Page 7 of 21:  Prev << 1 2 3 4 5 6 7  8 9 10 11 12 13 14 15 16 17 18 19 20 21  >> Next  (515 Items)

2.  Aluminum free GaInP/GaAs Quantum Well Infrared Photodetectors for Long Wavelength Detection
C. Jelen, S. Slivken, J. Hoff, M. Razeghi, and G. Brown
Applied Physics Letters 70 (3)-- January 20, 1997 ...[Visit Journal]
We demonstrate quantum well infrared photodetectors based on a GaAs/Ga0.51In0.49P superlattice structure grown by gas-source molecular beam epitaxy. Wafers were grown with varying well widths. Wells of 40, 65, and 75 Å resulted in peak detection wavelengths of 10.4, 12.8, and 13.3 μm with a cutoff wavelength of 13.5, 15, and 15.5 μm, respectively. The measured peak and cutoff wavelengths match those predicted by eight band theoretical analysis. Measured dark currents were lower than equivalent GaAs/AlGaAs samples. [reprint (PDF)]
 
2.  Room temperature continuous wave THz frequency comb based on quantum cascade lasers
M. Razeghi; Q. Y. Lu; F. H. Wang; D. H. Wu; S. Slivken
Proc. SPIE 11124, Terahertz Emitters, Receivers, and Applications X, 1112407-- September 6, 2019 ...[Visit Journal]
Frequency combs, spectra of phase-coherent equidistant lines, have revolutionized time and frequency metrology. The recently developed quantum cascade laser (QCL) comb has exhibits great potential with high power and broadband spectrum. However, in the terahertz (THz) range, cryogenic cooling has to be applied for THz QCL combs. We report a room temperature THz frequency comb at 3.0 THz based on difference-frequency generation from a mid-IR QCL comb. A largely detuned distributed-feedback grating is integrated into the QCL cavity to provide the single mode operation as well as enhanced spatial hole-burning effect for multimode comb operation. Multiheterodyne spectroscopy with multiple equally spaced lines by beating it with a reference Fabry-Pérot comb confirms the THz comb operation. This type of THz comb provides a new solution to chip-based high-speed high-resolution THz spectroscopy with compact size at room temperature. [reprint (PDF)]
 
2.  High-performance short-wavelength infrared photodetectors based on type-II InAs/InAs1-xSbx/AlAs1-xSbx superlattices
A. Haddadi, X.V. Suo, S. Adhikary, P. Dianat, R. Chevallier, A.M. Hoang, and M. Razeghi
Applied Physics Letters 107 , 141104-- October 5, 2015 ...[Visit Journal]
A high-performance short-wavelength infrared n-i-p photodiode based on InAs/InAs1-xSbx/AlAs1-xSbx type-II superlattices on GaSb substrate has been demonstrated. The device is designed to have a 50% cut-off wavelength of ~1.8μm at 300K. The photodetector exhibited a room-temperature (300 K) peak responsivity of 0.47 A/W at 1.6μm, corresponding to a quantum efficiency of 37% at zero bias under front-side illumination, without any anti-reflection coating. With an R×A of 285 Ω·cm² and a dark current density of 9.6×10-5 A/cm² under −50mV applied bias at 300 K, the photodiode exhibited a specific detectivity of 6.45×1010 cm·Hz½/W. At 200 K, the photodiode exhibited a dark current density of 1.3×10-8 A/cm² and a quantum efficiency of 36%, resulting in a detectivity of 5.66×1012 cm·Hz½/W. [reprint (PDF)]
 
2.  Semiconductor ultraviolet detectors
M. Razeghi and A. Rogalski
Journal of Applied Physics Applied Physics Review 79 (10)-- May 15, 1996 ...[Visit Journal]
In this review article a comprehensive analysis of the developments in ultraviolet (UV) detector technology is described. At the beginning, the classification of UV detectors and general requirements imposed on these detectors are presented. Further considerations are restricted to modern semiconductor UV detectors, so the basic theory of photoconductive and photovoltaic detectors is presented in a uniform way convenient for various detector materials. Next, the current state of the art of different types of semiconductor UV detectors is presented. Hitherto, the semiconductor UV detectors have been mainly fabricated using Si. Industries such as the aerospace, automotive, petroleum, and others have continuously provided the impetus pushing the development of fringe technologies which are tolerant of increasingly high temperatures and hostile environments. As a result, the main efforts are currently directed to a new generation of UV detectors fabricated from wide band-gap semiconductors the most promising of which are diamond and AlGaN. The latest progress in development of AlGaN UV detectors is finally described in detail. [reprint (PDF)]
 
2.  Schottky barrier heights and conduction-band offsets of In1-xGaxAs1-yPy lattice matched to GaAs
J.K. Lee, Y.H. Cho, B.D. Choe, K.S. Kim, H.I. Jeon, H. Lim and M. Razeghi
Applied Physics Letters 71 (7)-- August 18, 1997 ...[Visit Journal]
The Schottky barrier heights of Au/In1−xGaxAs1−yPy contacts have been determined as a function of y by the capacitance–voltage and temperature dependent current–voltage characteristics measurements. The barrier height is observed to increase as y is increased for both n- and p-type materials, with a more rapid increase for the p-type material. The compositional variation of the barrier heights for Au/n-In1−xGaxAs1−yPy is found to be identical to that of the conduction-band offsets in In1−xGaxAs1−yPy/GaAs heterojunctions. A possible cause of this phenomenon is also discussed. [reprint (PDF)]
 
2.  Interface roughness scattering in thin, undoped GaInP/GaAs quantum wells
W. C. Mitchel, G.J. Brown, I. Lo, S. Elhamri, M. Aboujja, K. Ravindran, R.S. Newrock, M. Razeghi, and X. He
Applied Physics Letters 65 (12)-- September 19, 1994 ...[Visit Journal]
Electronic transport properties of very thin undoped GaInP/GaAs quantum wells have been measured by temperature dependent low field Hall effect and by Shubnikov–de Haas effect. Strong Shubnikov–de Haas oscillations were observed after increasing the electron concentration via the persistent photocurrent effect. Low temperature mobilities of up to 70 ,000 cm²/V· s at carrier concentrations of 6.5×1011 cm−2 were observed in a 20 Å quantum well. The results are compared with the theory of interface roughness scattering which indicates extremely smooth interfaces; however, discrepancies between experiment and theory are observed. [reprint (PDF)]
 
2.  Reliability of Aluminum-Free 808 nm High-Power Laser Diodes with Uncoated Mirrors
I. Eliashevich, J. Diaz, H. Yi, L. Wang, and M. Razeghi
Applied Physics Letters 66 (23)-- June 5, 1995 ...[Visit Journal]
The reliability of uncoated InGaAsP/GaAs high‐power diode lasers emitting at 808 nm wavelength has been studied. 47 W of quasicontinuous wave output power (pulse width 200 μs, frequency 20 Hz) have been obtained from a 1 cm wide laser bar. A single‐stripe diode without mirror coating has been life tested at 40 °C for emitting power of 800 mW continuous wave (cw) and showed no noticeable degradation and no change of the lasing wavelength after 6000 h of operation. [reprint (PDF)]
 
2.  A review of the growth, doping, and applications of β-Ga2O3 thin films
Manijeh Razeghi, Ji-Hyeon Park , Ryan McClintock, Dimitris Pavlidis, Ferechteh H. Teherani, David J. Rogers, Brenden A. Magill, Giti A. Khodaparast, Yaobin Xu, Jinsong Wu, Vinayak P. Dravid
Proc. SPIE 10533, Oxide-based Materials and Devices IX, 105330R -- March 14, 2018 ...[Visit Journal]
β-Ga2O3 is emerging as an interesting wide band gap semiconductor for solar blind photo detectors (SBPD) and high power field effect transistors (FET) because of its outstanding material properties including an extremely wide bandgap (Eg ~4.9eV) and a high breakdown field (8 MV/cm). This review summarizes recent trends and progress in the growth/doping of β-Ga2O3 thin films and then offers an overview of the state-of-the-art in SBPD and FET devices. The present challenges for β-Ga2O3 devices to penetrate the market in real-world applications are also considered, along with paths for future work. [reprint (PDF)]
 
2.  Negative luminescence of InAs/GaSb superlattice photodiodes
F. Fuchs, D. Hoffman, A. Gin, A. Hood, Y. Wei, and M. Razeghi
Phys. Stat. Sol. C 3 (3)-- February 22, 2006 ...[Visit Journal]
The emission behaviour of InAs/GaSb superlattice photodiodes has been studied in the spectral range between 8 µm and 13 μm. With a radiometric calibration of the experimental set-up the internal quantum efficiency has been determined in the temperature range between 80 K and 300 K for both, the negative and positive luminescence. The quantitative analysis of the internal quantum efficiency of the non-equilibrium radiation enables the determination of the Auger coefficient. [reprint (PDF)]
 
2.  Buried heterostructure quantum cascade lasers with high continuous-wave wall plug efficiency
A. Evans, S.R. Darvish, S. Slivken, J. Nguyen, Y. Bai and M. Razeghi
Applied Physics Letters, Vol. 91, No. 7, p. 071101-1-- August 13, 2007 ...[Visit Journal]
The authors report on the development of ~4.7 µm strain-balanced InP-based quantum cascade lasers with high wall plug efficiency and room temperature continuous-wave operation. The use of narrow-ridge buried heterostructure waveguides and thermally optimized packaging is presented. Over 9.3% wall plug efficiency is reported at room temperature from a single device producing over 0.675 W of continuous-wave output power. Wall plug efficiencies greater than 18% are also reported for devices at a temperature of 150 K, with continuous-wave output powers of more than 1 W. [reprint (PDF)]
 
2.  A lifetime of contributions to the world of semiconductors using the Czochralski invention
M. Razeghi
Vacuum Vol. 9934, 993406-1-- February 8, 2017 ...[Visit Journal]
Over the course of my career, I have made numerous contributions related to semiconductor crystal growth and high performance optoelectronics over a vast region of the electromagnetic spectrum (ultraviolet to terahertz). In 2016 this cumulated in my receiving the Jan Czochralski Gold Medal award from the European Materials Research Society. This article is designed to provide a historical perspective and general overview of these scientific achievements, on the occasion of being honored by this award. These achievements would not have been possible without high quality crystalline substrates, and this article is written in honor of Jan Czochralski on the 100th anniversary of his important discovery. [reprint (PDF)]
 
2.  Optimizing facet coating of quantum cascade lasers for low power consumption
Y. Bai, S.R. Darvish, N. Bandyopadhyay, S. Slivken and M. Razeghi
Journal of Applied Physics, Vol. 109, No. 5, p. 053103-1-- March 1, 2011 ...[Visit Journal]
Typical high power consumption (∼10 W) of mid-infrared quantum cascade lasers (QCLs) has been a serious limitation for applications in battery powered systems. A partial high-reflection (PHR) coating technique is introduced for power downscaling with shorter cavity lengths. The PHR coating consists of a double layer dielectric of SiO2 and Ge. With this technique, a 4.6 μm QCL with an ultra low threshold power consumption of less than a watt (0.83 W) is demonstrated in room temperature continuous wave operation. At 25°C, the maximum output power and wall plug efficiency are 192 mW and 8.6%, respectively. [reprint (PDF)]
 
2.  Short Wavelength Solar-Blind Detectors: Status, Prospects, and Markets
M. Razeghi
IEEE Proceedings, Wide Bandgap Semiconductor Devices: The Third Generation Semiconductor Comes of Age 90 (6)-- June 1, 2002 ...[Visit Journal]
Recent advances in the research work on III-nitride semiconductors and AlxGa1-xN materials in particular has renewed the interest and led to significant progress in the development of ultraviolet (UV) photodetectors able to detect light in the mid- and near-UV spectral region (λ∼200-400 nm). There have been a growing number of applications which require the use of such sensors and, in many of these, it is important to be able to sense UV light without detecting infrared or visible light, especially from the Sun, in order to minimize the chances of false detection or high background. The research work on short-wavelength UV detectors has, therefore, been recently focused on realizing short-wavelength "solar-blind" detectors which, by definition, are insensitive to photons with wavelengths longer than ∼285 nm. In this paper the development of AlxGa1-xN-based solar-blind UV detectors will be reviewed. The technological issues pertaining to material synthesis and device fabrication will be discussed. The current state-of-the-art and future prospects for these detectors will be reviewed and discussed. [reprint (PDF)]
 
2.  Optical Investigations of GaAs-GaInP Quantum Wells and Superlattices Grown by Metalorganic Chemical Vapor Deposition
Omnes F., and Razeghi M.
Applied Physics Letters 59 (9), p. 1034-- May 28, 1991 ...[Visit Journal]
Recent experimental results on the photoluminescence and photoluminescence excitation of GaAs‐Ga0.51In0.49P lattice‐matched quantum wells and superlattices are discussed. The full width at half maximum of a 10‐period GaAs‐GaInP superlattice with Lz=90 Å and LB=100 Å is 4 meV at 4 K. The photoluminescence excitation exhibits very sharp peaks attributed to the electron to light‐hole and electron to heavy‐hole transitions. The GaInP‐GaAs interface suffers from memory effect of In, rather than P or As elements. [reprint (PDF)]
 
2.  Surface leakage reduction in narrow band gap type-II antimonide-based superlattice photodiodes
E.K. Huang, D. Hoffman, B.M. Nguyen, P.Y. Delaunay and M. Razeghi
Applied Physics Letters, Vol. 94, No. 5, p. 053506-1-- February 2, 2009 ...[Visit Journal]
Inductively coupled plasma (ICP) dry etching rendered structural and electrical enhancements on type-II antimonide-based superlattices compared to those delineated by electron cyclotron resonance (ECR) with a regenerative chemical wet etch. The surface resistivity of 4×105 Ω·cm is evidence of the surface quality achieved with ICP etching and polyimide passivation. By only modifying the etching technique in the fabrication steps, the ICP-etched devices with a 9.3 µm cutoff wavelength revealed a diffusion-limited dark current density of 4.1×10−6 A/cm2 and a maximum differential resistance at zero bias in excess of 5300 Ω·cm2 at 77 K, which are an order of magnitude better in comparison to the ECR-etched devices. [reprint (PDF)]
 
2.  High-temperature high-power continuous-wave operation of buried heterostructure quantum-cascade lasers
A. Evans, J.S. Yu, J. David, L. Doris, K. Mi, S. Slivken, and M. Razeghi
Applied Physics Letters, 84 (3)-- January 19, 2004 ...[Visit Journal]
We report cw operation of buried heterostructure quantum-cascade lasers (λ=6 µm) using a thick electroplated Au top contact layer and epilayer-up bonding on a copper heat sink up to a temperature of 333 K (60 °C). The high cw optical output powers of 446 mW at 293 K, 372 mW at 298 K, and 30 mW at 333 K are achieved with threshold current densities of 2.19, 2.35, and 4.29 kA/cm2 respectively, for a high-reflectivity-coated, 9-µm-wide and 3-mm-long laser [reprint (PDF)]
 
2.  Anomalous Hall Effect in InSb Layers Grown by MOCVD on GaAs Substrates
C. Besikci, Y.H. Choi, R. Sudharsanan, and M. Razeghi
Journal of Applied Physics 73 (10)-- May 15, 1993 ...[Visit Journal]
InSb epitaxial layers have been grown on GaAs substrates by low‐pressure metalorganic chemical vapor deposition. A 3.15 μm thick film yielded an x‐ray full width at half maximum of 171 arcsec. A Hall mobility of 76  200 cm²/V· s at 240 K and a full width at half maximum of 174 arcsec have been measured for a 4.85 μm thick epilayer. Measured Hall data have shown anomalous behavior. A decrease in Hall mobility with decreasing temperature has been observed and room‐temperature Hall mobility has increased with thickness. In order to explain the anomalous Hall data, and the thickness dependence of the measured parameters, the Hall coefficient and Hall mobility have been simulated using a three‐layer model including a surface layer, a bulklike layer, and an interface layer with a high density of defects. Theoretical analysis has shown that anomalous behavior can be attributed to donor-like defects caused by the large lattice mismatch and to a surface layer which dominates the transport in the material at low temperatures.   [reprint (PDF)]
 
2.  AlxGa1-xN (0 ≤ x ≤ 1) Ultraviolet Photodetectors Grown on Sapphire by Metal-organic Chemical-vapor Deposition
D. Walker, X. Zhang, A. Saxler, P. Kung, J. Xu, and M. Razeghi
Applied Physics Letters 70 (8)-- February 24, 1997 ...[Visit Journal]
AlxGa1–xN (0 ≤ x ≤ 1) ultraviolet photoconductors with cutoff wavelengths from 365 to 200 nm have been fabricated and characterized. The maximum detectivity reached 5.5 × 108 cm·Hz1/2/W at a modulating frequency of 14 Hz. The effective majority carrier lifetime in AlxGa1–xN materials, derived from frequency-dependent photoconductivity measurements, has been estimated to be from 6 to 35 ms. The frequency-dependent noise spectrum shows that it is dominated by Johnson noise at high frequencies for low-Al-composition samples. [reprint (PDF)]
 
2.  Relaxation kinetics in quantum cascade laser
S. Slivken, V. Litvinov, M. Razeghi, and J.R. Meyer
Journal of Applied Physics 85 (2)-- January 15, 1999 ...[Visit Journal]
Relaxation kinetics in a quantum cascade intersubband laser are investigated. Distribution functions and gain spectra of a three-subband double-quantum-well active region are obtained as a function of temperature and injection current. The potentially important role of the nonequilibrium phonons at lasing threshold is shown and discussed in details. It is shown that the threshold current is strongly dependent of the power dissipated in the active region in steady state. The numerical calculations for an 8.5 μm laser illustrate the general issues of relaxation kinetics in quantum cascade lasers. Temperature dependence of the threshold current is obtained in a good agreement with the experiments. [reprint (PDF)]
 
2.  High Performance Solar-Blind Ultraviolet Focal Plane Arrays Based on AlGaN
Erdem Cicek, Ryan McClintock, Abbas Haddadi, William A. Gaviria Rojas, and Manijeh Razeghi
IEEE Journal of Quantum Electronics, Vol. 50, Issue 8, p 591-595-- August 1, 2014 ...[Visit Journal]
We report on solar-blind ultraviolet, AlxGa1-x N- based,p-i-n,focal plane array (FPA) with 92% operability. At the peak detection wavelength of 278 nm, 320×256-FP A-pixel showed unbiased peak external quantum efficiency (EQE) and responsivity of 49% and 109 mA/W, respectively, increasing to 66% under 5 volts of reverse bias. Electrical measurements yielded a low-dark current density: <7×10-9A/cm², at FPA operating voltage of 2 volts of reverse bias. [reprint (PDF)]
 
2.  QEPAS based ppb-level detection of CO and N2O using a high power CW DFB-QCL
Y. Ma, R. Lewicki, M. Razeghi and F. Tittel
Optics Express, Vol. 21, No. 1, p. 1008-- January 14, 2013 ...[Visit Journal]
An ultra-sensitive and selective quartz-enhanced photoacoustic spectroscopy (QEPAS) sensor platform was demonstrated for detection of carbon monoxide (CO) and nitrous oxide (N2O). This sensor used a stateof-the art 4.61 μm high power, continuous wave (CW), distributed feedback quantum cascade laser (DFB-QCL) operating at 10°C as the excitation source. For the R(6) CO absorption line, located at 2169.2 cm−1, a minimum detection limit (MDL) of 1.5 parts per billion by volume (ppbv) at atmospheric pressure was achieved with a 1 sec acquisition time and the addition of 2.6% water vapor concentration in the analyzed gas mixture. For the N2O detection, a MDL of 23 ppbv was obtained at an optimum gas pressure of 100 Torr and with the same water vapor content of 2.6%. In both cases the presence of water vapor increases the detected CO and N2O QEPAS signal levels as a result of enhancing the vibrational-translational relaxation rate of both target gases. Allan deviation analyses were performed to investigate the long term performance of the CO and N2O QEPAS sensor systems. For the optimum data acquisition time of 500 sec a MDL of 340 pptv and 4 ppbv was obtained for CO and N2O detection,respectively. To demonstrate reliable and robust operation of the QEPAS sensor a continuous monitoring of atmospheric CO and N2O concentration levels for a period of 5 hours were performed. [reprint (PDF)]
 
2.  Extended short-wavelength infrared nBn photodetectors based on type-II InAs/AlSb/GaSb superlattices with an AlAsSb/GaSb superlattice barrier
A. Haddadi, R. Chevallier, A. Dehzangi, and M. Razeghi
Applied Physics Letters 110, 101104-- March 8, 2017 ...[Visit Journal]
Extended short-wavelength infrared nBn photodetectors based on type-II InAs/AlSb/GaSb superlattices on GaSb substrate have been demonstrated. An AlAsSb/GaSb H-structure superlattice design was used as the large-bandgap electron-barrier in these photodetectors. The photodetector is designed to have a 100% cut-off wavelength of ∼2.8 μm at 300 K. The photodetector exhibited a room-temperature (300 K) peak responsivity of 0.65 A/W at 1.9 μm, corresponding to a quantum efficiency of 41% at zero bias under front-side illumination, without any anti-reflection coating. With an R × A of 78 Ω·cm² and a dark current density of 8 × 10−3 A/cm² under −400 mV applied bias at 300 K, the nBn photodetector exhibited a specific detectivity of 1.51 × 1010 Jones. At 150 K, the photodetector exhibited a dark current density of 9.5 × 10−9 A/cm² and a quantum efficiency of 50%, resulting in a detectivity of 1.12 × 1013 Jones. [reprint (PDF)]
 
2.  High Detectivity GaInAs/InP Quantum Well Infrared Photodetectors Grown on Si Substrates
J. Jiang, C. Jelen, M. Razeghi and G.J. Brown
IEEE Photonics Technology Letters 14 (3)-- March 1, 2002 ...[Visit Journal]
In this letter, we report an improvement in the growth and the device performance of GaInAs-InP quantum well infrared photodetectors grown on Si substrates. Material growth techniques, like low-temperature nucleation layers and thick buffer layers were used to grow InP on Si. An in situ thermal cycle annealing technique was used to reduce the threading dislocation density in the InP-on-Si. Detector dark current was reduced 2 orders of magnitude by this method. Record high detectivity of 2.3 × 109 cm·Hz½·W-1 was obtained for QWIP-on-Si detectors in the 7-9 μm range at 77 K [reprint (PDF)]
 
2.  Surface leakage investigation via gated type-II InAs/GaSb long-wavelength infrared photodetectors
G. Chen, E.K. Huang, A.M. Hoang, S. Bogdanov, S.R. Darvish, and M. Razeghi
Applied Physics Letters, Vol. 101, No. 21, p. 213501-1-- November 19, 2012 ...[Visit Journal]
By using gating technique, surface leakage generated by SiO2 passivation in long-wavelength infrared type-II superlattice photodetector is suppressed, and different surface leakage mechanisms are disclosed. By reducing the SiO2 passivation layer thickness, the saturated gated bias is reduced to −4.5 V. At 77 K, dark current densities of gated devices are reduced by more than 2 orders of magnitude, with 3071 Ω·cm² differential-resistance-area product at −100 mV. With quantum efficiency of 50%, the 11 μm 50% cut-off gated photodiode has a specific detectivity of 7 × 1011 Jones, and the detectivity stays above 2 × 1011 Jones from 0 to −500 mV operation bias. [reprint (PDF)]
 
2.  High Temperature Continuous Wave Operation of ~8 μm Quantum Cascade Lasers
S. Slivken, A. Matlis, C. Jelen, A. Rybaltowski, J. Diaz, and M. Razeghi
Applied Physics Letters 74 (2)-- January 11, 1999 ...[Visit Journal]
We report single-mode continuous-wave operation of a λ∼8 μm quantum cascade laser at 140 K. The threshold current density is 4.2 kA/cm² at 300 K in pulsed mode and 2.5 kA/cm² at 140 K in continuous wave for 2 mm long index-guided laser cavities of 20 μm width. Wide stripe (W ∼ 100 μm), index-guided lasers from the same wafer in pulsed operation demonstrate an average T0 of 210 K with other wafers demonstrating a T0 as high as 290 K for temperatures from 80 to 300 K. This improvement in high-temperature performance is a direct result of three factors: excellent material quality, a low-loss waveguide design, and a low-leakage index-guided laser geometry. [reprint (PDF)]
 

Page 7 of 21:  Prev << 1 2 3 4 5 6 7  8 9 10 11 12 13 14 15 16 17 18 19 20 21  >> Next  (515 Items)