| About the CQD | | News | | Conferences | | Publications | | Books | | Research | | People | | History | | Patents | | Contact | Channel | |
Page 7 of 21: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 >> Next (515 Items)
| 2. | High Temperature Continuous Wave Operation of ~8 μm Quantum Cascade Lasers S. Slivken, A. Matlis, C. Jelen, A. Rybaltowski, J. Diaz, and M. Razeghi Applied Physics Letters 74 (2)-- January 11, 1999 ...[Visit Journal] We report single-mode continuous-wave operation of a λ∼8 μm quantum cascade laser at 140 K. The threshold current density is 4.2 kA/cm² at 300 K in pulsed mode and 2.5 kA/cm² at 140 K in continuous wave for 2 mm long index-guided laser cavities of 20 μm width. Wide stripe (W ∼ 100 μm), index-guided lasers from the same wafer in pulsed operation demonstrate an average T0 of 210 K with other wafers demonstrating a T0 as high as 290 K for temperatures from 80 to 300 K. This improvement in high-temperature performance is a direct result of three factors: excellent material quality, a low-loss waveguide design, and a low-leakage index-guided laser geometry. [reprint (PDF)] |
| 2. | Well Resolved Room Temperature Photovoltage Spectra of GaAs-GaInP Quantum Wells and Superlattices Xiaoguang He and Manijeh Razeghi Applied Physics Letters 62 (6)-- February 8, 1993 ...[Visit Journal] We report the first well resolved room‐temperature photovoltage spectra due to the sublevel transitions in the GaInP‐GaAs superlattices and multiquantum wells grown by low pressure metalorganic chemical vapor deposition. Sharp well resolved peaks attributed to exciton absorption of the electron‐to‐light hole and electron‐to‐heavy hole have been observed at room temperature. This indicates that GaAs‐GaInP is a promising material for the application of the modulators, optical switches, and optical bistable divices. Satisfactory agreements between experimental measurements and theoretical results have been obtained. These results demonstrate that photovoltage spectroscopy is a simple, but very powerful tool to study quantum confinement structures. [reprint (PDF)] |
| 2. | Fabrication of GaN Nanotubular Material using MOCVD with an Aluminium Oxide Membrane W.G. Jung, S.H. Jung, P. Kung, and M. Razeghi Nanotechnology 17-- January 1, 2006 ...[Visit Journal] GaN nanotubular material is fabricated with an aluminium oxide membrane in MOCVD. SEM, XRD, TEM and PL are employed to characterize the fabricated GaN nanotubular material. An aluminium oxide membrane with ordered nanoholes is used as a template. Gallium nitride is deposited at the inner wall of the nanoholes in the aluminium oxide template, and the nanotubular material with high aspect ratio is synthesized using the precursors of TMG and ammonia gas. Optimal synthesis conditions in MOCVD are obtained successfully for the gallium nitride nanotubular material in this research. The diameter of the GaN nanotube fabricated is approximately 200–250 nm and the wall thickness is about 40–50 nm. [reprint (PDF)] |
| 2. | High performance InGaAs/InGaP quantum dot infrared photodetector achieved through doping level optimization S. Tsao, K. Mi, J. Szafraniec, W. Zhang, H. Lim, B. Movaghar, and M. Razeghi SPIE Conference, Jose, CA, Vol. 5732, pp. 334-- January 22, 2005 ...[Visit Journal] We report an InGaAs/InGaP/GaAs quantum dot infrared photodetector grown by metalorganic chemical vapor deposition with detectivity of 1.3x1011 cm·Hz½/W at 77K and 1.2x1010 ccm·Hz½/W at 120K. Modeling of the Quantum dot energy levels showed us that increased photoresponse could be obtained by doping the quantum dots to 4 electrons per dot instead of the usual 2 electrons per dot. This happens because the primary photocurrent transition is from the first excited state to a higher excited state. Increasing the quantum doping in our device yielded significant responsivity improvement and much higher detectivity as a result. This paper discusses the performance of this higher doping device and compares it to our previously reported device with lower doping. [reprint (PDF)] |
| 2. | High Performance Solar-Blind Ultraviolet Focal Plane Arrays Based on AlGaN Erdem Cicek, Ryan McClintock, Abbas Haddadi, William A. Gaviria Rojas, and Manijeh Razeghi IEEE Journal of Quantum Electronics, Vol. 50, Issue 8, p 591-595-- August 1, 2014 ...[Visit Journal] We report on solar-blind ultraviolet, AlxGa1-x N-
based,p-i-n,focal plane array (FPA) with 92% operability. At the peak detection wavelength of 278 nm, 320×256-FP A-pixel showed unbiased peak external quantum efficiency (EQE) and responsivity of 49% and 109 mA/W, respectively, increasing to
66% under 5 volts of reverse bias. Electrical measurements yielded a low-dark current density: <7×10-9A/cm², at FPA operating voltage of 2 volts of reverse bias. [reprint (PDF)] |
| 2. | QEPAS based ppb-level detection of CO and N2O using a high power CW DFB-QCL Y. Ma, R. Lewicki, M. Razeghi and F. Tittel Optics Express, Vol. 21, No. 1, p. 1008-- January 14, 2013 ...[Visit Journal] An ultra-sensitive and selective quartz-enhanced photoacoustic spectroscopy (QEPAS) sensor platform was demonstrated for detection of carbon monoxide (CO) and nitrous oxide (N2O). This sensor used a stateof-the art 4.61 μm high power, continuous wave (CW), distributed feedback quantum cascade laser (DFB-QCL) operating at 10°C as the excitation source. For the R(6) CO absorption line, located at 2169.2 cm−1, a minimum detection limit (MDL) of 1.5 parts per billion by volume (ppbv) at atmospheric pressure was achieved with a 1 sec acquisition time and the addition of 2.6% water vapor concentration in the analyzed gas mixture. For the N2O detection, a MDL of 23 ppbv was obtained at an optimum gas pressure of 100 Torr and with the same water vapor content of 2.6%. In both cases the presence of water vapor increases the detected CO and N2O QEPAS signal levels as a result of enhancing the vibrational-translational relaxation rate of both target gases. Allan deviation analyses were performed to investigate the long term performance of the CO and N2O QEPAS sensor systems. For the optimum data acquisition time of 500 sec a MDL of 340 pptv and 4 ppbv was obtained for CO and N2O detection,respectively. To demonstrate reliable and robust operation of the QEPAS sensor a continuous monitoring of atmospheric CO and N2O concentration levels for a period of 5 hours were performed. [reprint (PDF)] |
| 2. | Extended short-wavelength infrared nBn photodetectors based on type-II InAs/AlSb/GaSb superlattices with an AlAsSb/GaSb superlattice barrier A. Haddadi, R. Chevallier, A. Dehzangi, and M. Razeghi Applied Physics Letters 110, 101104-- March 8, 2017 ...[Visit Journal] Extended short-wavelength infrared nBn photodetectors based on type-II InAs/AlSb/GaSb superlattices on GaSb substrate have been demonstrated. An AlAsSb/GaSb H-structure superlattice design was used as the large-bandgap electron-barrier in these photodetectors. The photodetector is designed to have a 100% cut-off wavelength of ∼2.8 μm at 300 K. The photodetector exhibited a room-temperature (300 K) peak responsivity of 0.65 A/W at 1.9 μm, corresponding to a quantum efficiency of 41% at zero bias under front-side illumination, without any anti-reflection coating. With an R × A of 78 Ω·cm² and a dark current density of 8 × 10−3 A/cm² under −400 mV applied bias at 300 K, the nBn photodetector exhibited a specific detectivity of 1.51 × 1010 Jones. At 150 K, the photodetector exhibited a dark current density of 9.5 × 10−9 A/cm² and a quantum efficiency of 50%, resulting in a detectivity of 1.12 × 1013 Jones. [reprint (PDF)] |
| 2. | Gain and recombination dynamics in photodetectors made with quantum nanostructures: the quantum dot in a well and the quantum well B. Movaghar, S. Tsao, S. Abdollahi Pour, T. Yamanaka, and M. Razeghi Virtual Journal of Nanoscale Science & Technology, Vol. 18, No. 14-- October 6, 2008 ...[Visit Journal][reprint (PDF)] |
| 2. | High-Performance InP-Based Mid-IR Quantum Cascade Lasers M. Razeghi IEEE Journal of Selected Topics in Quantum Electronics, Vol. 15, No. 3, May-June 2009, p. 941-951.-- June 5, 2009 ...[Visit Journal] Quantum cascade lasers (QCLs) were once considered
as inefficient devices, as the wall-plug efficiency (WPE) was merely a few percent at room temperature. But this situation has changed in the past few years, as dramatic enhancements to the output
power andWPE have been made for InP-based mid-IR QCLs. Room temperature continuous-wave (CW) output power as high as 2.8 W and WPE as high as 15% have now been demonstrated for individual devices. Along with the fundamental exploration of refining the design and improving the material quality, a consistent determination of important device performance parameters allows for strategically addressing each component that can be improved
potentially. In this paper, we present quantitative experimental evidence backing up the strategies we have adopted to improve the WPE for QCLs with room temperature CW operation. [reprint (PDF)] |
| 2. | High-Average-Power, High-Duty-Cycle (~6 μm) Quantum Cascade Lasers S. Slivken, A. Evans, J. David, and M. Razeghi Applied Physics Letters, 81 (23)-- December 2, 2002 ...[Visit Journal] High-power quantum cascade lasers emitting at λ = 6.1 μm are demonstrated. Accurate control of growth parameters and strain balancing results in a near-perfect lattice match, which leads to excellent material quality. Excellent peak power for uncoated lasers, up to 1.5 W per facet for a 21 μm emitter width, is obtained at 300 K for 30 period structures. The threshold current density at 300 K is only 2.4 kA/cm². From 300 to 425 K, the laser exhibits a characteristic temperature T0 of 167 K. Next, Y2O3/Ti/Au mirror coatings were deposited on 1.5 mm cavities and mounted epilayer down. These lasers show an average output power of up to 225 mW at 17% duty cycle, and still show 8 mW average power at 45% duty cycle. [reprint (PDF)] |
| 2. | Modeling Type-II InAs/GaSb Superlattices Using Empirical Tight-Binding Method: New Aspects Y. Wei, M. Razeghi, G.J. Brown, and M.Z. Tidrow SPIE Conference, Jose, CA, Vol. 5359, pp. 301-- January 25, 2004 ...[Visit Journal] The recent advances in the experimental work on the Type-II InAs/GaSb superlattices necessitate a modeling that can handle arbitrary layer thickness as well as different types of interfaces in order to guide the superlattice design. The empirical tight-binding method (ETBM) is a very good candidate since it builds up the Hamiltonian atom by atom. There has been a lot of research work on the modeling of Type-II InAs/GaSb superlattices using the ETBM. However, different groups generate very different accuracy comparing with experimental results. We have recently identified two major aspects in the modeling: the antimony segregation and the interface effects. These two aspects turned out to be of crucial importance governing the superlattice properties, especially the bandgap. We build the superlattice Hamiltonian using antimony segregated atomic profile taking into account the interface. Our calculations agree with our experimental results within growth uncertainties. In addition we introduced the concept of GaxIn1-x type interface engineering, which will add another design freedom especially in the mid-wavelength infrared range (3~7 µm) in orderto reduce the lattice mismatch. [reprint (PDF)] |
| 2. | Room temperature single-mode terahertz sources based on intracavity difference-frequency generation in quantum cascade lasers Q.Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai and M. Razeghi Applied Physics Letters, Vol. 99, Issue 13, p. 131106-1-- September 26, 2011 ...[Visit Journal] We demonstrate room temperature single-mode THz emission at 4 THz based on intracavity difference-frequency generation from mid-infrared dual-wavelength quantum cascade lasers. An integrated dual-period distributed feedback grating is defined on the cap layer to purify both mid-infrared pumping wavelengths and in turn the THz spectra. Single mode operation of the pumping wavelengths results in a single-mode THz operation with a narrow linewidth of 6.6 GHz. A maximum THz power of 8.5 μW with a power conversion efficiency of 10 μW/W² is obtained at room temperature. [reprint (PDF)] |
| 2. | High-speed free-space optical communications based on quantum cascade lasers and type-II superlattice detectors Stephen M. Johnson; Emily Dial; M. Razeghi Proc. SPIE 11288, Quantum Sensing and Nano Electronics and Photonics XVII, 1128814-- January 31, 2020 ...[Visit Journal] Free-space optical communications (FSOC) is a promising avenue for point-to-point, high-bandwidth, and high-security communication links. It has the potential to solve the “last mile” problem modern communication systems face, allowing for high-speed communication links without the expensive and expansive infrastructure required by fiber optic and
wireless technologies 1 . Although commercial FSOC systems currently exist, due to their operation in the near infrared and short infrared ranges, they are necessarily limited by atmospheric absorption and scattering losses 2 . Mid-infrared (MWIR) wavelengths are desirable for free space communications systems because they have lower atmospheric scattering losses compared to near-infrared communication links. This leads to increased range and link uptimes. Since this portion of the EM spectrum is unlicensed, link establishment can be implemented quickly. Quantum cascade lasers
(QCL) are ideal FSOC transmitters because their emission wavelength is adjustable to MWIR 3 . Compared to the typical VCSEL and laser diodes used in commercial NIR and SWIR FSOC systems, however, they require increased threshold and modulation currents 4 . Receivers based on type-II superlattice (T2SL) detectors are desired in FSOC for their low
dark current, high temperature operation, and band gap tunable to MWIR 5. In this paper, we demonstrate the implementation of a high-speed FSOC system using a QCL and a T2SL detector. [reprint (PDF)] |
| 2. | High-performance bias-selectable dual-band mid-/long-wavelength infrared photodetectors and focal plane arrays based on InAs/GaSb Type-II superlattices M. Razeghi; A. Haddadi; A.M. Hoang; G. Chen; S. Ramezani-Darvish; P. Bijjam Proc. SPIE 8704, Infrared Technology and Applications XXXIX, 87040S (June 11, 2013)-- June 11, 2013 ...[Visit Journal] We report a bias selectable dual-band mid-wave infrared (MWIR) and long-wave infrared (LWIR) co-located detector with 3 μm active region thickness per channel that is highly selective and can perform under high operating temperatures for the MWIR band. Under back-side illumination, a temperature evolution study of the MWIR detector's electro-optical performance found the 300 K background-limit with 2π field-of-view to be achieved below operating temperatures of 160 K, at which the temperature's 50% cutoff wavelength was 5.2 μm. The measured current reached the system limit of 0.1 pA at 110 K for 30 μm pixel-sized diodes. At 77 K, where the LWIR channel operated with a 50% cutoff wavelength at 11.2 μm, an LWIR selectivity of ∼17% was achieved in the MWIR wave band between 3 and 4.7 μm, making the detector highly selective. [reprint (PDF)] |
| 2. | Materials characterization of n-ZnO/p-GaN:Mg/c-Al(2)O(3) UV LEDs grown by pulsed laser deposition and metal-organic chemical vapor deposition D. Rogers, F.H. Teherani, P. Kung, K. Minder, and M. Razeghi Superlattices and Microstructures-- April 1, 2007 ...[Visit Journal] n-ZnO/p-GaN:Mg hybrid heterojunctions grown on c-Al2O3 substrates showed 375 nm room temperature electroluminescence. It was suggested that the high materials and interface quality obtained using pulsed laser deposition for the n-ZnO growth and metal–organic chemical vapor deposition for the p-GaN:Mg were key factors enabling the injection of holes and the radiative near band edge recombination in the ZnO. In this paper we present the materials characterization of this structure using x-ray diffraction, scanning electron microscopy and atomic force microscopy. [reprint (PDF)] |
| 2. | Molecular Beam Epitaxial Growth of High Quality InSb for p-i-n Photodetectors G. Singh, E. Michel, C. Jelen, S. Slivken, J. Xu, P. Bove, I. Ferguson, and M. Razeghi Journal of Vacuum Science and Technology B, 13 (2)-- March 1, 1995 ...[Visit Journal] The InSb infrared photodetectors grown heteroepitaxially on Si substrates by molecular beam epitaxy (MBE) are reported. Excellent InSb material quality is obtained on 3-inch Si substrates (with a GaAs predeposition) as confirmed by structural, optical, and electrical analysis. InSb infrared photodetectors on Si substrates that can operate from 77 K to room temperature have been demonstrated. The peak voltage-responsitivity at 4 μm is about 1.0×103 V/W and the corresponding Johnson-noise-limited detectivity is calculated to be 2.8×1010 cm·Hz½/W. This is the first important stage in developing InSb detector arrays or monolithic focal plane arrays (FPAs) on silicon. The development of this technology could provide a challenge to traditional hybrid FPA's in the future. [reprint (PDF)] |
| 2. | Bias-selectable three-color short-, extended-short-, and mid-wavelength infrared photodetectors based on type-II InAs/GaSb/AlSb superlattices Abbas Haddadi, and Manijeh Razeghi Optics Letters Vol. 42, Iss. 21, pp. 4275-4278-- October 16, 2017 ...[Visit Journal] A bias-selectable, high operating temperature, three-color short-, extended-short-, and mid-wavelength infrared photodetector based on InAs/GaSb/AlSb type-II superlattices on GaSb substrate has been demonstrated. The short-, extended-short-, and mid-wavelength channels’ 50% cutoff wavelengths were 2.3, 2.9, and 4.4μm, respectively, at 150K. The mid-wavelength channel exhibited a saturated quantum efficiency of 34% at 4μm under +200 mV bias voltage in a front-side illumination configuration and without any antireflection coating. At 200mV, the device exhibited a dark current density of 8.7×10−5 A/cm2 providing a specific detectivity of ∼2×1011 cm·Hz1/2/W at 150K. The short-wavelength channel achieved a saturated quantum efficiency of 20% at 1.8μm. At −10 mV, the device’s dark current density was 5.5×10−8 A/cm2. At zero bias, its specific detectivity was 1×1011 cm·Hz1/2/W at 150K. The extended short-wavelength channel achieved a saturated quantum efficiency of 22% at 2.75 μm. Under −2 V bias voltage, the device exhibited a dark current density of 1.8×10−6 A/cm2 providing a specific detectivity of 6.3×1011 cm·Hz1/2/W at 150K. [reprint (PDF)] |
| 2. | Self-assembled semiconductor quantum dot infrared photodetector operating at room temperature and focal plane array Ho-Chul Lim; Stanley Tsao; Wei Zhang; Manijen Razeghi Proc. SPIE 6542, Infrared Technology and Applications XXXIII, 65420R (May 14, 2007)-- May 14, 2007 ...[Visit Journal] Self-assembled semiconductor quantum dots have attracted much attention because of their novel properties and thus possible practical applications including the lasers, detectors and modulators. Especially the photodetectors which have quantum dots in their active region have been developed and show promising performances such as high operation temperature due to three dimensional confinement of the carriers and normal incidence in contrast to the case of quantum well detectors which require special optical coupling schemes. Here we report our recent results for mid-wavelength infrared quantum dot infrared photodetector grown by low-pressure metalorganic chemical vapor deposition. The material system we have investigated consists of 25 period self-assembled InAs quantum dot layers on InAlAs barriers, which are lattice-matched to InP substrates, covered with InGaAs quantum well layers and InAlAs barriers. This active region was sandwiched by highly doped InP contact layers. The device operates at 4.1 μm with a peak detectivity of 2.8×1011 cm·Hz1/2/W at 120 K and a quantum efficiency of 35 %. The photoresponse can be observed even at room temperature resulting in a peak detectivity of 6×107 cm·Hz1/2/W. A 320×256 focal plane array has been fabricated in this kind of device. Its performance will also be discussed here. [reprint (PDF)] |
| 2. | Solar-blind avalanche photodiodes R. McClintock, K. Minder, A. Yasan, C. Bayram, F. Fuchs, P. Kung and M. Razeghi SPIE Conference, San Jose, CA, Vol. 6127, pp. 61271D-- January 23, 2006 ...[Visit Journal] There is a need for semiconductor based UV photodetectors to support avalanche gain in order to realize better performance and more effectively compete with existing photomultiplier tubes. However, there are numerous technical issues associated with the realization of high-quality solar-blind avalanche photodiodes (APDs). In this paper, APDs operating at 280 nm, within the solar-blind region of the ultraviolet spectrum, are investigated. [reprint (PDF)] |
| 2. | SOLID-STATE DEEP UV EMITTERS/DETECTORS: Zinc oxide moves further into the ultraviolet David J. Rogers; Philippe Bove; Eric V. Sandana; Ferechteh Hosseini Teherani; Ryan McClintock; Manijeh Razeghi Laser Focus World. 2013;49(10):33-36.-- October 10, 2013 ...[Visit Journal] Latest advancements in the alloying of zinc oxide (ZnO) with magnesium (Mg) can offer an alternative to (Al) GaN-based emitters/detectors in the deep UV with reduced lattice and efficiency issues. The emerging potential of ZnO for UV emitter and detector applications is the result of a long, concerted, and fruitful R&D effort that has led to more than 7000 publications in 2012. ZnO is considered to be a potentially superior material for use in LEDs and laser diodes due to its larger exciton binding energy, as compared with 21 meV for GaN. Wet etching is also possible for ZnO with nearly all dilute acids and alkalis, while GaN requires hydrofluoric (HF) acid or plasma etching. High-quality ZnO films can be grown more readily on mismatched substrates and bulk ZnO substrates have better availability than their GaN equivalents. |
| 2. | High-Power Distributed-Feedback Quantum Cascade Lasers W.W. Bewley, I. Vurgaftman, C.S. Kim, J.R. Meyer, J. Nguyen, A.J. Evans, J.S. Yu, S.R. Darvish, S. Slivken and M. Razeghi SPIE Conference, San Jose, CA, Vol. 6127, pp. 612704-- January 23, 2006 ...[Visit Journal] Recently, a distributed-feedback quantum cascade laser operating in a single spectral mode at 4.8 µm and at temperatures up to 333 K has been reported. In the present work, we provide detailed measurements and modeling of its performance characteristics. The sidemode suppression ratio exceeds 25 dB, and the emission remains robustly single-mode at all currents and temperatures tested. Cw output powers of 99 mW at 298 K and 357 mW at 200 K are obtained at currents well below the thermal rollover point. [reprint (PDF)] |
| 2. | Intermixing of GaInP/GaAs Multiple Quantum Wells C. Francis, M.A. Bradley, P. Boucaud, F.H. Julien and M. Razeghi Applied Physics Letters 62 (2)-- January 11, 1993 ...[Visit Journal] The intermixing of GaInP‐GaAs superlattices induced by a heat treatment is investigated as a function of the annealing temperature and duration. Photoluminescence experiments reveal a large red shift of the effective band gap of the annealed quantum wells thus indicating a dominant self‐diffusion of the group III atoms which is confirmed by secondary ion mass spectroscopic measurements. For long enough annealing durations, the red shift saturates and even decreases due to the competing slower self‐diffusion of the group V atoms. Experiments are well understood based on a simple diffusion model. [reprint (PDF)] |
| 2. | High operability 1024 x 1024 long wavelength infrared focal plane array base on Type-II InAs/GaSb superlattice A. Haddadi, S.R. Darvish, G. Chen, A.M. Hoang, B.M. Nguyen and M. Razeghi AIP Conference Proceedings, Vol. 1416, p. 56-58_NGS15 Conf_Blacksburg, VA_Aug 1-5, 2011-- December 31, 2011 ...[Visit Journal] Fabrication and characterization of a high performance 1024×1024 long wavelength infrared type‐II superlattice focal plane array are described. The FPA performs imaging at a continous rate of 15.00 frames/sec. Each pixel has pitch of 18μm with a fill factor of 71.31%. It demonstrates excellent operability of 95.8% and 97.4% at 81 and 68K operation temperature. The external quantum efficiency is ∼81% without any antireflective coating. Using F∕2 optics and an integration time of 0.13ms, the FPA exhibits an NEDT as low as 27 and 19mK at operating temperatures of 81 and 68K respectively. [reprint (PDF)] |
| 2. | High Power, Continuous-Wave, Quantum Cascade Lasers for MWIR and LWIR Applications S. Slivken, A. Evans, J.S. Yu, S.R. Darvish and M. Razeghi SPIE Conference, San Jose, CA, Vol. 6127, pp. 612703-- January 23, 2006 ...[Visit Journal] Over the past several years, our group has endeavored to develop high power quantum cascade lasers for a variety of remote and high sensitivity infrared applications. The systematic optimization of laser performance has allowed for demonstration of high power, continuous-wave quantum cascade lasers operating above room temperature. Since 2002, the power levels for individual devices have jumped from 20 mW to 600 mW. Expanding on this development, we have able to demonstrate continuous wave operation at many wavelengths throughout the mid- and far-infrared spectral range, and have now achieved >100 mW output in the 4.0 to 9.5 µm range. [reprint (PDF)] |
| 2. | Hybrid green LEDs based on n-ZnO/(InGaN/GaN) multi-quantum-wells/p-GaN C. Bayram, F. Hosseini Teherani, D.J. Rogers and M. Razeghi SPIE Proceedings, San Jose, CA Volume 7217-0P-- January 26, 2009 ...[Visit Journal] Hybrid green light-emitting diodes (LEDs) comprised of n-ZnO/(InGaN/GaN) multi-quantum-wells/p-GaN were grown on semi-insulating AlN/sapphire using pulsed laser deposition for the n-ZnO and metal organic chemical vapor deposition for the other layers. X-ray diffraction revealed that high crystallographic quality was preserved after the n- ZnO growth. LEDs showed a turn-on voltage of 2.5 V and a room temperature electroluminescence (EL) centered at 510 nm. A blueshift and narrowing of the EL peak with increasing current was attributed to bandgap renormalization. The results indicate that hybrid LED structures could hold the prospect for the development of green LEDs with superior performance. [reprint (PDF)] |
Page 7 of 21: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 >> Next (515 Items)
|