| About the CQD | | News | | Conferences | | Publications | | Books | | Research | | People | | History | | Patents | | Contact | Channel | |
Page 7 of 20: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 >> Next (493 Items)
| 2. | A review of the growth, doping, and applications of β-Ga2O3 thin films Manijeh Razeghi, Ji-Hyeon Park , Ryan McClintock, Dimitris Pavlidis, Ferechteh H. Teherani, David J. Rogers, Brenden A. Magill, Giti A. Khodaparast, Yaobin Xu, Jinsong Wu, Vinayak P. Dravid Proc. SPIE 10533, Oxide-based Materials and Devices IX, 105330R -- March 14, 2018 ...[Visit Journal] β-Ga2O3 is emerging as an interesting wide band gap semiconductor for solar blind photo detectors (SBPD) and high power field effect transistors (FET) because of its outstanding material properties including an extremely wide bandgap (Eg ~4.9eV) and a high breakdown field (8 MV/cm). This review summarizes recent trends and progress in the growth/doping of β-Ga2O3 thin films and then offers an overview of the state-of-the-art in SBPD and FET devices. The present challenges for β-Ga2O3 devices to penetrate the market in real-world applications are also considered, along with paths for future work. [reprint (PDF)] |
| 2. | A lifetime of contributions to the world of semiconductors using the Czochralski invention M. Razeghi Vacuum Vol. 9934, 993406-1-- February 8, 2017 ...[Visit Journal] Over the course of my career, I have made numerous contributions related to semiconductor crystal growth and high performance optoelectronics over a vast region of the electromagnetic spectrum (ultraviolet to terahertz). In 2016 this cumulated in my receiving the Jan Czochralski Gold Medal award from the European Materials Research Society. This article is designed to provide a historical perspective and general overview of these scientific achievements, on the occasion of being honored by this award. These achievements would not have been possible without high quality crystalline substrates, and this article is written in honor of Jan Czochralski on the 100th anniversary of his important discovery. [reprint (PDF)] |
| 2. | Scaling in back-illuminated GaN avalanche photodiodes K. Minder, J.L. Pau, R. McClintock, P. Kung, C. Bayram, M. Razeghi and D. Silversmith Applied Physics Letters, Vol. 91, No. 7, p. 073513-1-- August 13, 2007 ...[Visit Journal] Avalanche p-i-n photodiodes of various mesa areas were fabricated on AlN templates for back illumination for enhanced performance through hole-initiated multiplication, and the effects of increased area on device performance were studied. Avalanche multiplication was observed in mesa sizes up to 14,063 µm^2 under linear mode operation. Uniform gain and a linear increase of the dark current with area were demonstrated. [reprint (PDF)] |
| 2. | Roadmap of Semiconductor Infrared Lasers and Detectors for the 21st Century M. Razeghi SPIE Conference, San Jose, CA, -- January 27, 1999 ...[Visit Journal] Since the first discovery, semiconductor infrared lasers and detectors have found many various applications in military, communications, medical, and industry sections. In this paper, the current status of semiconductor infrared lasers and detectors will be reviewed. Advantages and disadvantages of different methods and techniques is discussed later. Some basic physical limitations of current technology are studied and the direction to overcome these problems will be suggested. [reprint (PDF)] |
| 2. | Dark current suppression in Type-II InAs/GaSb superlattice long wavelength infrared photodiodes with M-structure barrier B.M. Nguyen, D. Hoffman, P.Y. Delaunay, and M. Razeghi Applied Physics Letters, Vol. 91, No. 16, p. 163511-1-- October 15, 2007 ...[Visit Journal] We presented an alternative design of Type-II superlattice photodiodes with the insertion of a mid-wavelength infrared M-structure AlSb/GaSb/InAs/GaSb/AlSb superlattice for the reduction of dark current. The M-structure superlattice has a larger carrier effective mass and a greater band discontinuity as compared to the standard Type-II superlattices at the valence band. It acts as an effective medium that weakens the diffusion and tunneling transport at the depletion region. As a result, a 10.5 µm cutoff Type-II superlattice with 500 nm M-superlattice barrier exhibited a R0A of 200 cm2 at 77 K, approximately one order of magnitude higher than the design without the barrier. The quantum efficiency of such structures does not show dependence on either barrier thickness or applied bias. [reprint (PDF)] |
| 2. | Continuous wave, room temperature operation of λ ~ 3μm quantum cascade laser N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken and M. Razeghi SPIE Proceedings, Vol. 8631, p. 86310M-1, Photonics West, San Francisco, CA-- February 3, 2013 ...[Visit Journal] Quantum Cascade Lasers (QCLs), operating in continuous wave (CW) at room temperature(RT) in 3-3.5 μm spectral range, which overlaps the spectral fingerprint region of many hydrocarbons, is essential in spectroscopic trace gas detection, environment monitoring, and pollution control. A
3 μm QCL, operating in CW at RT is demonstrated. This initial result makes it possible, for the most
popular material system (AlInAs/GaInAs on InP) used in QCLs in mid-infrared and long-infrared, to cover the entire spectral range of mid-infrared atmospheric window (3-5 μm).
In0.79Ga0.21As/In0.11Al0.89As strain balanced superlattice, which has a large conduction band offset, was grown. The strain was balanced with composite barriers (In0.11Al0.89As /In0.4Al0.6As) in the injector region, to eliminate the need of extremely high compressively strained GaInAs, whose pseudomorphic growth is very difficult. [reprint (PDF)] |
| 2. | High Carrier Lifetime InSb Grown on GaAs Substrates E. Michel, H. Mohseni, J.D. Kim, J. Wojkowski, J. Sandven, J. Xu, M. Razeghi, R. Bredthauer, P. Vu, W. Mitchel, and M. Ahoujja Applied Physics Letters 71 (8-- August 25, 1997 ...[Visit Journal] We report on the growth of near bulklike InSb on GaAs substrates by molecular beam epitaxy despite the 14% lattice mismatch between the epilayer and the substrate. Structural, electrical, and optical properties were measured to assess material quality. X-ray full widths at half-maximum were as low as 55 arcsec for a 10 µm epilayer, peak mobilities as high as ~ 125 000 cm2/V s, and carrier lifetimes up to 240 ns at 80 K. [reprint (PDF)] |
| 2. | High-Performance Focal Plane Arrays Based on InAs-GaSb Superlattices with a 10-micron Cutoff Wavelegth P.Y. Delaunay, B.M. Nguyen, D. Hoffman and M. Razeghi IEEE Journal of Quantum Electronics, Vol. 44, No. 5, p. 462-467-- May 1, 2008 ...[Visit Journal] We report on the demonstration of a focal plane array based on Type-II InAs/GaSb superlattices grown on N-type GaSb substrate with a 50%-cutoff wavelength at 10 μm. The surface leakage occurring after flip-chip bonding and underfill in the Type-II devices was suppressed using a double heterostructure design. The R0A of diodes passivated with SiO2 was 23 Ω·cm2 after underfill. A focal plane array hybridized to an Indigo readout integrated circuit demonstrated a noise equivalent temperature difference of 33 mK at 81 K, with an integration time of 0.23 ms. [reprint (PDF)] |
| 2. | High Quality Type-II InAs/GaSb Superlattices with Cutoff Wavelength ~3.7 µm Using Interface Engineering Y. Wei, J. Bae, A. Gin, A. Hood, M. Razeghi, G.J. Brown, and M. Tidrow Journal of Applied Physics, 94 (7)-- October 1, 2003 ...[Visit Journal] We report the most recent advance in the area of Type-II InAs/GaSb superlattices that have cutoff wavelength of ~3.7 µm. With GaxIn1–x type interface engineering techniques, the mismatch between the superlattices and the GaSb (001) substrate has been reduced to <0.1%. There is no evidence of dislocations using the best examination tools of x-ray, atomic force microscopy, and transmission electron microscopy. The full width half maximum of the photoluminescence peak at 11 K was ~4.5 meV using an Ar+ ion laser (514 nm) at fluent power of 140 mW. The integrated photoluminescence intensity was linearly dependent on the fluent laser power from 2.2 to 140 mW at 11 K. The temperature-dependent photoluminescence measurement revealed a characteristic temperature of one T1 = 245 K at sample temperatures below 160 K with fluent power of 70 mW, and T1 = 203 K for sample temperatures above 180 K with fluent power of 70 and 420 mW. [reprint (PDF)] |
| 2. | Room temperature continuous wave operation of λ ~ 3-3.2 μm quantum cascade lasers N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken and M. Razeghi Applied Physics Letters, Vol. 101, No. 24, p. 241110-1-- December 10, 2012 ...[Visit Journal] We demonstrate quantum cascade lasers emitting at wavelengths of 3–3.2 μm in the InP-based material system. The laser core consists of GaInAs/AlInAs using strain balancing technique. In room temperature pulsed mode operation, threshold current densities of 1.66 kA∕cm² and 1.97 kA∕cm², and characteristic temperatures (T0) of 108 K and 102 K, are obtained for the devices emitting at 3.2 μm and 3 μm, respectively. Room temperature continuous wave operation is achieved at both wavelengths. [reprint (PDF)] |
| 2. | Buried heterostructure quantum cascade lasers with high continuous-wave wall plug efficiency A. Evans, S.R. Darvish, S. Slivken, J. Nguyen, Y. Bai and M. Razeghi Applied Physics Letters, Vol. 91, No. 7, p. 071101-1-- August 13, 2007 ...[Visit Journal] The authors report on the development of ~4.7 µm strain-balanced InP-based quantum cascade lasers with high wall plug efficiency and room temperature continuous-wave operation. The use of narrow-ridge buried heterostructure waveguides and thermally optimized packaging is presented. Over 9.3% wall plug efficiency is reported at room temperature from a single device producing over 0.675 W of continuous-wave output power. Wall plug efficiencies greater than 18% are also reported for devices at a temperature of 150 K, with continuous-wave output powers of more than 1 W. [reprint (PDF)] |
| 2. | Low-Threshold 7.3 μm Quantum Cascade Lasers Grown by Gas-Source Molecular Beam Epitaxy S. Slivken, A. Matlis, A. Rybaltowski, Z. Wu and M. Razeghi Applied Physics Letters 74 (19)-- May 19, 1999 ...[Visit Journal] We report low-threshold 7.3 μm superlattice-based quantum cascade lasers. The threshold current density is 3.4 kA/cm² at 300 K and 1.25 kA/cm² at 79 K in pulsed mode for narrow (∼20 μm), 2 mm-long laser diodes. The characteristic temperature (T0) is 210 K. The slope efficiencies are 153 and 650 mW/A at 300 and 100 K, respectively. Power output is in excess of 100 mW at 300 K. Laser far-field intensity measurements give divergence angles of 64° and 29° in the growth direction and in the plane of the quantum wells, respectively. Far-field simulations show excellent agreement with the measured results. [reprint (PDF)] |
| 2. | Effect of sidewall surface recombination on the quantum efficiency in a Y2O3 passivated gated type-II InAs/GaSb long-infrared photodetector array G. Chen, A. M. Hoang, S. Bogdanov, A. Haddadi, S. R. Darvish, and M. Razeghi Appl. Phys. Lett. 103, 223501 (2013)-- November 25, 2013 ...[Visit Journal] Y2O3 was applied to passivate a long-wavelength infrared type-II superlattice gated photodetector array with 50% cut-off wavelength at 11 μm, resulting in a saturated gate bias that was 3 times lower than in a SiO2 passivated array. Besides effectively suppressing surface leakage, gating technique exhibited its ability to enhance the quantum efficiency of 100 × 100 μm size mesa from 51% to 57% by suppressing sidewall surface recombination. At 77 K, the gated photodetector showed dark current density and resistance-area product at −300 mV of 2.5 × 10−5 A/cm² and 1.3 × 104 Ω·cm², respectively, and a specific detectivity of 1.4 × 1012 Jones. [reprint (PDF)] |
| 2. | Structural, Optical, Electrical and Morphological Study of Transparent p-NiO/n-ZnO Heterojunctions Grown by PLD V. E. Sandana, D. J. Rogers, F. Hosseini Teherani, P. Bove, N. Ben Sedrine, M. R. Correia, T. Monteiro, R. McClintock, and M. Razeghi Proc. SPIE 9364, Oxide-based Materials and Devices VI, 93641O-- March 24, 2015 ...[Visit Journal] NiO/ZnO heterostructures were fabricated on FTO/glass and bulk hydrothermal ZnO substrates by pulsed laser deposition. X-Ray diffraction and Room Temperature (RT) Raman studies were consistent with the formation of (0002) oriented wurtzite ZnO and (111) oriented fcc NiO. RT optical transmission studies revealed bandgap energy values of ~3.70 eV and ~3.30 eV for NiO and ZnO, respectively and more than 80% transmission for the whole ZnO/NiO/FTO/glass stack over the majority of the visible spectrum. Lateral p-n heterojunction mesas (~6mm x 6mm) were fabricated using a shadow mask during PLD growth. n-n and p-p measurements showed that Ti/Au contacting
gave an Ohmic reponse for the NiO, ZnO and FTO. Both heterojunctions had rectifying I/V characteristics. The junction on FTO/glass gave forward bias currents (243mA at +10V) that were over 5 orders of magnitude higher than those for the junction formed on bulk ZnO. At ~ 10-7 A (for 10V of reverse bias) the heterojunction leakage current was approximately two orders of magnitude lower on the bulk ZnO substrate than on FTO. Overall, the lateral p-NiO/n-ZnO/FTO/glass device proved far superior to that formed by growing p-NiO directly on the bulk n-ZnO substrate and gave a combination of electrical performance and visible wavelength transparency that could predispose it for use in various third generation transparent electronics applications. [reprint (PDF)] |
| 2. | Antimonite-based gap-engineered type-II superlattice materials grown by MBE and MOCVD for the third generation of infrared imagers Manijeh Razeghi, Arash Dehzangi, Donghai Wu, Ryan McClintock, Yiyun Zhang, Quentin Durlin, Jiakai Li, Fanfei Meng Proc. SPIE Defense + Commercial Sensing,Infrared Technology and Applications XLV, 110020G -- May 7, 2019 ...[Visit Journal] Third generation of infrared imagers demand performances for higher detectivity, higher operating temperature, higher resolution, and multi-color detection all accomplished with better yield and lower manufacturing costs. Antimonidebased gap-engineered Type-II superlattices (T2SLs) material system is considered as a potential alternative for MercuryCadmium-Telluride (HgCdTe) technology in all different infrared detection regimes from short to very long wavelengths for the third generation of infrared imagers. This is due to the incredible growth in the understanding of its material properties and improvement of device processing which leads to design and fabrication of better devices. We will present the most recent research results on Antimonide-based gap-engineered Type-II superlattices, such as highperformance dual-band SWIR/MWIR photo-detectors and focal plane arrays for different infrared regimes, toward the third generation of infrared imaging systems at the Center for Zuantum Devices. Comparing metal-organic chemical
vapor deposition (MOCVD), vs molecular beam epitaxy (MBE).
[reprint (PDF)] |
| 2. | Substrate removal for high quantum efficiency back side illuminated type-II InAs/GaSb photodetectors P.Y. Delaunay, B.M. Nguyen, D. Hoffman and M. Razeghi Applied Physics Letters, Vol. 91, No. 23, p. 231106-- December 3, 2007 ...[Visit Journal] A substrate removal technique using an InAsSb etch stop layer improves by a factor of 2 the quantum efficiency of back side illuminated type-II InAs/GaSb superlattice photodetectors. After etching of the GaSb substrate with a CrO3 based solution, the quantum efficiency of the diodes presents Fabry-Pérot oscillations averaging at 56%. Due to the confinement of the infrared light inside the devices, the quantum efficiency for certain devices reaches 75% at 8.5 µm. The implementation of this new technique to a focal plane array resulted in a decrease of the integration time from 0.23 to 0.08 ms. [reprint (PDF)] |
| 2. | InSb Infrared Photodetectors on Si Substrates Grown by Molecular Beam Epitaxy E. Michel, J. Xu, J.D. Kim, I. Ferguson, and M. Razeghi IEEE Photonics Technology Letters 8 (5) pp. 673-- May 1, 1996 ...[Visit Journal] The InSb infrared photodetectors grown heteroepitaxially on Si substrates by molecular beam epitaxy (MBE) are reported. Excellent InSb material quality is obtained on 3-in Si substrates (with a GaAs predeposition) as confirmed by structural, optical, and electrical analysis. InSb infrared photodetectors on Si substrates that can operate from 77 K to room temperature have been demonstrated. The peak voltage-responsitivity at 4 μm is about 1.0×103 V/W and the corresponding Johnson-noise-limited detectivity is calculated to be 2.8×1010 cm·Hz½/W. This is the first important stage in developing InSb detector arrays or monolithic focal plane arrays (FPAs) on silicon. The development of this technology could provide a challenge to traditional hybrid FPA's in the future. [reprint (PDF)] |
| 2. | High Power Quantum Cascade Lasers (QCLs) Grown by GasMBE M. Razeghi and S. Slivken SPIE Proceedings, International Conference on Solid State Crystals (ICSSC), Zakopane, Poland, -- October 14, 2002 ...[Visit Journal] This paper is a brief summary of the technological development and state-of-the-art performance of quantum cascade lasers produced at the Centre for Quantum Devices. Laser design will be discussed, as well as experimental details of device fabrication. Recent work has focused on the development of high peak and average power QCLs emitting at room temperature and above. Scaling of the output is demonstrated by increasing the number of emitting regions in the waveguide core. At λ = 9 µm, over 7 W of peak power has been demonstrated at room temperature for a single diode, with an average power of 300 mW at 6% duty cycle. At shorter wavelengths, laser development includes the use of highly strain-balanced heterostructures in order to maintain a high conduction band offset and minimize leakage current. At λ = 6 µm, utilizing a high reflective coating and epilayer-down mounting of the laser, we have demonstrated 225 mW of average power from a single facet at room temperature. Lastly, these results are put in perspective of other reported results and possible future directions are discussed.
[reprint (PDF)] |
| 2. | Semiconductor ultraviolet detectors M. Razeghi and A. Rogalski Journal of Applied Physics Applied Physics Review 79 (10)-- May 15, 1996 ...[Visit Journal] In this review article a comprehensive analysis of the developments in ultraviolet (UV) detector technology is described. At the beginning, the classification of UV detectors and general requirements imposed on these detectors are presented. Further considerations are restricted to modern semiconductor UV detectors, so the basic theory of photoconductive and photovoltaic detectors is presented in a uniform way convenient for various detector materials. Next, the current state of the art of different types of semiconductor UV detectors is presented. Hitherto, the semiconductor UV detectors have been mainly fabricated using Si. Industries such as the aerospace, automotive, petroleum, and others have continuously provided the impetus pushing the development of fringe technologies which are tolerant of increasingly high temperatures and hostile environments. As a result, the main efforts are currently directed to a new generation of UV detectors fabricated from wide band-gap semiconductors the most promising of which are diamond and AlGaN. The latest progress in development of AlGaN UV detectors is finally described in detail. [reprint (PDF)] |
| 2. | Interface roughness scattering in thin, undoped GaInP/GaAs quantum wells W. C. Mitchel, G.J. Brown, I. Lo, S. Elhamri, M. Aboujja, K. Ravindran, R.S. Newrock, M. Razeghi, and X. He Applied Physics Letters 65 (12)-- September 19, 1994 ...[Visit Journal] Electronic transport properties of very thin undoped GaInP/GaAs quantum wells have been measured by temperature dependent low field Hall effect and by Shubnikov–de Haas effect. Strong Shubnikov–de Haas oscillations were observed after increasing the electron concentration via the persistent photocurrent effect. Low temperature mobilities of up to 70 ,000 cm²/V· s at carrier concentrations of 6.5×1011 cm−2 were observed in a 20 Å quantum well. The results are compared with the theory of interface roughness scattering which indicates extremely smooth interfaces; however, discrepancies between experiment and theory are observed. [reprint (PDF)] |
| 2. | Anomalous Hall Effect in InSb Layers Grown by MOCVD on GaAs Substrates C. Besikci, Y.H. Choi, R. Sudharsanan, and M. Razeghi Journal of Applied Physics 73 (10)-- May 15, 1993 ...[Visit Journal] InSb epitaxial layers have been grown on GaAs substrates by low‐pressure metalorganic chemical vapor deposition. A 3.15 μm thick film yielded an x‐ray full width at half maximum of 171 arcsec. A Hall mobility of 76 200 cm²/V· s at 240 K and a full width at half maximum of 174 arcsec have been measured for a 4.85 μm thick epilayer. Measured Hall data have shown anomalous behavior. A decrease in Hall mobility with decreasing temperature has been observed and room‐temperature Hall mobility has increased with thickness. In order to explain the anomalous Hall data, and the thickness dependence of the measured parameters, the Hall coefficient and Hall mobility have been simulated using a three‐layer model including a surface layer, a bulklike layer, and an interface layer with a high density of defects. Theoretical analysis has shown that anomalous behavior can be attributed to donor-like defects caused by the large lattice mismatch and to a surface layer which dominates the transport in the material at low temperatures. [reprint (PDF)] |
| 2. | Fabrication of GaN Nanotubular Material using MOCVD with an Aluminium Oxide Membrane W.G. Jung, S.H. Jung, P. Kung, and M. Razeghi Nanotechnology 17-- January 1, 2006 ...[Visit Journal] GaN nanotubular material is fabricated with an aluminium oxide membrane in MOCVD. SEM, XRD, TEM and PL are employed to characterize the fabricated GaN nanotubular material. An aluminium oxide membrane with ordered nanoholes is used as a template. Gallium nitride is deposited at the inner wall of the nanoholes in the aluminium oxide template, and the nanotubular material with high aspect ratio is synthesized using the precursors of TMG and ammonia gas. Optimal synthesis conditions in MOCVD are obtained successfully for the gallium nitride nanotubular material in this research. The diameter of the GaN nanotube fabricated is approximately 200–250 nm and the wall thickness is about 40–50 nm. [reprint (PDF)] |
| 2. | High performance InGaAs/InGaP quantum dot infrared photodetector achieved through doping level optimization S. Tsao, K. Mi, J. Szafraniec, W. Zhang, H. Lim, B. Movaghar, and M. Razeghi SPIE Conference, Jose, CA, Vol. 5732, pp. 334-- January 22, 2005 ...[Visit Journal] We report an InGaAs/InGaP/GaAs quantum dot infrared photodetector grown by metalorganic chemical vapor deposition with detectivity of 1.3x1011 cm·Hz½/W at 77K and 1.2x1010 ccm·Hz½/W at 120K. Modeling of the Quantum dot energy levels showed us that increased photoresponse could be obtained by doping the quantum dots to 4 electrons per dot instead of the usual 2 electrons per dot. This happens because the primary photocurrent transition is from the first excited state to a higher excited state. Increasing the quantum doping in our device yielded significant responsivity improvement and much higher detectivity as a result. This paper discusses the performance of this higher doping device and compares it to our previously reported device with lower doping. [reprint (PDF)] |
| 2. | Resonant cavity enhanced heterojunction phototransistors based on type-II superlattices Jiakai Li, Arash Dehzangi, Donghai Wu, Ryan McClintock, Manijeh Razeghi Infrared Physics & Technology Available online 27 October 2020, 103552 https://doi.org/10.1016/j.infrared.2020.103552-- October 27, 2020 ...[Visit Journal] Resonant cavity enhanced heterojunction phototransistor based on InAs/GaSb/AlSb type-II superlattice grown by molecular beam epitaxy has been demonstrated. The resonant wavelength was designed to be at near 1.9 μm wavelength range at room temperature. An eleven-pair lattice matched GaSb-AlAsSb quarter-wavelength Bragg reflector was used in the RCE-HPT to enhance the photoresponse. The device showed the wavelength selectivity and a cavity enhancement of the responsivity at 1.9 μm at room temperature. [reprint (PDF)] |
| 2. | Inductively coupled plasma etching and processing techniques for type-II InAs/GaSb superlattices infrared detectors toward high fill factor focal plane arrays E.K. Huang, B.M. Nguyen, D. Hoffman, P.Y. Delaunay and M. Razeghi SPIE Proceedings, San Jose, CA Volume 7222-0Z-- January 26, 2009 ...[Visit Journal] A challenge for Type-II InAs/GaSb superlattice (T2SL) photodetectors is to achieve high fill factor, high aspect ratio etching for third generation focal plane arrays (FPAs). Initially, we compare the morphological and electrical results of single element T2SL photodiodes after BCl3/Ar inductively coupled plasma (ICP) and electron cyclotron resonance (ECR) dry etching. Using a Si3N4 hard mask, ICP-etched structures exemplify greater sidewall verticality and smoothness, which are essential toward the realization of high fill factor FPAs. ICP-etched single element devices with SiO2 passivation that are 9.3 µm in cutoff wavelength achieved vertical sidewalls of 7.7 µm in depth with a resistance area product at zero bias of greater than 1,000 Ω·cm2 and maximum differential resistance in excess of 10,000 Ω·cm2 at 77 K. By only modifying the etching technique in the fabrication steps, the ICP-etched photodiodes showed an order of magnitude decrease in their dark current densities in comparison to the ECR-etched devices. Finally, high aspect ratio etching is demonstrated on mutli-element arrays with 3 µm-wide trenches that are 11 µm deep. [reprint (PDF)] |
Page 7 of 20: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 >> Next (493 Items)
|