper, we report the epitaxial growth and physical properties of device quality GaN layers on high quality AlN templates for the first backilluminated GaN p-i-n APD structures on transparent sapphire substrates. Under low bias and linear mode avalanche operation where they exhibited gains near 1500 after undergoing avalanche breakdown. The breakdown electric field in GaN was determined to be 2.73 MV/cm. The hole impact ionization coefficients were shown to be greater than those of electrons. [reprint (PDF)]
 

Page 7 of 27:  Prev << 1 2 3 4 5 6 7  8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27  >> Next  (672 Items)