Page 7 of 21:  Prev << 1 2 3 4 5 6 7  8 9 10 11 12 13 14 15 16 17 18 19 20 21  >> Next  (515 Items)

2.  AlxGa1-xN (0 ≤ x ≤ 1) Ultraviolet Photodetectors Grown on Sapphire by Metal-organic Chemical-vapor Deposition
D. Walker, X. Zhang, A. Saxler, P. Kung, J. Xu, and M. Razeghi
Applied Physics Letters 70 (8)-- February 24, 1997 ...[Visit Journal]
AlxGa1–xN (0 ≤ x ≤ 1) ultraviolet photoconductors with cutoff wavelengths from 365 to 200 nm have been fabricated and characterized. The maximum detectivity reached 5.5 × 108 cm·Hz1/2/W at a modulating frequency of 14 Hz. The effective majority carrier lifetime in AlxGa1–xN materials, derived from frequency-dependent photoconductivity measurements, has been estimated to be from 6 to 35 ms. The frequency-dependent noise spectrum shows that it is dominated by Johnson noise at high frequencies for low-Al-composition samples. [reprint (PDF)]
 
2.  Relaxation kinetics in quantum cascade laser
S. Slivken, V. Litvinov, M. Razeghi, and J.R. Meyer
Journal of Applied Physics 85 (2)-- January 15, 1999 ...[Visit Journal]
Relaxation kinetics in a quantum cascade intersubband laser are investigated. Distribution functions and gain spectra of a three-subband double-quantum-well active region are obtained as a function of temperature and injection current. The potentially important role of the nonequilibrium phonons at lasing threshold is shown and discussed in details. It is shown that the threshold current is strongly dependent of the power dissipated in the active region in steady state. The numerical calculations for an 8.5 μm laser illustrate the general issues of relaxation kinetics in quantum cascade lasers. Temperature dependence of the threshold current is obtained in a good agreement with the experiments. [reprint (PDF)]
 
2.  Suppression of surface leakage in gate controlled type-II InAs/GaSb mid-infrared photodetectors
G. Chen; B.-M. Nguyen; A.M. Hoang; E.K. Huang; S.R. Darvish; M. Razeghi
Proc. SPIE 8268, Quantum Sensing and Nanophotonic Devices IX, 826811 (January 20, 2012)-- January 20, 2012 ...[Visit Journal]
One of the biggest challenges of improving the electrical performance in Type II InAs/GaSb superlattice photodetector is suppressing the surface leakage. Surface leakage screens important bulk dark current mechanisms, and brings difficulty and uncertainty to the material optimization and bulk intrinsic parameters extraction such as carrier lifetime and mobility. Most of surface treatments were attempted beyond the mid-infrared (MWIR) regime because compared to the bulk performance, surface leakage in MWIR was generally considered to be a minor factor. In this work, we show that below 150K, surface leakage still strongly affects the electrical performance of the very high bulk performance p-π-M-n MWIR photon detectors. With gating technique, we can effectively eliminate the surface leakage in a controllable manner. At 110K, the dark current density of a 4.7 μm cut-off gated photon diode is more than 2 orders of magnitude lower than the current density in SiO2 passivated ungated diode. With a quantum efficiency of 48%, the specific detecivity of gated diodes attains 2.5 x 1014 cm·Hz1/2/W, which is 3.6 times higher than that of ungated diodes. [reprint (PDF)]
 
2.  Negative luminescence of InAs/GaSb superlattice photodiodes
F. Fuchs, D. Hoffman, A. Gin, A. Hood, Y. Wei, and M. Razeghi
Phys. Stat. Sol. C 3 (3)-- February 22, 2006 ...[Visit Journal]
The emission behaviour of InAs/GaSb superlattice photodiodes has been studied in the spectral range between 8 µm and 13 μm. With a radiometric calibration of the experimental set-up the internal quantum efficiency has been determined in the temperature range between 80 K and 300 K for both, the negative and positive luminescence. The quantitative analysis of the internal quantum efficiency of the non-equilibrium radiation enables the determination of the Auger coefficient. [reprint (PDF)]
 
2.  Optical Investigations of GaAs-GaInP Quantum Wells and Superlattices Grown by Metalorganic Chemical Vapor Deposition
Omnes F., and Razeghi M.
Applied Physics Letters 59 (9), p. 1034-- May 28, 1991 ...[Visit Journal]
Recent experimental results on the photoluminescence and photoluminescence excitation of GaAs‐Ga0.51In0.49P lattice‐matched quantum wells and superlattices are discussed. The full width at half maximum of a 10‐period GaAs‐GaInP superlattice with Lz=90 Å and LB=100 Å is 4 meV at 4 K. The photoluminescence excitation exhibits very sharp peaks attributed to the electron to light‐hole and electron to heavy‐hole transitions. The GaInP‐GaAs interface suffers from memory effect of In, rather than P or As elements. [reprint (PDF)]
 
2.  Surface leakage reduction in narrow band gap type-II antimonide-based superlattice photodiodes
E.K. Huang, D. Hoffman, B.M. Nguyen, P.Y. Delaunay and M. Razeghi
Applied Physics Letters, Vol. 94, No. 5, p. 053506-1-- February 2, 2009 ...[Visit Journal]
Inductively coupled plasma (ICP) dry etching rendered structural and electrical enhancements on type-II antimonide-based superlattices compared to those delineated by electron cyclotron resonance (ECR) with a regenerative chemical wet etch. The surface resistivity of 4×105 Ω·cm is evidence of the surface quality achieved with ICP etching and polyimide passivation. By only modifying the etching technique in the fabrication steps, the ICP-etched devices with a 9.3 µm cutoff wavelength revealed a diffusion-limited dark current density of 4.1×10−6 A/cm2 and a maximum differential resistance at zero bias in excess of 5300 Ω·cm2 at 77 K, which are an order of magnitude better in comparison to the ECR-etched devices. [reprint (PDF)]
 
2.  High-temperature high-power continuous-wave operation of buried heterostructure quantum-cascade lasers
A. Evans, J.S. Yu, J. David, L. Doris, K. Mi, S. Slivken, and M. Razeghi
Applied Physics Letters, 84 (3)-- January 19, 2004 ...[Visit Journal]
We report cw operation of buried heterostructure quantum-cascade lasers (λ=6 µm) using a thick electroplated Au top contact layer and epilayer-up bonding on a copper heat sink up to a temperature of 333 K (60 °C). The high cw optical output powers of 446 mW at 293 K, 372 mW at 298 K, and 30 mW at 333 K are achieved with threshold current densities of 2.19, 2.35, and 4.29 kA/cm2 respectively, for a high-reflectivity-coated, 9-µm-wide and 3-mm-long laser [reprint (PDF)]
 
2.  Anomalous Hall Effect in InSb Layers Grown by MOCVD on GaAs Substrates
C. Besikci, Y.H. Choi, R. Sudharsanan, and M. Razeghi
Journal of Applied Physics 73 (10)-- May 15, 1993 ...[Visit Journal]
InSb epitaxial layers have been grown on GaAs substrates by low‐pressure metalorganic chemical vapor deposition. A 3.15 μm thick film yielded an x‐ray full width at half maximum of 171 arcsec. A Hall mobility of 76  200 cm²/V· s at 240 K and a full width at half maximum of 174 arcsec have been measured for a 4.85 μm thick epilayer. Measured Hall data have shown anomalous behavior. A decrease in Hall mobility with decreasing temperature has been observed and room‐temperature Hall mobility has increased with thickness. In order to explain the anomalous Hall data, and the thickness dependence of the measured parameters, the Hall coefficient and Hall mobility have been simulated using a three‐layer model including a surface layer, a bulklike layer, and an interface layer with a high density of defects. Theoretical analysis has shown that anomalous behavior can be attributed to donor-like defects caused by the large lattice mismatch and to a surface layer which dominates the transport in the material at low temperatures.   [reprint (PDF)]
 
2.  Demonstration of a 256x256 Middle-Wavelength Infrared Focal Plane Array based on InGaAs/InGaP Quantum Dot Infrared Photodetectors (QDIPs)
J. Jiang, K. Mi, S. Tsao, W. Zhang, H. Lim, T.O'Sullivan, T. Sills, M. Razeghi, G.J. Brown, and M.Z. Tidrow
Virtual Journal of Nanoscale Science and Technology 9 (13)-- April 5, 2004 ...[Visit Journal][reprint (PDF)]
 
2.  Kinetics of Quantum States in Quantum Cascade Lasers: Device Design Principles and fabrication
M. Razeghi
special issue of Microelectronics Journal 30 (10)-- October 1, 1999[reprint (PDF)]
 
2.  Short Wavelength Solar-Blind Detectors: Status, Prospects, and Markets
M. Razeghi
IEEE Proceedings, Wide Bandgap Semiconductor Devices: The Third Generation Semiconductor Comes of Age 90 (6)-- June 1, 2002 ...[Visit Journal]
Recent advances in the research work on III-nitride semiconductors and AlxGa1-xN materials in particular has renewed the interest and led to significant progress in the development of ultraviolet (UV) photodetectors able to detect light in the mid- and near-UV spectral region (λ∼200-400 nm). There have been a growing number of applications which require the use of such sensors and, in many of these, it is important to be able to sense UV light without detecting infrared or visible light, especially from the Sun, in order to minimize the chances of false detection or high background. The research work on short-wavelength UV detectors has, therefore, been recently focused on realizing short-wavelength "solar-blind" detectors which, by definition, are insensitive to photons with wavelengths longer than ∼285 nm. In this paper the development of AlxGa1-xN-based solar-blind UV detectors will be reviewed. The technological issues pertaining to material synthesis and device fabrication will be discussed. The current state-of-the-art and future prospects for these detectors will be reviewed and discussed. [reprint (PDF)]
 
2.  High Detectivity GaInAs/InP Quantum Well Infrared Photodetectors Grown on Si Substrates
J. Jiang, C. Jelen, M. Razeghi and G.J. Brown
IEEE Photonics Technology Letters 14 (3)-- March 1, 2002 ...[Visit Journal]
In this letter, we report an improvement in the growth and the device performance of GaInAs-InP quantum well infrared photodetectors grown on Si substrates. Material growth techniques, like low-temperature nucleation layers and thick buffer layers were used to grow InP on Si. An in situ thermal cycle annealing technique was used to reduce the threading dislocation density in the InP-on-Si. Detector dark current was reduced 2 orders of magnitude by this method. Record high detectivity of 2.3 × 109 cm·Hz½·W-1 was obtained for QWIP-on-Si detectors in the 7-9 μm range at 77 K [reprint (PDF)]
 
2.  Surface leakage investigation via gated type-II InAs/GaSb long-wavelength infrared photodetectors
G. Chen, E.K. Huang, A.M. Hoang, S. Bogdanov, S.R. Darvish, and M. Razeghi
Applied Physics Letters, Vol. 101, No. 21, p. 213501-1-- November 19, 2012 ...[Visit Journal]
By using gating technique, surface leakage generated by SiO2 passivation in long-wavelength infrared type-II superlattice photodetector is suppressed, and different surface leakage mechanisms are disclosed. By reducing the SiO2 passivation layer thickness, the saturated gated bias is reduced to −4.5 V. At 77 K, dark current densities of gated devices are reduced by more than 2 orders of magnitude, with 3071 Ω·cm² differential-resistance-area product at −100 mV. With quantum efficiency of 50%, the 11 μm 50% cut-off gated photodiode has a specific detectivity of 7 × 1011 Jones, and the detectivity stays above 2 × 1011 Jones from 0 to −500 mV operation bias. [reprint (PDF)]
 
2.  High Temperature Continuous Wave Operation of ~8 μm Quantum Cascade Lasers
S. Slivken, A. Matlis, C. Jelen, A. Rybaltowski, J. Diaz, and M. Razeghi
Applied Physics Letters 74 (2)-- January 11, 1999 ...[Visit Journal]
We report single-mode continuous-wave operation of a λ∼8 μm quantum cascade laser at 140 K. The threshold current density is 4.2 kA/cm² at 300 K in pulsed mode and 2.5 kA/cm² at 140 K in continuous wave for 2 mm long index-guided laser cavities of 20 μm width. Wide stripe (W ∼ 100 μm), index-guided lasers from the same wafer in pulsed operation demonstrate an average T0 of 210 K with other wafers demonstrating a T0 as high as 290 K for temperatures from 80 to 300 K. This improvement in high-temperature performance is a direct result of three factors: excellent material quality, a low-loss waveguide design, and a low-leakage index-guided laser geometry. [reprint (PDF)]
 
2.  Well Resolved Room Temperature Photovoltage Spectra of GaAs-GaInP Quantum Wells and Superlattices
Xiaoguang He and Manijeh Razeghi
Applied Physics Letters 62 (6)-- February 8, 1993 ...[Visit Journal]
We report the first well resolved room‐temperature photovoltage spectra due to the sublevel transitions in the GaInP‐GaAs superlattices and multiquantum wells grown by low pressure metalorganic chemical vapor deposition. Sharp well resolved peaks attributed to exciton absorption of the electron‐to‐light hole and electron‐to‐heavy hole have been observed at room temperature. This indicates that GaAs‐GaInP is a promising material for the application of the modulators, optical switches, and optical bistable divices. Satisfactory agreements between experimental measurements and theoretical results have been obtained. These results demonstrate that photovoltage spectroscopy is a simple, but very powerful tool to study quantum confinement structures.   [reprint (PDF)]
 
2.  Fabrication of GaN Nanotubular Material using MOCVD with an Aluminium Oxide Membrane
W.G. Jung, S.H. Jung, P. Kung, and M. Razeghi
Nanotechnology 17-- January 1, 2006 ...[Visit Journal]
GaN nanotubular material is fabricated with an aluminium oxide membrane in MOCVD. SEM, XRD, TEM and PL are employed to characterize the fabricated GaN nanotubular material. An aluminium oxide membrane with ordered nanoholes is used as a template. Gallium nitride is deposited at the inner wall of the nanoholes in the aluminium oxide template, and the nanotubular material with high aspect ratio is synthesized using the precursors of TMG and ammonia gas. Optimal synthesis conditions in MOCVD are obtained successfully for the gallium nitride nanotubular material in this research. The diameter of the GaN nanotube fabricated is approximately 200–250 nm and the wall thickness is about 40–50 nm. [reprint (PDF)]
 
2.  High performance InGaAs/InGaP quantum dot infrared photodetector achieved through doping level optimization
S. Tsao, K. Mi, J. Szafraniec, W. Zhang, H. Lim, B. Movaghar, and M. Razeghi
SPIE Conference, Jose, CA, Vol. 5732, pp. 334-- January 22, 2005 ...[Visit Journal]
We report an InGaAs/InGaP/GaAs quantum dot infrared photodetector grown by metalorganic chemical vapor deposition with detectivity of 1.3x1011 cm·Hz½/W at 77K and 1.2x1010 ccm·Hz½/W at 120K. Modeling of the Quantum dot energy levels showed us that increased photoresponse could be obtained by doping the quantum dots to 4 electrons per dot instead of the usual 2 electrons per dot. This happens because the primary photocurrent transition is from the first excited state to a higher excited state. Increasing the quantum doping in our device yielded significant responsivity improvement and much higher detectivity as a result. This paper discusses the performance of this higher doping device and compares it to our previously reported device with lower doping. [reprint (PDF)]
 
2.  Optimizing facet coating of quantum cascade lasers for low power consumption
Y. Bai, S.R. Darvish, N. Bandyopadhyay, S. Slivken and M. Razeghi
Journal of Applied Physics, Vol. 109, No. 5, p. 053103-1-- March 1, 2011 ...[Visit Journal]
Typical high power consumption (∼10 W) of mid-infrared quantum cascade lasers (QCLs) has been a serious limitation for applications in battery powered systems. A partial high-reflection (PHR) coating technique is introduced for power downscaling with shorter cavity lengths. The PHR coating consists of a double layer dielectric of SiO2 and Ge. With this technique, a 4.6 μm QCL with an ultra low threshold power consumption of less than a watt (0.83 W) is demonstrated in room temperature continuous wave operation. At 25°C, the maximum output power and wall plug efficiency are 192 mW and 8.6%, respectively. [reprint (PDF)]
 
2.  High Performance Solar-Blind Ultraviolet Focal Plane Arrays Based on AlGaN
Erdem Cicek, Ryan McClintock, Abbas Haddadi, William A. Gaviria Rojas, and Manijeh Razeghi
IEEE Journal of Quantum Electronics, Vol. 50, Issue 8, p 591-595-- August 1, 2014 ...[Visit Journal]
We report on solar-blind ultraviolet, AlxGa1-x N- based,p-i-n,focal plane array (FPA) with 92% operability. At the peak detection wavelength of 278 nm, 320×256-FP A-pixel showed unbiased peak external quantum efficiency (EQE) and responsivity of 49% and 109 mA/W, respectively, increasing to 66% under 5 volts of reverse bias. Electrical measurements yielded a low-dark current density: <7×10-9A/cm², at FPA operating voltage of 2 volts of reverse bias. [reprint (PDF)]
 
2.  QEPAS based ppb-level detection of CO and N2O using a high power CW DFB-QCL
Y. Ma, R. Lewicki, M. Razeghi and F. Tittel
Optics Express, Vol. 21, No. 1, p. 1008-- January 14, 2013 ...[Visit Journal]
An ultra-sensitive and selective quartz-enhanced photoacoustic spectroscopy (QEPAS) sensor platform was demonstrated for detection of carbon monoxide (CO) and nitrous oxide (N2O). This sensor used a stateof-the art 4.61 μm high power, continuous wave (CW), distributed feedback quantum cascade laser (DFB-QCL) operating at 10°C as the excitation source. For the R(6) CO absorption line, located at 2169.2 cm−1, a minimum detection limit (MDL) of 1.5 parts per billion by volume (ppbv) at atmospheric pressure was achieved with a 1 sec acquisition time and the addition of 2.6% water vapor concentration in the analyzed gas mixture. For the N2O detection, a MDL of 23 ppbv was obtained at an optimum gas pressure of 100 Torr and with the same water vapor content of 2.6%. In both cases the presence of water vapor increases the detected CO and N2O QEPAS signal levels as a result of enhancing the vibrational-translational relaxation rate of both target gases. Allan deviation analyses were performed to investigate the long term performance of the CO and N2O QEPAS sensor systems. For the optimum data acquisition time of 500 sec a MDL of 340 pptv and 4 ppbv was obtained for CO and N2O detection,respectively. To demonstrate reliable and robust operation of the QEPAS sensor a continuous monitoring of atmospheric CO and N2O concentration levels for a period of 5 hours were performed. [reprint (PDF)]
 
2.  Extended short-wavelength infrared nBn photodetectors based on type-II InAs/AlSb/GaSb superlattices with an AlAsSb/GaSb superlattice barrier
A. Haddadi, R. Chevallier, A. Dehzangi, and M. Razeghi
Applied Physics Letters 110, 101104-- March 8, 2017 ...[Visit Journal]
Extended short-wavelength infrared nBn photodetectors based on type-II InAs/AlSb/GaSb superlattices on GaSb substrate have been demonstrated. An AlAsSb/GaSb H-structure superlattice design was used as the large-bandgap electron-barrier in these photodetectors. The photodetector is designed to have a 100% cut-off wavelength of ∼2.8 μm at 300 K. The photodetector exhibited a room-temperature (300 K) peak responsivity of 0.65 A/W at 1.9 μm, corresponding to a quantum efficiency of 41% at zero bias under front-side illumination, without any anti-reflection coating. With an R × A of 78 Ω·cm² and a dark current density of 8 × 10−3 A/cm² under −400 mV applied bias at 300 K, the nBn photodetector exhibited a specific detectivity of 1.51 × 1010 Jones. At 150 K, the photodetector exhibited a dark current density of 9.5 × 10−9 A/cm² and a quantum efficiency of 50%, resulting in a detectivity of 1.12 × 1013 Jones. [reprint (PDF)]
 
2.  Gain and recombination dynamics in photodetectors made with quantum nanostructures: the quantum dot in a well and the quantum well
B. Movaghar, S. Tsao, S. Abdollahi Pour, T. Yamanaka, and M. Razeghi
Virtual Journal of Nanoscale Science & Technology, Vol. 18, No. 14-- October 6, 2008 ...[Visit Journal][reprint (PDF)]
 
2.  High-Performance InP-Based Mid-IR Quantum Cascade Lasers
M. Razeghi
IEEE Journal of Selected Topics in Quantum Electronics, Vol. 15, No. 3, May-June 2009, p. 941-951.-- June 5, 2009 ...[Visit Journal]
Quantum cascade lasers (QCLs) were once considered as inefficient devices, as the wall-plug efficiency (WPE) was merely a few percent at room temperature. But this situation has changed in the past few years, as dramatic enhancements to the output power andWPE have been made for InP-based mid-IR QCLs. Room temperature continuous-wave (CW) output power as high as 2.8 W and WPE as high as 15% have now been demonstrated for individual devices. Along with the fundamental exploration of refining the design and improving the material quality, a consistent determination of important device performance parameters allows for strategically addressing each component that can be improved potentially. In this paper, we present quantitative experimental evidence backing up the strategies we have adopted to improve the WPE for QCLs with room temperature CW operation. [reprint (PDF)]
 
2.  High-Average-Power, High-Duty-Cycle (~6 μm) Quantum Cascade Lasers
S. Slivken, A. Evans, J. David, and M. Razeghi
Applied Physics Letters, 81 (23)-- December 2, 2002 ...[Visit Journal]
High-power quantum cascade lasers emitting at λ = 6.1  μm are demonstrated. Accurate control of growth parameters and strain balancing results in a near-perfect lattice match, which leads to excellent material quality. Excellent peak power for uncoated lasers, up to 1.5 W per facet for a 21 μm emitter width, is obtained at 300 K for 30 period structures. The threshold current density at 300 K is only 2.4 kA/cm². From 300 to 425 K, the laser exhibits a characteristic temperature T0 of 167 K. Next, Y2O3/Ti/Au mirror coatings were deposited on 1.5 mm cavities and mounted epilayer down. These lasers show an average output power of up to 225 mW at 17% duty cycle, and still show 8 mW average power at 45% duty cycle. [reprint (PDF)]
 
2.  Modeling Type-II InAs/GaSb Superlattices Using Empirical Tight-Binding Method: New Aspects
Y. Wei, M. Razeghi, G.J. Brown, and M.Z. Tidrow
SPIE Conference, Jose, CA, Vol. 5359, pp. 301-- January 25, 2004 ...[Visit Journal]
The recent advances in the experimental work on the Type-II InAs/GaSb superlattices necessitate a modeling that can handle arbitrary layer thickness as well as different types of interfaces in order to guide the superlattice design. The empirical tight-binding method (ETBM) is a very good candidate since it builds up the Hamiltonian atom by atom. There has been a lot of research work on the modeling of Type-II InAs/GaSb superlattices using the ETBM. However, different groups generate very different accuracy comparing with experimental results. We have recently identified two major aspects in the modeling: the antimony segregation and the interface effects. These two aspects turned out to be of crucial importance governing the superlattice properties, especially the bandgap. We build the superlattice Hamiltonian using antimony segregated atomic profile taking into account the interface. Our calculations agree with our experimental results within growth uncertainties. In addition we introduced the concept of GaxIn1-x type interface engineering, which will add another design freedom especially in the mid-wavelength infrared range (3~7 µm) in orderto reduce the lattice mismatch. [reprint (PDF)]
 

Page 7 of 21:  Prev << 1 2 3 4 5 6 7  8 9 10 11 12 13 14 15 16 17 18 19 20 21  >> Next  (515 Items)