Page 7 of 11:  Prev << 1 2 3 4 5 6 7  8 9 10 11  >> Next  (268 Items)

2.  Widely tunable room temperature semiconductor terahertz source
Q. Y. Lu, S. Slivken, N. Bandyopadhyay, Y. Bai, and M. Razeghi
Appl. Phys. Lett. 105, 201102 (2014)-- November 17, 2014 ...[Visit Journal]
We present a widely tunable, monolithic terahertz source based on intracavity difference frequency generation within a mid-infrared quantum cascade laser at room temperature. A three-section ridge waveguide laser design with two sampled grating sections and a distributed-Bragg section is used to achieve the terahertz (THz) frequency tuning. Room temperature single mode THz emission with a wide tunable frequency range of 2.6–4.2 THz (∼47% of the central frequency) and THz power up to 0.1 mW is demonstrated, making such device an ideal candidate for THz spectroscopy and sensing. [reprint (PDF)]
 
2.  Background limited performance of long wavelength infrared focal plane arrays fabricated from type-II InAs/GaSb M-structure superlattice
P.Y. Delaunay, B.M. Nguyen and M. Razeghi
SPIE Porceedings, Vol. 7298, Orlando, FL 2009, p. 72981Q-- April 13, 2009 ...[Visit Journal]
Recent advances in growth techniques, structure design and processing have lifted the performance of Type-II InAs/GaSb superlattice photodetectors. The introduction of a M-structure design improved both the dark current and R0A of Type-II photodiodes. This new structure combined with a thick absorbing region demonstrated background limited performance at 77K for a 300K background and a 2-π field of view. A focal plane array with a 9.6 μm 50% cutoff wavelength was fabricated with this design and characterized at 80K. The dark current of individual pixels was measured around 1.3 nA, 7 times lower than previous superlattice FPAs. This led to a higher dynamic range and longer integration times. The quantum efficiency of detectors without anti-reflective coating was 72%. The noise equivalent temperature difference reached 23 mK. The deposition of an anti-reflective coating improved the NEDT to 20 mK and the quantum efficiency to 89%. [reprint (PDF)]
 
2.  High performance LWIR Type-II InAs/GaSb superlattice photodetectors and infrared focal plane array
Y. Wei, A. Hood, A. Gin, V. Yazdanpanah, M. Razeghi and M. Tidrow
SPIE Conference, Jose, CA, Vol. 5732, pp. 309-- January 22, 2005 ...[Visit Journal]
We report on the demonstration of a focal plane array based on Type-II InAs-GaSb superlattices grown on n-type GaSb substrate with a 50% cutoff wavelength at 10 μm. The surface leakage occurring after flip-chip bonding and underfill in the Type-II devices was suppressed using a double heterostructure design. The R0A of diodes passivated with SiO2 was 23 Ω·cm2 after underfill. A focal plane array hybridized to an Indigo readout integrated circuit demonstrated a noise equivalent temperature difference of 33 mK at 81 K, with an integration time of 0.23 ms. [reprint (PDF)]
 
2.  Band gap tunability of Type-II Antimonide-based superlattices
M. Razeghi and B.M. Nguyen
Physics Procedia, Vol. 3, Issue 2, p. 1207-1212 (14th International Conference on Narrow Gap Semiconductors and Systems NGSS-14, Sendai, Japan, July 13-17, 2009)-- January 31, 2010 ...[Visit Journal]
Current state-of-the art infrared photon detectors based on bulk semiconductors such as InSb or HgCdTe are now relatively mature and have almost attained the theoretical limit of performance. It means, however, that the technology can not be expected to demonstrate revolutionary improvements, in terms of device performances. In contrasts, low dimensional quantum systems such as superlattices, quantum wells, quantum dots, are still the development stage, yet have shown comparable performance to the bulk detector family. Especially for the Type-II Antimony-based superlattices, recent years have seen significant improvements in material quality, structural design as well as fabrication techniques which lift the performance of Type-II superlattice photodetectors to a new level. In this talk, we will discuss the advantages of Type-II-superlattices, from the physical nature of the material to the practical realisms. We will demonstrate the flexibility in controlling the energy gap and their overall band alignment for the suppression of Auger recombination, as well as to create sophisticated hetero-designs. [reprint (PDF)]
 
2.  High Detectivity InAs Quantum-Dot Infrared Photodetectors Grown on InP by Metalorganic Chemical Vapor Deposition
W. Zhang, H. Lim, M. Taguchi, S. Tsao, B. Movaghar, and M. Razeghi
Applied Physics Letters, 86 (19)-- May 9, 2005 ...[Visit Journal]
We report a high-detectivity InAs quantum-dot infrared photodetector. The InAs quantum dots were grown by self-assembly on InP substrates via low-pressure metal–organic chemical–vapor deposition. Highly uniform quantum dots with a density of 4×1010 cm2 were grown on a GaAs/InP matrix. Photoresponse was observed at temperatures up to 160 K with a peak of 6.4 µm and cutoff of 6.6 µm. Very low dark currents and noise currents were obtained by inserting Al0.48In0.52As current blocking layers. The background-limited performance temperature was 100 K. A detectivity of 1.0×1010 cm·Hz½/W was obtained at 77 K with a bias of –1.1 V. [reprint (PDF)]
 
2.  Band edge tunability of M-structure for heterojunction design in Sb based Type-II superlattice photodiodes
B.M. Nguyen, D. Hoffman, P.Y. Delaunay, E.K. Huang, M. Razeghi, and J. Pellegrino
Applied Physics Letters, Vol. 93, No. 16, p. 163502-1-- October 20, 2008 ...[Visit Journal]
We present theoretically and experimentally the effect of the band discontinuity in Type-II misaligned InAs/GaSb superlattice heterodiodes. Calculations using the empirical tight binding method have shown the great flexibility in tuning the energy levels of the band edge in M-structure superlattice as compared to the standard InAs/GaSb superlattice. Through the experimental realization of several p-pi-M-n photodiodes, the band discontinuity alignment between the standard binary-binary superlattice and the M-structured superlattice was investigated via optical characterization. The agreement between the theoretical predictions and the experimental measurement confirms the capability of controlling the M-structure band edges and suggests a way to exploit this advantage for the realization of heterostructures containing an M-structured superlattice without bias dependent operation. [reprint (PDF)]
 
2.  Ammonium Sulfide Passivation of Type-II InAs/GaSb Superlattice Photodiodes
A. Gin, Y. Wei, A. Hood, A. Bajowala, V. Yazdanpanah, M. Razeghi and M.Z. Tidrow
Applied Physics Letters, 84 (12)-- March 22, 2004 ...[Visit Journal]
We report on the surface passivation of Type-II InAs/GaSb superlattice photodetectors using various ammonium sulfide solutions. Compared to unpassivated detectors, zero-bias resistance of treated 400 µm×400 µm devices with 8 µm cutoff wavelength was improved by over an order of magnitude to ~20 kΩ at 80 K. Reverse-bias dark current density was reduced by approximately two orders of magnitude to less than 10 mA/cm2 at –2 V. Dark current modeling, which takes into account trap-assisted tunneling, indicates greater than 70 times reduction in bulk trap density for passivated detectors. [reprint (PDF)]
 
2.  Background limited performance of long wavelength infrared focal plane arrays fabricated from M-structure InAs-GaSb superlattices
P.Y. Delaunay, B.M. Nguyen, D. Hoffman, E.K. Huang, and M. Razeghi
IEEE Journal of Quantum Electronics, Vol. 45, No. 2, p. 157-162.-- February 1, 2009 ...[Visit Journal]
The recent introduction of a M-structure design improved both the dark current and R0A performances of Type-II InAs-GaSb photodiodes. A focal plane array fabricated with this design was characterized at 81 K. The dark current of individual pixels was measured between 1.1 and 1.6 nA, 7 times lower than previous superlattice FPAs. This led to a higher dynamic range and longer integration times. The quantum efficiency of detectors without antireflective coating was 74%. The noise equivalent temperature difference reached 23 mK, limited only by the performance of the testing system and the read out integrated circuit. Background limited performances were demonstrated at 81 K for a 300 K background. [reprint (PDF)]
 
2.  Negative and positive luminescence in mid-wavelength infrared InAs/GaSb superlattice photodiodes
D. Hoffman, A. Gin, Y. Wei, A. Hood, F. Fuchs, and M. Razeghi
IEEE Journal of Quantum Electronics, 41 (12)-- December 1, 2005 ...[Visit Journal]
The quantum efficiency of negative and positive luminescence in binary type-II InAs-GaSb superlattice photodiodes has been investigated in the midinfrared spectral range around the 5-μm wavelength. The negative luminescence efficiency is nearly independent on temperature in the entire range from 220 to 325 K. For infrared diodes with a 2-μm absorbing layer, processed without anti-reflection coating, a negative luminescence efficiency of 45% is found, indicating very efficient minority carrier extraction. The temperature dependent measurements of the quantum efficiency of the positive luminescence enables for the determination of the capture cross section of the Shockley-Read-Hall centers involved in the competing nonradiative recombination. [reprint (PDF)]
 
2.  Continuous operation of a monolithic semiconductor terahertz source at room temperature
Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi
Appl. Phys. Lett. 104, 221105 (2014)-- June 3, 2014 ...[Visit Journal]
We demonstrate room temperature continuous wave THz sources based on intracavity difference-frequency generation from mid-infrared quantum cascade lasers. Buried ridge, buried composite distributed-feedback waveguide with Čerenkov phase-matching scheme is used to reduce the waveguide loss and enhance the heat dissipation for continuous wave operation. Continuous emission at 3.6 THz with a side-mode suppression ratio of 20 dB and output power up to 3 μW are achieved, respectively. THz peak power is further scaled up to 1.4 mW in pulsed mode by increasing the mid-infrared power through increasing the active region doping and device area. [reprint (PDF)]
 
2.  Radiometric characterization of long-wavelength infrared type II strained layer superlattice focal plane array under low-photon irradiance conditions
J. Hubbs, V. Nathan, M. Tidrow, and M. Razeghi
Optical Engineering, Vol. 51, No. 6, p. 064002-1-- June 15, 2012 ...[Visit Journal]
We present the results of the radiometric characterization of an “M” structure long wavelength infrared Type-II strained layer superlattice(SLS) infrared focal plane array (IRFPA) developed by Northwestern University (NWU). The performance of the M-structure SLS IRFPA was radiometrically characterized as a function of photon irradiance, integration time, operating temperature, and detector bias. Its performance is described using standard figures of merit: responsivity, noise, and noise equivalent irradiance. Assuming background limited performance operation at higher irradiances, the detector quantum efficiency for the SLS detector array is approximately 57%. The detector dark density at 80 K is 142 μA∕cm², which represents a factor of seven reduction from previously measured devices. [reprint (PDF)]
 
2.  Inductively coupled plasma etching and processing techniques for type-II InAs/GaSb superlattices infrared detectors toward high fill factor focal plane arrays
E.K. Huang, B.M. Nguyen, D. Hoffman, P.Y. Delaunay and M. Razeghi
SPIE Proceedings, San Jose, CA Volume 7222-0Z-- January 26, 2009 ...[Visit Journal]
A challenge for Type-II InAs/GaSb superlattice (T2SL) photodetectors is to achieve high fill factor, high aspect ratio etching for third generation focal plane arrays (FPAs). Initially, we compare the morphological and electrical results of single element T2SL photodiodes after BCl3/Ar inductively coupled plasma (ICP) and electron cyclotron resonance (ECR) dry etching. Using a Si3N4 hard mask, ICP-etched structures exemplify greater sidewall verticality and smoothness, which are essential toward the realization of high fill factor FPAs. ICP-etched single element devices with SiO2 passivation that are 9.3 µm in cutoff wavelength achieved vertical sidewalls of 7.7 µm in depth with a resistance area product at zero bias of greater than 1,000 Ω·cm2 and maximum differential resistance in excess of 10,000 Ω·cm2 at 77 K. By only modifying the etching technique in the fabrication steps, the ICP-etched photodiodes showed an order of magnitude decrease in their dark current densities in comparison to the ECR-etched devices. Finally, high aspect ratio etching is demonstrated on mutli-element arrays with 3 µm-wide trenches that are 11 µm deep. [reprint (PDF)]
 
2.  High performance InGaAs/InGaP quantum dot infrared photodetector achieved through doping level optimization
S. Tsao, K. Mi, J. Szafraniec, W. Zhang, H. Lim, B. Movaghar, and M. Razeghi
SPIE Conference, Jose, CA, Vol. 5732, pp. 334-- January 22, 2005 ...[Visit Journal]
We report an InGaAs/InGaP/GaAs quantum dot infrared photodetector grown by metalorganic chemical vapor deposition with detectivity of 1.3x1011 cm·Hz½/W at 77K and 1.2x1010 ccm·Hz½/W at 120K. Modeling of the Quantum dot energy levels showed us that increased photoresponse could be obtained by doping the quantum dots to 4 electrons per dot instead of the usual 2 electrons per dot. This happens because the primary photocurrent transition is from the first excited state to a higher excited state. Increasing the quantum doping in our device yielded significant responsivity improvement and much higher detectivity as a result. This paper discusses the performance of this higher doping device and compares it to our previously reported device with lower doping. [reprint (PDF)]
 
2.  Very high performance LWIR and VLWIR type-II InAs/GaSb superlattice photodiodes with M-structure barrier
B.M. Nguyen, D. Hoffman, P.Y. Delaunay, E.K. Huang and M. Razeghi
SPIE Proceedings, Vol. 7082, San Diego, CA 2008, p. 708205-- September 3, 2008 ...[Visit Journal]
LWIR and VLWIR type-II InAs/GaSb superlattice photodetectors have for long time suffered from a high dark current level and a low dynamic resistance which hampers the its emergence to the infrared detection and imaging industry. However, with the use of M-structure superlattice, a new Type-II binary InAs/GaSb/AlSb superlattice design, as an effective blocking barrier, the dark current in type-II superlattice diode has been significantly reduced. We have obtained comparable differential resistance product to the MCT technology at the cut-off wavelength of 10 and 14μm. Also, this new design is compatible with the optical optimization scheme, leading to high quantum efficiency, high special detectivity devices for photon detectors and focal plane arrays. [reprint (PDF)]
 
2.  Passivation of Type-II InAs/GaSb Superlattice Photodiodes
A. Gin, Y. Wei, J. Bae, A. Hood, J. Nah, and M. Razeghi
International Conference on Metallurgical Coatings and Thin Films (ICMCTF), San Diego, CA; Thin Solid Films 447-448-- January 30, 2004 ...[Visit Journal]
Recently, excellent infrared detectors have been demonstrated using Type-II InAs/GaSb superlattice materials sensitive at wavelengths from 3 μm to greater than 32 μm. These results indicate that Type-II superlattice devices may challenge the preponderance of HgCdTe and other state-of-the-art infrared material systems. As such, surface passivation is becoming an increasingly important issue as progress is made towards the commercialization of Type-II devices and focal plane array applications. This work focuses on initial attempts at surface passivation of Type-II InAs/GaSb superlattice photodiodes using PECVD-grown thin layers of SiO2. Our results indicate that silicon dioxide coatings deposited at various temperatures improve photodetector resistivity by several times. Furthermore, reverse-bias dark current has been reduced significantly in passivated devices. [reprint (PDF)]
 
1.  Stranski-Krastanov growth of InGaN quantum dots emitting in green spectra
C. Bayram and M. Razeghi
Applied Physics A: Materials Science and Processing, Vol. 96, No. 2, p. 403-408-- August 1, 2009 ...[Visit Journal]
Self-assembled InGaN quantum dots (QDs) were grown on GaN templates by metalorganic chemical vapor deposition. 2D–3D growth mode transition through Stranski–Krastanov mode was observed via atomic force microscopy. The critical thickness for In0.67Ga0.33N QDs was determined to be four monolayers. The effects of growth temperature, deposition thickness, and V/III ratio on QD formation were examined. The capping of InGaN QDs with GaN was analyzed. Optimized InGaN quantum dots emitted in green spectra at room temperature. [reprint (PDF)]
 
1.  Transport and Photodetection in Self-Assembled Semiconductor Quantum Dots
M. Razeghi, H. Lim, S. Tsao, J. Szafraniec, W. Zhang, K. Mi, and B. Movaghar
Nanotechnology, 16-- January 7, 2005 ...[Visit Journal]
A great step forward in science and technology was made when it was discovered that lattice mismatch can be used to grow highly ordered, artificial atom-like structures called self-assembled quantum dots. Several groups have in the meantime successfully demonstrated useful infrared photodetection devices which are based on this technology. The new physics is fascinating, and there is no doubt that many new applications will be found when we have developed a better understanding of the underlying physical processes, and in particular when we have learned how to integrate the exciting new developments made in nanoscopic addressing and molecular self-assembly methods with semiconducting dots. In this paper we examine the scientific and technical questions encountered in current state of the art infrared detector technology and suggest ways of overcoming these difficulties. Promoting simple physical pictures, we focus in particular on the problem of high temperature detector operation and discuss the origin of dark current, noise, and photoresponse. [reprint (PDF)]
 
1.  On the performance and surface passivation of type-II InAs/GaSb superlattice photodiodes for the very-long- wavelength infrared
A. Hood, M. Razeghi, E. Aifer, G.J. Brown
Applied Physics Letters 87 (1)-- October 10, 2005 ...[Visit Journal]
We demonstrate very-long-wavelength infrared Type-II InAs/GaSb superlattice photodiodes with a cutoff wavelength (λc,50%) of 17 μm. We observed a zero-bias, peak Johnson noise-limited detectivity of 7.63×109 cm·Hz½/W at 77 K with a 90%-10% cutoff width of 17 meV, and quantum efficiency of 30%. Variable area diode zero-bias resistance-area product (R0A) measurements indicated that silicon dioxide passivation increased surface resistivity by nearly a factor of 5, over unpassivated photodiodes, and increased overall R0A uniformity. The bulk R0A at 77 K was found to be 0.08 Ω·cm2, with RA increasing more than twofold at 25 mV reverse bias. [reprint (PDF)]
 
1.  Reliability of Aluminum-Free 808 nm High-Power Laser Diodes with Uncoated Mirrors
I. Eliashevich, J. Diaz, H. Yi, L. Wang, and M. Razeghi
Applied Physics Letters 66 (23)-- June 5, 1995 ...[Visit Journal]
The reliability of uncoated InGaAsP/GaAs high‐power diode lasers emitting at 808 nm wavelength has been studied. 47 W of quasicontinuous wave output power (pulse width 200 μs, frequency 20 Hz) have been obtained from a 1 cm wide laser bar. A single‐stripe diode without mirror coating has been life tested at 40 °C for emitting power of 800 mW continuous wave (cw) and showed no noticeable degradation and no change of the lasing wavelength after 6000 h of operation. [reprint (PDF)]
 
1.  High Quality Type-II InAs/GaSb Superlattices with Cutoff Wavelength ~3.7 µm Using Interface Engineering
Y. Wei, J. Bae, A. Gin, A. Hood, M. Razeghi, G.J. Brown, and M. Tidrow
Journal of Applied Physics, 94 (7)-- October 1, 2003 ...[Visit Journal]
We report the most recent advance in the area of Type-II InAs/GaSb superlattices that have cutoff wavelength of ~3.7 µm. With GaxIn1–x type interface engineering techniques, the mismatch between the superlattices and the GaSb (001) substrate has been reduced to <0.1%. There is no evidence of dislocations using the best examination tools of x-ray, atomic force microscopy, and transmission electron microscopy. The full width half maximum of the photoluminescence peak at 11 K was ~4.5 meV using an Ar+ ion laser (514 nm) at fluent power of 140 mW. The integrated photoluminescence intensity was linearly dependent on the fluent laser power from 2.2 to 140 mW at 11 K. The temperature-dependent photoluminescence measurement revealed a characteristic temperature of one T1 = 245 K at sample temperatures below 160 K with fluent power of 70 mW, and T1 = 203 K for sample temperatures above 180 K with fluent power of 70 and 420 mW. [reprint (PDF)]
 
1.  Widely tuned room temperature terahertz quantum cascade laser sources
Q.Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai and M. Razeghi
SPIE Proceedings, Vol. 8631, p. 863108-1, Photonics West, San Francisco, CA-- February 3, 2013 ...[Visit Journal]
Room temperature THz quantum cascade laser sources with a broad spectral coverage based on intracavity difference frequency generation are demonstrated. Two mid-infrared active cores in the longer mid-IR wavelength range (9-11 micron)based on the single-phonon resonance scheme are designed with a second-order difference frequency nonlinearity specially optimized for the high operating fields that correspond to the highest mid-infrared output powers. A Čerenkov phase-matching scheme along with integrated dual-period distributed feedback gratings are used for efficient THz extraction and spectral purification. Single mode emissions from 1.0 to 4.6 THz with a side-mode suppression ratio and output power up to 40 dB and 32 μW are obtained, respectively. [reprint (PDF)]
 
1.  Theoretical investigation of minority carrier leakage of high-power 0.8 μm InGaAsP/InGaP/GaAs laser diodes
J. Diaz, I. Eliashevich, H.J. Yi, M. Stanton, and M. Razeghi
Applied Physics Letters 65 (18)-- October 31, 1994 ...[Visit Journal]
We report a theoretical model that accurately describes the effects of minority carrier leakage from the InGaAsP waveguide into InGaP cladding layers in high‐power aluminum-free 0.8 μm InGaAsP/InGaP/GaAs separate confinement heterostructure lasers. Current leakage due to the relatively low band‐gap discontinuity between the active region and the InGaP barrier can be eliminated by employing laser diodes with cavity length longer than 500 μm. Experimental results for lasers grown by low-pressure metalorganic chemical vapor deposition are in excellent agreement with the theoretical model. [reprint (PDF)]
 
1.  Investigations of ZnO thin films grown on c-Al(2)O(3) by pulsed laser deposition in N(2) + O(2) ambient
D.J. Rogers, D.C. Look, F.H. Teherani, K. Minder, M. Razeghi, A. Largeteau, G. Demazeau, J. Morrod, K.A. Prior, A. Lusson, and S. Hassani
Physica Status Solidi (c), Vol. 5, No. 9, p. 3084-3087-- July 1, 2008 ...[Visit Journal]
ZnO films were deposited on c-Al2O3 using pulsed laser deposition both with and without N2 in the growth ambient. X-ray diffraction revealed poorer crystal quality and surface morphology for one-step growths with N2 in the ambient. A marked improvement in both the crystallographic and surface quality was obtained through use of two-step growths employing nominally undoped ZnO buffer layers prior to growth with N2 in the ambient. All films showed majority n-type conduction in Hall measurements. Post-annealing for 30 minutes at 600 ºC in O2 systematically reduced both the carrier concentration and the conductivity. A base room temperature carrier concentration of ~ 1016 cm-3 was linked to Al diffusing from the substrate. 4.2 K photoluminescence spectra exhibited blue bands associated with the growths having N2 in the ambient. Temperature dependent Hall measurements were consistent with N being incorporated in the films. Processed devices did not, however, show rectifying behavior or electroluminescence. [reprint (PDF)]
 
1.  Superlattice sees colder objects in two colors and high resolution
M. Razeghi
SPIE Newsroom-- February 10, 2012 ...[Visit Journal]
A special class of semiconductor material can now detect two wavebands of light with energies less than a tenth of an electron volt in high resolution using the same IR camera. [reprint (PDF)]
 
1.  High Detectivity InGaAs/InGaP Quantum-Dot Infrared Photodetectors Grown by Low Pressure Metalorganic Chemical Vapor Deposition
J. Jiang, S. Tsao, T. O'Sullivan, W. Zhang, H. Lim, T. Sills, K. Mi, M. Razeghi, G.J. Brown, and M.Z. Tidrow
Applied Physics Letters, 84 (12)-- April 22, 2004 ...[Visit Journal]
We report a high detectivity middle-wavelength infrared quantum dot infrared photodetector (QDIP). The InGaAs quantum dots were grown by self-assembly on an InGaP matrix via low pressure metalorganic chemical vapor deposition. Photoresponse was observed at temperatures above 200 K with a peak wavelength of 4.7 µm and cutoff wavelength of 5.2 µm. The background limited performance temperature was 140 K, and this was attributed to the super low dark current observed in this QDIP. A detectivity of 3.6×1010 cm·Hz½/W, which is comparable to the state-of-the-art quantum well infrared photodetectors in a similar wavelength range, was obtained for this InGaAs/InGaP QDIP at both T = 77 K and T = 95 K at biases of –1.6 and –1.4 V, [reprint (PDF)]
 

Page 7 of 11:  Prev << 1 2 3 4 5 6 7  8 9 10 11  >> Next  (268 Items)