| About the CQD | | News | | Conferences | | Publications | | Books | | Research | | People | | History | | Patents | | Contact | Channel | |
Page 6 of 19: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 >> Next (466 Items)
| 2. | A Review of III-Nitride Research at the Center for Quantum Devices M. Razeghi and R. McClintock Journal of Crystal Growth, Vol. 311, No. 10-- May 1, 2009 ...[Visit Journal] In this paper, we review the history of the Center for Quantum Devices’ (CQD) III-nitride research
covering the past 15 years. We review early work developing III-nitride material growth. We then
present a review of laser and light-emitting diode (LED) results covering everything from blue lasers to deep UV LEDs emitting at 250 nm. This is followed by a discussion of our UV photodetector research from early photoconductors all the way to current state of the art Geiger-mode UV single photon detectors. [reprint (PDF)] |
| 2. | Background limited performance of long wavelength infrared focal plane arrays fabricated from M-structure InAs/GaSb superlattices P.Y. Delaunay, B.M. Nguyen, D. Hoffman, E.K. Huang, P. Manurkar, S. Bogdanov and M. Razeghi SPIE Proceedings, San Jose, CA Volume 7222-0W-- January 26, 2009 ...[Visit Journal] Recent advances in the design and fabrication of Type-II InAs/GaSb superlattices allowed the realization of high performance long wavelength infrared focal plane arrays. The introduction of an Mstructure barrier between the n-type contact and the pi active region reduced the tunneling component of the dark current. The M-structure design improved the noise performance and the dynamic range of FPAs at low temperatures. At 81K, the NEDT of the focal plane array was 23 mK. The noise of the camera was dominated by the noise component due to the read out integrated circuit. At 8 µm, the median quantum efficiency of the detectors was 71%, mainly limited by the reflections on the backside of the array.
[reprint (PDF)] |
| 2. | High-power high-wall plug efficiency mid-infrared quantum cascade lasers based on InP/GaInAs/InAlAs material system M. Razeghi SPIE Proceedings, San Jose, CA Volume 7230-11-- January 26, 2009 ...[Visit Journal] The latest result at the Center for Quantum Devices about high power, high wall plug efficiency, mid-infrared quantum cascade lasers (QCLs) is presented. At an emitting wavelength of 4.8 µm, an output power of 3.4 W and a wall plug efficiency of 16.5% are demonstrated from a single device operating in continuous wave at room temperature. At a longer wavelength of 10.2 µm, average power as high as 2.2 W is demonstrated at room temperature. Gas-source molecular beam epitaxy is used to grow the QCL core in an InP/GaInAs/InAlAs material system. Fe-doped semiinsulating regrowth is performed by metal organic chemical vapor deposition for efficient heat removal and low waveguide loss. This accomplishment marks an important milestone in the development of high performance midinfrared QCLs. [reprint (PDF)] |
| 2. | An accurate method to check chemical interfaces of epitaxial III‐V compounds R. Bisaro; G. Laurencin; A. Friederich; M. Razeghi R. Bisaro, G. Laurencin, A. Friederich, M. Razeghi; An accurate method to check chemical interfaces of epitaxial III‐V compounds. Appl. Phys. Lett. 1 June 1982; 40 (11): 978–980.-- June 1, 1982 ...[Visit Journal] We have developed a method of chemical beveling coupled with line scan Auger measurements to check abrupt interfaces of epitaxial III‐V compounds. Interface widths between 53 and 89 Å have been measured by this method for an InP/Ga0.47In0.53As/InP double heterostructure grown by low pressure metalorganic chemical vapor deposition. The ultimate width checkable by this method lies between 10 and 15 Å and is of the order of magnitude of the escape depth of the Auger electrons selected. |
| 2. | Surface Emitting, Tunable, Mid-Infrared Laser with High Output Power and Stable Output Beam Steven Slivken, Donghai Wu & Manijeh Razeghi Scientific Reports volume 9, Article number: 549-- January 24, 2019 ...[Visit Journal] A reflective outcoupler is demonstrated which can allow for stable surface emission from a quantum cascade laser and has potential for cost-effective wafer-scale manufacturing. This outcoupler is integrated with an amplified, electrically tunable laser architecture to demonstrate high power surface emission at a wavelength near 4.9 μm. Single mode peak power up to 6.7 W is demonstrated with >6 W available over a 90 cm−1 (215 nm) spectral range. A high quality output beam is realized with a simple, single-layer, anti-reflective coating. The beam shape and profile are shown to be independent of wavelength. [reprint (PDF)] |
| 2. | A review of the growth, doping, and applications of β-Ga2O3 thin films Manijeh Razeghi, Ji-Hyeon Park , Ryan McClintock, Dimitris Pavlidis, Ferechteh H. Teherani, David J. Rogers, Brenden A. Magill, Giti A. Khodaparast, Yaobin Xu, Jinsong Wu, Vinayak P. Dravid Proc. SPIE 10533, Oxide-based Materials and Devices IX, 105330R -- March 14, 2018 ...[Visit Journal] β-Ga2O3 is emerging as an interesting wide band gap semiconductor for solar blind photo detectors (SBPD) and high power field effect transistors (FET) because of its outstanding material properties including an extremely wide bandgap (Eg ~4.9eV) and a high breakdown field (8 MV/cm). This review summarizes recent trends and progress in the growth/doping of β-Ga2O3 thin films and then offers an overview of the state-of-the-art in SBPD and FET devices. The present challenges for β-Ga2O3 devices to penetrate the market in real-world applications are also considered, along with paths for future work. [reprint (PDF)] |
| 2. | Room temperature single-mode terahertz sources based on intracavity difference-frequency generation in quantum cascade lasers Q.Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai and M. Razeghi Applied Physics Letters, Vol. 99, Issue 13, p. 131106-1-- September 26, 2011 ...[Visit Journal] We demonstrate room temperature single-mode THz emission at 4 THz based on intracavity difference-frequency generation from mid-infrared dual-wavelength quantum cascade lasers. An integrated dual-period distributed feedback grating is defined on the cap layer to purify both mid-infrared pumping wavelengths and in turn the THz spectra. Single mode operation of the pumping wavelengths results in a single-mode THz operation with a narrow linewidth of 6.6 GHz. A maximum THz power of 8.5 μW with a power conversion efficiency of 10 μW/W² is obtained at room temperature. [reprint (PDF)] |
| 2. | High-speed free-space optical communications based on quantum cascade lasers and type-II superlattice detectors Stephen M. Johnson; Emily Dial; M. Razeghi Proc. SPIE 11288, Quantum Sensing and Nano Electronics and Photonics XVII, 1128814-- January 31, 2020 ...[Visit Journal] Free-space optical communications (FSOC) is a promising avenue for point-to-point, high-bandwidth, and high-security communication links. It has the potential to solve the “last mile” problem modern communication systems face, allowing for high-speed communication links without the expensive and expansive infrastructure required by fiber optic and
wireless technologies 1 . Although commercial FSOC systems currently exist, due to their operation in the near infrared and short infrared ranges, they are necessarily limited by atmospheric absorption and scattering losses 2 . Mid-infrared (MWIR) wavelengths are desirable for free space communications systems because they have lower atmospheric scattering losses compared to near-infrared communication links. This leads to increased range and link uptimes. Since this portion of the EM spectrum is unlicensed, link establishment can be implemented quickly. Quantum cascade lasers
(QCL) are ideal FSOC transmitters because their emission wavelength is adjustable to MWIR 3 . Compared to the typical VCSEL and laser diodes used in commercial NIR and SWIR FSOC systems, however, they require increased threshold and modulation currents 4 . Receivers based on type-II superlattice (T2SL) detectors are desired in FSOC for their low
dark current, high temperature operation, and band gap tunable to MWIR 5. In this paper, we demonstrate the implementation of a high-speed FSOC system using a QCL and a T2SL detector. [reprint (PDF)] |
| 2. | InAs/InAs1-xSbx type-II superlattices for high performance long wavelength infrared detection M. Razeghi, A. Haddadi, A. M. Hoang, R. Chevallier, S. Adhikary, A. Dehzangi Proc. SPIE 9819, Infrared Technology and Applications XLII, 981909-- May 20, 2016 ...[Visit Journal] We report InAs/InAs1-xSbx type-II superlattice base photodetector as high performance long-wavelength infrared nBn device grown on GaSb substrate. The device has 6 μm-thick absorption region, and shows optical performance with a peak responsivity of 4.47 A/W at 7.9 μm, which is corresponding to the quantum efficiency of 54% at a bias voltage of negative 90 mV, where no anti-reflection coating was used for front-side illumination. At 77K, the photodetector’s 50% cut-off wavelength was ~10 μm. The device shows the detectivity of 2.8x1011 cm•Hz½/W at 77 K, where RxA and dark current density were 119 Ω•cm² and 4.4x10-4 A/cm² , respectively, under -90 mV applied bias voltage [reprint (PDF)] |
| 2. | Highly selective two-color mid-wave and long-wave infrared detector hybrid based on Type-II superlattices E.K. Huang, M.A. Hoang, G. Chen, S.R. Darvish, A. Haddadi, and M. Razeghi Optics Letters, Vol. 37, No. 22, p. 4744-4746-- November 15, 2012 ...[Visit Journal] We report a two-color mid-wave infrared (MWIR) and long-wave infrared (LWIR) co-located detector with 3 μm active region thickness per channel that is highly selective and can perform under high operating temperatures for the MWIR band. Under back-side illumination, a temperature evolution study of the MWIR detector’s electro-optical performance found the 300 K background-limit with 2π field-of-view to be achieved below operating temperatures of 160 K, at which the temperature’s 50% cutoff wavelength was 5.2 μm. The measured current reached the system limit of 0.1 pA at 110 K for 30 μm pixel-sized diodes. At 77 K, where the LWIR channel operated with a 50% cutoff wavelength at 11.2 μm, an LWIR selectivity of ∼17% was achieved in the MWIR wave band between 3 and 4.7 μm, making the detector highly selective. [reprint (PDF)] |
| 2. | Scaling in back-illuminated GaN avalanche photodiodes K. Minder, J.L. Pau, R. McClintock, P. Kung, C. Bayram, M. Razeghi and D. Silversmith Applied Physics Letters, Vol. 91, No. 7, p. 073513-1-- August 13, 2007 ...[Visit Journal] Avalanche p-i-n photodiodes of various mesa areas were fabricated on AlN templates for back illumination for enhanced performance through hole-initiated multiplication, and the effects of increased area on device performance were studied. Avalanche multiplication was observed in mesa sizes up to 14,063 µm^2 under linear mode operation. Uniform gain and a linear increase of the dark current with area were demonstrated. [reprint (PDF)] |
| 2. | Type-II superlattice photodetectors for MWIR to VLWIR focal plane arrays M. Razeghi, Y. Wei, A. Hood, D. Hoffman, B.M. Nguyen, P.Y. Delaunay, E. Michel and R. McClintock SPIE Infrared Technology and Applications Conference, April 17-21, 2006, Orlando, FL Proceedings – Infrared Technology and Applications XXXII, Vol. 6206, p. 62060N-1-- April 21, 2006 ...[Visit Journal] Results obtained on GaSb/InAs Type-II superlattices have shown performance comparable to HgCdTe detectors, with the promise of higher performance due to reduced Auger recombination and dark current through improvements in device design and material quality. In this paper, we discuss advancements in Type-II IR sensors that cover the 3 to > 30 µm wavelength range. Specific topics covered will be device design and modeling using the Empirical Tight Binding Method (ETBM), material growth and characterization, device fabrication and testing, as well as focal plane array processing and imaging. Imaging has been demonstrated at room temperature for the first time with a 5 µm cutoff wavelength 256×256 focal plane array. [reprint (PDF)] |
| 2. | Sb-based third generation at Center for Quantum Devices Razeghi, Manijeh SPIE Proceedings Volume 11407, Infrared Technology and Applications XLVI; 114070T-- April 23, 2020 ...[Visit Journal] Sb-based III-V semiconductors are a promising alternative to HgCdTe. They can be produced with a similar bandgap to HgCdTe, but take advantage of the strong bonding between group III and group V elements which leads to very stable materials, good radiation hardness, and high uniformity. In this paper, we will discuss the recent progress of our research and present the main contributions of the Center for Quantum Devices to the Sb-based 3th generation imagers. [reprint (PDF)] |
| 2. | Reliability of Aluminum-Free 808 nm High-Power Laser Diodes with Uncoated Mirrors I. Eliashevich, J. Diaz, H. Yi, L. Wang, and M. Razeghi Applied Physics Letters 66 (23)-- June 5, 1995 ...[Visit Journal] The reliability of uncoated InGaAsP/GaAs high‐power diode lasers emitting at 808 nm wavelength has been studied. 47 W of quasicontinuous wave output power (pulse width 200 μs, frequency 20 Hz) have been obtained from a 1 cm wide laser bar. A single‐stripe diode without mirror coating has been life tested at 40 °C for emitting power of 800 mW continuous wave (cw) and showed no noticeable degradation and no change of the lasing wavelength after 6000 h of operation. [reprint (PDF)] |
| 2. | Buried heterostructure quantum cascade lasers with high continuous-wave wall plug efficiency A. Evans, S.R. Darvish, S. Slivken, J. Nguyen, Y. Bai and M. Razeghi Applied Physics Letters, Vol. 91, No. 7, p. 071101-1-- August 13, 2007 ...[Visit Journal] The authors report on the development of ~4.7 µm strain-balanced InP-based quantum cascade lasers with high wall plug efficiency and room temperature continuous-wave operation. The use of narrow-ridge buried heterostructure waveguides and thermally optimized packaging is presented. Over 9.3% wall plug efficiency is reported at room temperature from a single device producing over 0.675 W of continuous-wave output power. Wall plug efficiencies greater than 18% are also reported for devices at a temperature of 150 K, with continuous-wave output powers of more than 1 W. [reprint (PDF)] |
| 2. | Near milliwatt power AlGaN-based ultraviolet light emitting diodes based on lateral epitaxial overgrowth of AlN on Si(111) Y. Zhang, S. Gautier, C. Cho, E. Cicek, Z, Vashaei, R. McClintock, C. Bayram, Y. Bai and M. Razeghi Applied Physics Letters, Vol. 102, No. 1, p. 011106-1-- January 7, 2013 ...[Visit Journal] We report on the growth, fabrication, and device characterization of AlGaN-based thin-film ultraviolet (UV) (λ ∼ 359 nm) light emitting diodes (LEDs). First, AlN/Si(111) template is patterned. Then, a fully coalesced 7-μm-thick lateral epitaxial overgrowth (LEO) of AlN layer is realized on patterned AlN/Si(111) template followed by UV LED epi-regrowth. Metalorganic chemical vapor deposition is employed to optimize LEO AlN and UV LED epitaxy. Back-emission UV LEDs are fabricated and flip-chip bonded to AlN heat sinks followed by Si(111) substrate removal. A peak pulsed power and slope efficiency of ∼0.6 mW and ∼1.3 μW/mA are demonstrated from these thin-film UV LEDs, respectively. For comparison, top-emission UV LEDs are fabricated and back-emission LEDs are shown to extract 50% more light than top-emission ones. [reprint (PDF)] |
| 2. | High Power Mid-Infrared Quantum Cascade Lasers Grown on Si Steven Slivken, Nirajman Shrestha, and Manijeh Razeghi Photonics, vol. 9, 626 ...[Visit Journal] This article details the demonstration of a strain-balanced, InP-based mid-infrared quantum cascade laser structure that is grown directly on a Si substrate. This is facilitated by the creation of a metamorphic buffer layer that is used to convert from the lattice constant of Si (0.543 nm) to that of InP (0.587 nm). The laser geometry utilizes two top contacts in order to be compatible with future large-scale integration. Unlike previous reports, this device is capable of room temperature operation with up to 1.6 W of peak power. The emission wavelength at 293 K is 4.82 um, and the device operates in the fundamental transverse mode. [reprint (PDF)] |
| 2. | Demonstration of mid-infrared type-II InAs/GaSb superlattice photodiodes grown on GaAs substrate B.M. Nguyen, D. Hoffman, E.K. Huang, S. Bogdanov, P.Y. Delaunay, M. Razeghi and M.Z. Tidrow Applied Physics Letters, Vol. 94, No. 22-- June 8, 2009 ...[Visit Journal] We report the growth and characterization of type-II InAs/GaSb superlattice photodiodes grown on
a GaAs substrate. Through a low nucleation temperature and a reduced growth rate, a smooth GaSb
surface was obtained on the GaAs substrate with clear atomic steps and low roughness morphology.
On the top of the GaSb buffer, a p+-i-n+ type-II InAs/GaSb superlattice photodiode was grown with
a designed cutoff wavelength of 4 μm. The detector exhibited a differential resistance at zero bias (R0A)in excess of 1600 Ω·cm2 and a quantum efficiency of 36.4% at 77 K, providing a specific detectivity of 6 X 1011 cm·Hz½/W and a background limited operating temperature of 100 K with a 300 K background. Uncooled detectors showed similar performance to those grown on GaSb
substrates with a carrier lifetime of 110 ns and a detectivity of 6 X 108 cm·Hz½/W. [reprint (PDF)] |
| 2. | Solar-blind photodetectors based on Ga2O3 and III-nitrides Ryan McClintock; Alexandre Jaud; Lakshay Gautam; Manijeh Razeghi Proc. SPIE 11288, Quantum Sensing and Nano Electronics and Photonics XVII, 1128803-- January 31, 2020 ...[Visit Journal] Recently, there has been a surge of interest in the wide bandgap semiconductors for solar blind photo detectors (SBPD). This work presents our recent progress in the growth/doping of AlGaN and Ga2O3 thin films for solar blind detection applications. Both of these thin films grown are grown by metal organic chemical vapor deposition (MOCVD) in the same Aixtron MOCVD system. Solar-blind metal-semiconductor-metal photodetectors were fabricated with Ga2O3. Spectral responsivity studies of the MSM photodetectors revealed a peak at 261 nm and a maximum EQE of 41.7% for a −2.5 V bias. We have also demonstrated AlGaN based solar-blind avalanche photodiodes with a gain in excess of 57,000 at ~100 volts of reverse bias. This gain can be attributed to avalanche multiplication of the photogenerated carriers within the device. Both of these devices show the potential of wide bandgap semiconductors for solar blind photo detectors. [reprint (PDF)] |
| 2. | Demonstration of Zn-Diffused Planar Long-Wavelength Infrared Photodetector Based on Type-II Superlattice Grown by MBE Rajendra K. Saroj, Van Hoang Nguyen, Steven Slivken, Gail J. Brown and Manijeh Razeghi IEEE Journal of Quantum Electronics ...[Visit Journal] We report on a planar long-wavelength infrared photodetector based on InAs/InAs1−xSbx type-II superlattice with zinc diffusion. The superlattice structures were grown by molecular beam epitaxy, followed by a post-growth Zinc diffusion process in a metal-organic chemical vapor deposition reactor. The planar photodetectors showed a peak responsivity of 2.18 A/W, under an applied bias of −20 mV, with a corresponding quantum efficiency of 44.5%, without any anti-reflection coating, and had a 100% cut-off wavelength of 8.5 μm at 77 K temperature. These photodetectors exhibit a specific peak detectivity of 3.0×10^12 cm.Hz^1/2/W, with a dark current density of 1.5 × 10−5 A/cm2 and the differential-resistance-area product of ∼8.6 × 10−1 Ω.cm2, under an applied bias of −20 mV at 77 K. A comparative study between the planar and conventional mesa isolated photodetectors was also carried out. [reprint (PDF)] |
| 2. | High-Performance Focal Plane Arrays Based on InAs-GaSb Superlattices with a 10-micron Cutoff Wavelegth P.Y. Delaunay, B.M. Nguyen, D. Hoffman and M. Razeghi IEEE Journal of Quantum Electronics, Vol. 44, No. 5, p. 462-467-- May 1, 2008 ...[Visit Journal] We report on the demonstration of a focal plane array based on Type-II InAs/GaSb superlattices grown on N-type GaSb substrate with a 50%-cutoff wavelength at 10 μm. The surface leakage occurring after flip-chip bonding and underfill in the Type-II devices was suppressed using a double heterostructure design. The R0A of diodes passivated with SiO2 was 23 Ω·cm2 after underfill. A focal plane array hybridized to an Indigo readout integrated circuit demonstrated a noise equivalent temperature difference of 33 mK at 81 K, with an integration time of 0.23 ms. [reprint (PDF)] |
| 2. | High Quality Type-II InAs/GaSb Superlattices with Cutoff Wavelength ~3.7 µm Using Interface Engineering Y. Wei, J. Bae, A. Gin, A. Hood, M. Razeghi, G.J. Brown, and M. Tidrow Journal of Applied Physics, 94 (7)-- October 1, 2003 ...[Visit Journal] We report the most recent advance in the area of Type-II InAs/GaSb superlattices that have cutoff wavelength of ~3.7 µm. With GaxIn1–x type interface engineering techniques, the mismatch between the superlattices and the GaSb (001) substrate has been reduced to <0.1%. There is no evidence of dislocations using the best examination tools of x-ray, atomic force microscopy, and transmission electron microscopy. The full width half maximum of the photoluminescence peak at 11 K was ~4.5 meV using an Ar+ ion laser (514 nm) at fluent power of 140 mW. The integrated photoluminescence intensity was linearly dependent on the fluent laser power from 2.2 to 140 mW at 11 K. The temperature-dependent photoluminescence measurement revealed a characteristic temperature of one T1 = 245 K at sample temperatures below 160 K with fluent power of 70 mW, and T1 = 203 K for sample temperatures above 180 K with fluent power of 70 and 420 mW. [reprint (PDF)] |
| 2. | Room temperature continuous wave operation of λ ~ 3-3.2 μm quantum cascade lasers N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken and M. Razeghi Applied Physics Letters, Vol. 101, No. 24, p. 241110-1-- December 10, 2012 ...[Visit Journal] We demonstrate quantum cascade lasers emitting at wavelengths of 3–3.2 μm in the InP-based material system. The laser core consists of GaInAs/AlInAs using strain balancing technique. In room temperature pulsed mode operation, threshold current densities of 1.66 kA∕cm² and 1.97 kA∕cm², and characteristic temperatures (T0) of 108 K and 102 K, are obtained for the devices emitting at 3.2 μm and 3 μm, respectively. Room temperature continuous wave operation is achieved at both wavelengths. [reprint (PDF)] |
| 2. | High-brightness LWIR quantum cascade lasers F. Wang, S. Slivken, and M. Razeghi F. Wang, S. Slivken, and M. Razeghi, High-brightness LWIR quantum cascade lasers, Optics Letters, vol. 46, No. 20, 5193 ...[Visit Journal] Long-wave infrared (LWIR, lambda~8-12 um) quantum cascade lasers (QCLs) are drawing increasing interest, as they provide the possibility of long-distance transmission of light through the atmosphere owing to the reduced water absorption. However, their development has been lagging behind the shorter wavelength QCLs due to much bigger technological challenges. In this Letter, through band structure engineering based on a highly localized diagonal laser transition strategy and out-coupler design using an electrically isolated taper structure, we demonstrate high beam quality single-mode LWIR QCLs with high-brightness (2.0 MW cm-2 sr-1 for lambda~10 um, 2.2 MW cm-2 sr-1 for lambda~9 um, 5.0 MW cm-2 sr-1 for lambda~8 um) light extraction from a single facet in continuous-wave operation at 15 oC. These results mark an important milestone in exploring the lighting capability of inter-sub-band semiconductor lasers in the LWIR spectral range. [reprint (PDF)] |
| 2. | Inductively coupled plasma etching and processing techniques for type-II InAs/GaSb superlattices infrared detectors toward high fill factor focal plane arrays E.K. Huang, B.M. Nguyen, D. Hoffman, P.Y. Delaunay and M. Razeghi SPIE Proceedings, San Jose, CA Volume 7222-0Z-- January 26, 2009 ...[Visit Journal] A challenge for Type-II InAs/GaSb superlattice (T2SL) photodetectors is to achieve high fill factor, high aspect ratio etching for third generation focal plane arrays (FPAs). Initially, we compare the morphological and electrical results of single element T2SL photodiodes after BCl3/Ar inductively coupled plasma (ICP) and electron cyclotron resonance (ECR) dry etching. Using a Si3N4 hard mask, ICP-etched structures exemplify greater sidewall verticality and smoothness, which are essential toward the realization of high fill factor FPAs. ICP-etched single element devices with SiO2 passivation that are 9.3 µm in cutoff wavelength achieved vertical sidewalls of 7.7 µm in depth with a resistance area product at zero bias of greater than 1,000 Ω·cm2 and maximum differential resistance in excess of 10,000 Ω·cm2 at 77 K. By only modifying the etching technique in the fabrication steps, the ICP-etched photodiodes showed an order of magnitude decrease in their dark current densities in comparison to the ECR-etched devices. Finally, high aspect ratio etching is demonstrated on mutli-element arrays with 3 µm-wide trenches that are 11 µm deep. [reprint (PDF)] |
Page 6 of 19: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 >> Next (466 Items)
|