About the CQD | News | Conferences | Publications | Books | Research | People | History | Patents | Contact | Channel | |
Page 7 of 9: Prev << 1 2 3 4 5 6 7 8 9 >> Next (221 Items)
1. | Positive and negative luminescence in binary Type-II InAs/GaSb superlattice photodiodes D. Hoffman and M. Razeghi SPIE Conference, San Jose, CA, Vol. 6127, pp. 61271H-- January 23, 2006 ...[Visit Journal] In the present work, we show measurements of both positive and negative luminescence of binary Type-II InAs/GaSb superlattice photodiodes in the 3 to 13 μm spectral range. Through a radiometric calibration technique, we demonstrate temperature independent negative luminescence efficiencies of 45 % in the midwavelength (MWIR) sample from 220 K to 320 K without anti-reflective coating and values reaching 35 % in the long wavelength infrared (LWIR) spectrum sample. [reprint (PDF)] |
1. | The effect of doping the M-barrier in very long-wave type-II InAs/GaSb heterodiodes D. Hoffman, B.M. Nguyen, E.K. Huang, P.Y. Delaunay, M. Razeghi, M.Z. Tidrow and J. Pellegrino Applied Physics Letters, Vol. 93, No. 3, p. 031107-1-- July 21, 2008 ...[Visit Journal] A variation on the standard homo-diode Type-II superlattice with an M-barrier between the pi-region and the n-region is shown to suppress the dark currents. By determining the optimal doping level of the M-superlattice, dark current densities of 4.95 mA·cm-2 and quantum efficiencies in excess of 20% have been demonstrated at the moderate reverse bias of 50 mV; allowing for near background-limited performance with a Johnson-noise detectivity of 3.11×1010 Jones at 77 K for a 14.58 µm cutoff wavelength for large area diodes without passivation. This is comparable to values for the state-of-the-art HgCdTe photodiodes. [reprint (PDF)] |
1. | Monolithic, steerable, mid-infrared laser realized with no moving parts Slivken S, Wu D, Razeghi M Scientific Reports 7, 8472 -- May 24, 2018 ...[Visit Journal] The mid-infrared (2.5 < λ < 25 μm) spectral region is utilized for many purposes, such as chemical/biological sensing, free space communications, and illuminators/countermeasures. Compared to near-infrared optical systems, however, mid-infrared component technology is still rather crude, with isolated components exhibiting limited functionality. In this manuscript, we make a significant leap forward in mid-infrared technology by developing a platform which can combine functions of multiple mid-infrared optical elements, including an integrated light source. In a single device, we demonstrate wide wavelength tuning (240 nm) and beam steering (17.9 degrees) in the mid-infrared with a significantly reduced beam divergence (down to 0.5 degrees). The architecture is also set up to be manufacturable and testable on a wafer scale, requiring no cleaved facets or special mirror coating to function. [reprint (PDF)] |
1. | Direct growth of thick AlN layers on nanopatterned Si substrates by cantilever epitaxy Ilkay Demir, Yoann Robin, Ryan McClintock, Sezai Elagoz, Konstantinos Zekentes, and Manijeh Razeghi Physica Status Solidi 214 (4), pp. 1770120-- April 4, 2017 ...[Visit Journal] The growth of thick, high quality, and low stress AlN films on Si substrates is highly desired for a number of applications like the development of micro and nano electromechanical system (MEMS and NEMS) technologies [1] and particularly for fabricating AlGaNbased UV LEDs [2–5]. UV LEDs are attractive as they are applied in many areas, such as biomedical instrumentations and dermatology, curing of industrial resins and inks, air
purification, water sterilization, and many others [2, 3]. UV LEDs have been generally fabricated on AlN, GaN, Al2O3, or SiC substrates because of better lattice mismatching to AlGaN material systems. [reprint (PDF)] |
1. | Development of Quantum Cascade Lasers for High Peak Output Power and Low Threshold Current Density S. Slivken and M. Razeghi Solid State Electronics 46-- January 1, 2002 ...[Visit Journal] Design and material optimization are used to both decrease the threshold current density and increase the output power for quantum cascade lasers. Waveguides are designed to try and minimize free-carrier and surface-plasmon absorption. Excellent material characterization is also presented, showing excellent control over layer thickness, interface quality, and doping level. Experiments are done to both optimize the injector doping level and to maximize the output power from a single aperture. At 300 K, a threshold current density as low as 1.8 kA/cm² is reported, along with peak powers of approximately 2.5 W. Strain-balanced lasers are also demonstrated at λnot, vert, similar5 μm, exhibiting threshold current densities<300 A/cm² at 80 K. These values represent the state-of-the-art for mid-infrared lasers with λ>4 μm [reprint (PDF)] |
1. | Characterization and Analysis of Single-Mode High-Power CW Quantum-Cascade Laser W.W. Bewley, I. Vurgaftman, C.S. Kim, J.R. Meyer, J. Nguyen, A. Evans, J.S. Yu, S.R. Darvish, S. Slivken, and M. Razeghi Journal of Applied Physics 98-- October 15, 2005 ...[Visit Journal] We measured and modeled the performance characteristics of a distributed-feedback quantum-cascade laser exhibiting high-power continuous-wave (CW) operation in a single spectral mode at λ~4.8 µm and temperatures up to 333 K. The sidemode suppression ratio exceeds 25 dB, and the emission remains robustly single mode at all currents and temperatures tested. CW output powers of 99 mW at 298 K and 357 mW at 200 K are obtained at currents well below the thermal rollover point. The slope efficiency and subthreshold amplified spontaneous emission spectra are shown to be consistent with a coupling coefficient of no more than κL ~ 4–5, which is substantially lower than the estimate of 9 based on the nominal grating fabrication parameters. [reprint (PDF)] |
1. | Negative and positive luminescence in mid-wavelength infrared InAs/GaSb superlattice photodiodes D. Hoffman, A. Gin, Y. Wei, A. Hood, F. Fuchs, and M. Razeghi IEEE Journal of Quantum Electronics, 41 (12)-- December 1, 2005 ...[Visit Journal] The quantum efficiency of negative and positive luminescence in binary type-II InAs-GaSb superlattice photodiodes has been investigated in the midinfrared spectral range around the 5-μm wavelength. The negative luminescence efficiency is nearly independent on temperature in the entire range from 220 to 325 K. For infrared diodes with a 2-μm absorbing layer, processed without anti-reflection coating, a negative luminescence efficiency of 45% is found, indicating very efficient minority carrier extraction. The temperature dependent measurements of the quantum efficiency of the positive luminescence enables for the determination of the capture cross section of the Shockley-Read-Hall centers involved in the competing nonradiative recombination. [reprint (PDF)] |
1. | Beryllium compensation doping of InAs/GaSb infrared superlattice photodiodes D. Hoffman, B.M. Nguyen, P.Y. Delaunay, A. Hood, M. Razeghi and J. Pellegrino Applied Physics Letters, Vol. 91, No. 14, p. 143507-1-- October 1, 2007 ...[Visit Journal] Capacitance-voltage measurements in conjunction with dark current measurements on InAs/GaSb long wavelength infrared superlattice photodiodes grown by molecular-beam epitaxy on GaSb substrates are reported. By varying the beryllium concentration in the InAs layer of the active region, the residually n-type superlattice is compensated to become slightly p-type. By adjusting the doping, the dominant dark current mechanism can be varied from diffusion to Zener tunneling. Minimization of the dark current leads to an increase of the zero-bias differential resistance from less than 4 to 32 cm2 for a 100% cutoff of 12.05 µm [reprint (PDF)] |
1. | High Performance InAs/GaSb Superlattice Photodiodes for the Very Long Wavelength Infrared Range H. Mohseni, M. Razeghi, G.J. Brown, Y.S. Park Applied Physics Letters 78 (15)-- April 9, 2001 ...[Visit Journal] We report on the demonstration of high-performance p-i-n photodiodes based on type-II InAs/GaSb superlattices with 50% cut-off wavelength λc = 16 μm operating at 80 K. Material is grown by molecular beam epitaxy on GaSb substrates with excellent crystal quality as evidenced by x-ray diffraction and atomic force microscopy. The processed devices show a current responsivity of 3.5 A/W at 80 K leading to a detectivity of ∼ 1.51×1010 cm·Hz½/W. The quantum efficiency of these devices is about 35% which is comparable to HgCdTe detectors with a similar active layer thickness. [reprint (PDF)] |
1. | A review of the growth, doping, and applications of β-Ga2O3 thin films Manijeh Razeghi, Ji-Hyeon Park , Ryan McClintock, Dimitris Pavlidis, Ferechteh H. Teherani, David J. Rogers, Brenden A. Magill, Giti A. Khodaparast, Yaobin Xu, Jinsong Wu, Vinayak P. Dravid Proc. SPIE 10533, Oxide-based Materials and Devices IX, 105330R -- March 14, 2018 ...[Visit Journal] β-Ga2O3 is emerging as an interesting wide band gap semiconductor for solar blind photo detectors (SBPD) and high power field effect transistors (FET) because of its outstanding material properties including an extremely wide bandgap (Eg ~4.9eV) and a high breakdown field (8 MV/cm). This review summarizes recent trends and progress in the growth/doping of β-Ga2O3 thin films and then offers an overview of the state-of-the-art in SBPD and FET devices. The present challenges for β-Ga2O3 devices to penetrate the market in real-world applications are also considered, along with paths for future work. [reprint (PDF)] |
1. | Direct growth of thick AlN layers on nanopatterned Si substrates by cantilever epitaxy Ilkay Demir, Yoann Robin, Ryan McClintock, Sezai Elagoz, Konstantinos Zekentes, and Manijeh Razeghi Phys. Status Solidi A, pp. 1–6-- September 30, 2016 ...[Visit Journal] AlN layers have been grown on 200 nm period of nanopatterned Si (111) substrates by cantilever epitaxy and compared with AlN layers grown by maskless lateral epitaxial overgrowth (LEO) on micropatterned Si (111) substrates. The material quality of 5–10 µm thick AlN grown by LEO is comparable to that of much thinner layers (2 µm) grown by cantilever epitaxy on the nanopatterned substrates. Indeed, the latter exhibited root mean square (RMS) roughness of 0.65 nm and X-ray diffraction full width at half-maximum (FWHM) of 710 arcsec along the (0002) reflection and 930 arcsec along the (10̅15) reflection. The corresponding room temperature photoluminescence spectra was dominated by a sharp band edge peak. Back emission ultra violet light emitting diodes (UV LEDs) were fabricated by flip chip bonding to patterned AlN heat sinks followed by complete Si (111) substrate removal demonstrating a peak pulsed power of ∼0.7 mW at 344 nm peak emission wavelength. The demonstrated UV LEDs were fabricated on a cost effective epitaxial structure grown on the nanopatterned Si substrate with a total thickness of 3.3 µm [reprint (PDF)] |
1. | Photonic crystal distributed feedback quantum cascade lasers with 12 W output power Y. Bai, B. Gokden, S.R. Darvish, S. Slivken, and M. Razeghi Applied Physics Letters, Vol. 95, No. 3-- July 20, 2009 ...[Visit Journal] We demonstrate room temperature, high power, and diffraction limited operation of photonic crystal distributed feedback (PCDFB) quantum cascade lasers emitting around 4.7 µm. PCDFB gratings with three distinctive periods are fabricated on the same wafer. Peak output power up to 12 W is demonstrated. Lasers with different periods show expected wavelength shifts according to the design. Dual mode spectra are attributed to a purer index coupling by putting the grating layer 100 nm away from the laser core. Single lobed diffraction limited far field profiles are observed. [reprint (PDF)] |
1. | High-Power (~9 μm) Quantum Cascade Lasers S. Slivken, Z. Huang, A. Evans, and M. Razeghi Virtual Journal of Nanoscale Science and Technology 5 (22)-- June 3, 2002 ...[Visit Journal][reprint (PDF)] |
1. | High-power, continuous-operation intersubband laser for wavelengths greater than 10 micron S. Slivken, A. Evans, W. Zhang and M. Razeghi Applied Physics Letters, Vol. 90, No. 15, p. 151115-1-- April 9, 2007 ...[Visit Journal] In this letter, high-power continuous-wave emission (>100 mW) and high temperature operation (358 K) at a wavelength of 10.6 µm is demonstrated using an individual diode laser. This wavelength is advantageous for many medium-power applications previously reserved for the carbon dioxide laser. Improved performance was accomplished using industry-standard InP-based materials and by careful attention to design, growth, and fabrication limitations specific to long-wave infrared semiconductor lasers. The main problem areas are explored with regard to laser performance, and general steps are outlined to minimize their impact.
[reprint (PDF)] |
1. | Room temperature single-mode terahertz sources based on intracavity difference-frequency generation in quantum cascade lasers Q.Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai and M. Razeghi Applied Physics Letters, Vol. 99, Issue 13, p. 131106-1-- September 26, 2011 ...[Visit Journal] We demonstrate room temperature single-mode THz emission at 4 THz based on intracavity difference-frequency generation from mid-infrared dual-wavelength quantum cascade lasers. An integrated dual-period distributed feedback grating is defined on the cap layer to purify both mid-infrared pumping wavelengths and in turn the THz spectra. Single mode operation of the pumping wavelengths results in a single-mode THz operation with a narrow linewidth of 6.6 GHz. A maximum THz power of 8.5 μW with a power conversion efficiency of 10 μW/W² is obtained at room temperature. [reprint (PDF)] |
1. | Type-II Antimonide-based Superlattices for the Third Generation Infrared Focal Plane Arrays Manijeh Razeghi, Edward Kwei-wei Huang, Binh-Minh Nguyen, Siamak Abdollahi Pour, and Pierre-Yves Delaunay SPIE Proceedings, Infrared Technology and Applications XXXVI, Vol. 7660, pp. 76601F-- May 10, 2010 ...[Visit Journal] In recent years, the Type-II superlattice (T2SL) material platform has seen incredible growth in
the understanding of its material properties which has lead to unprecedented development in the arena
of device design. Its versatility in band-structure engineering is perhaps one of the greatest hallmarks
of the T2SL that other material platforms are lacking. In this paper, we discuss advantages of the
T2SL, specifically the M-structure T2SL, which incorporates AlSb in the traditional InAs/GaSb
superlattice. Using the M-structure, we present a new unipolar minority electron detector coined as
the p-M-p, the letters which describe the composition of the device. Demonstration of this device structure with a 14 μm cutoff attained a detectivity of 4x1010 Jones (-50 mV) at 77 K. As device performance improves year after year with novel design contributions from the many researchers in this field, the natural progression in further enabling the ubiquitous use of this technology is to reduce cost and support the fabrication of large infrared imagers. In this paper, we also discuss the use of GaAs substrates as an enabling technology for third generation imaging on T2SLs. Despite the 7.8% lattice mismatch between the native GaSb and alternative GaAs substrates, T2SL photodiodes grown on GaAs at the MWIR and LWIR have been demonstrated at an operating temperature of 77 K [reprint (PDF)] |
1. | Negative luminescence of long-wavelength InAs/GaSb superlattice photodiodes D. Hoffman, A. Hood, Y. Wei, A. Gin, F. Fuchs, and M. Razeghi Applied Physics Letters 87 (20)-- November 14, 2005 ...[Visit Journal] The electrically pumped emission behavior of binary type-II InAs/GaSb superlattice photodiodes has been studied in the spectral range between 8 µm and 13 µm. With a radiometric calibration of the experimental setup, the internal and external quantum efficiency has been determined in the temperature range between 80 K and 300 K for both, the negative and positive luminescence. The negative luminescence efficiency approaches values as high as 35% without antireflection coating. The temperature dependence of the internal quantum efficiency near zero-bias voltage allows for the determination of the electron-hole-electron Auger recombination coefficient of Γn=1×1024 cm6 s–1. [reprint (PDF)] |
1. | Extended short-wavelength infrared nBn photodetectors based on type-II InAs/AlSb/GaSb superlattices with an AlAsSb/GaSb superlattice barrier A. Haddadi, R. Chevallier, A. Dehzangi, and M. Razeghi Applied Physics Letters 110, 101104-- March 8, 2017 ...[Visit Journal] Extended short-wavelength infrared nBn photodetectors based on type-II InAs/AlSb/GaSb superlattices on GaSb substrate have been demonstrated. An AlAsSb/GaSb H-structure superlattice design was used as the large-bandgap electron-barrier in these photodetectors. The photodetector is designed to have a 100% cut-off wavelength of ∼2.8 μm at 300 K. The photodetector exhibited a room-temperature (300 K) peak responsivity of 0.65 A/W at 1.9 μm, corresponding to a quantum efficiency of 41% at zero bias under front-side illumination, without any anti-reflection coating. With an R × A of 78 Ω·cm² and a dark current density of 8 × 10−3 A/cm² under −400 mV applied bias at 300 K, the nBn photodetector exhibited a specific detectivity of 1.51 × 1010 Jones. At 150 K, the photodetector exhibited a dark current density of 9.5 × 10−9 A/cm² and a quantum efficiency of 50%, resulting in a detectivity of 1.12 × 1013 Jones. [reprint (PDF)] |
1. | High Performance Type-II InAs/GaSb Superlattice Photodiodes H. Mohseni, Y. Wei, and M. Razeghi SPIE Conference, San Jose, CA, -- January 22, 2001 ...[Visit Journal] We report on the demonstration of high performance p-i-n photodiodes based on Type-II InAs/GaSb superlattices operating in the very long wavelength infrared (VLWIR) range at 80 K. Material is grown by molecular beam epitaxy on GaSb substrates with excellent crystal quality as evidenced by x-ray diffraction and atomic force microscopy. The processed devices with a 50% cutoff wavelength of λc equals 22 μm show a peak current responsivity about 5.5 A/W at 80 K. The use of binary layers in the superlattice has significantly enhanced the uniformity and reproducibility of the energy gap. The 90% to 10% cut-off energy width of these devices is on the order of 2 kT which is about four times smaller compared to the devices based on InAs/Ga1-xInxSb superlattices. Similar photovoltaic devices with cut-off wavelengths up to 25 μm have been measured at 80 K. Our experimental results shows excellent uniformity over a three inch wafer area, indicating the possibility of VLWIR focal plane arrays based on Type-II superlattices. [reprint (PDF)] |
1. | Resonant cavity enhanced heterojunction phototransistors based on type-II superlattices Jiakai Li, Arash Dehzangi, Donghai Wu, Ryan McClintock, Manijeh Razeghi Infrared Physics & Technology Available online 27 October 2020, 103552 https://doi.org/10.1016/j.infrared.2020.103552-- October 27, 2020 ...[Visit Journal] Resonant cavity enhanced heterojunction phototransistor based on InAs/GaSb/AlSb type-II superlattice grown by molecular beam epitaxy has been demonstrated. The resonant wavelength was designed to be at near 1.9 μm wavelength range at room temperature. An eleven-pair lattice matched GaSb-AlAsSb quarter-wavelength Bragg reflector was used in the RCE-HPT to enhance the photoresponse. The device showed the wavelength selectivity and a cavity enhancement of the responsivity at 1.9 μm at room temperature. [reprint (PDF)] |
1. | High-Performance InP-Based Mid-IR Quantum Cascade Lasers M. Razeghi IEEE Journal of Selected Topics in Quantum Electronics, Vol. 15, No. 3, May-June 2009, p. 941-951.-- June 5, 2009 ...[Visit Journal] Quantum cascade lasers (QCLs) were once considered
as inefficient devices, as the wall-plug efficiency (WPE) was merely a few percent at room temperature. But this situation has changed in the past few years, as dramatic enhancements to the output
power andWPE have been made for InP-based mid-IR QCLs. Room temperature continuous-wave (CW) output power as high as 2.8 W and WPE as high as 15% have now been demonstrated for individual devices. Along with the fundamental exploration of refining the design and improving the material quality, a consistent determination of important device performance parameters allows for strategically addressing each component that can be improved
potentially. In this paper, we present quantitative experimental evidence backing up the strategies we have adopted to improve the WPE for QCLs with room temperature CW operation. [reprint (PDF)] |
1. | High Power 3-12 μm Infrared Lasers: Recent Improvements and Future Trends M. Razeghi, S. Slivken, A. Tahraoui, A. Matlis, and Y.S. Park Advanced Research Workshop on Semiconductor Nanostructures, Queenstown, New Zealand; Proceedings -- February 5, 2003 ...[Visit Journal] In this paper, we discuss the progress of quantum cascade lasers (QCLs) grown by gas-source molecular beam epitaxy. Room temperature QCL operation has been reported for lasers emitting between 5-11 μm, with 9-11 μm lasers operating up to 425 K. Laser technology for the 3-5 μm range takes advantage of a strain-balanced active layer design. We also demonstrate record room temperature peak output powers at 9 and 11 μm (2.5 and 1 W, respectively) as well as record low 80K threshold current densities (250 A/cm²) for some laser designs. Preliminary distributed feedback (DFB) results are also presented and exhibit single mode operation for 9 μm lasers at room temperature. [reprint (PDF)] |
1. | AlxGa1-xN-based back-illuminated solar-blind photodetectors with external quantum efficiency of 89% E. Cicek, R. McClintock, C. Y. Cho, B. Rahnema, and M. Razeghi Appl. Phys. Lett. 103, 191108 (2013)-- November 5, 2013 ...[Visit Journal] We report on high performance AlxGa1−xN-based solar-blind ultraviolet photodetector (PD) array grown on sapphire substrate. First, high quality, crack-free AlN template layer is grown via metalorganic chemical vapor deposition. Then, we systematically optimized the device design and material doping through the growth and processing of multiple devices. After optimization, uniform and solar-blind operation is observed throughout the array; at the peak detection wavelength of 275 nm, 729 μm² area PD showed unbiased peak external quantum efficiency and responsivity of ∼80% and ∼176 mA/W, respectively, increasing to 89% under 5 V of reverse bias. Taking the reflection loses into consideration, the internal quantum efficiency of these optimized PD can be estimated to be as high as ∼98%. The visible rejection ratio measured to be more than six orders of magnitude. Electrical measurements yielded a low-dark current density: <2 × 10−9 A/cm², at 10 V of reverse bias. [reprint (PDF)] |
1. | High-Performance Focal Plane Arrays Based on InAs-GaSb Superlattices with a 10-micron Cutoff Wavelegth P.Y. Delaunay, B.M. Nguyen, D. Hoffman and M. Razeghi IEEE Journal of Quantum Electronics, Vol. 44, No. 5, p. 462-467-- May 1, 2008 ...[Visit Journal] We report on the demonstration of a focal plane array based on Type-II InAs/GaSb superlattices grown on N-type GaSb substrate with a 50%-cutoff wavelength at 10 μm. The surface leakage occurring after flip-chip bonding and underfill in the Type-II devices was suppressed using a double heterostructure design. The R0A of diodes passivated with SiO2 was 23 Ω·cm2 after underfill. A focal plane array hybridized to an Indigo readout integrated circuit demonstrated a noise equivalent temperature difference of 33 mK at 81 K, with an integration time of 0.23 ms. [reprint (PDF)] |
1. | Modeling Type-II InAs/GaSb Superlattices Using Empirical Tight-Binding Method: New Aspects Y. Wei, M. Razeghi, G.J. Brown, and M.Z. Tidrow SPIE Conference, Jose, CA, Vol. 5359, pp. 301-- January 25, 2004 ...[Visit Journal] The recent advances in the experimental work on the Type-II InAs/GaSb superlattices necessitate a modeling that can handle arbitrary layer thickness as well as different types of interfaces in order to guide the superlattice design. The empirical tight-binding method (ETBM) is a very good candidate since it builds up the Hamiltonian atom by atom. There has been a lot of research work on the modeling of Type-II InAs/GaSb superlattices using the ETBM. However, different groups generate very different accuracy comparing with experimental results. We have recently identified two major aspects in the modeling: the antimony segregation and the interface effects. These two aspects turned out to be of crucial importance governing the superlattice properties, especially the bandgap. We build the superlattice Hamiltonian using antimony segregated atomic profile taking into account the interface. Our calculations agree with our experimental results within growth uncertainties. In addition we introduced the concept of GaxIn1-x type interface engineering, which will add another design freedom especially in the mid-wavelength infrared range (3~7 µm) in orderto reduce the lattice mismatch. [reprint (PDF)] |
Page 7 of 9: Prev << 1 2 3 4 5 6 7 8 9 >> Next (221 Items)
|