Page 6 of 10:  Prev << 1 2 3 4 5 6  7 8 9 10  >> Next  (226 Items)

2.  320x256 Solar-Blind Focal Plane Arrays based on AlxGa1-xN
R. McClintock, K. Mayes, A. Yasan, D. Shiell, P. Kung, and M. Razeghi
Applied Physics Letters, 86 (1)-- January 3, 2005 ...[Visit Journal]
We report AlGaN-based back-illuminated solar-blind ultraviolet focal plane arrays operating at a wavelength of 280 nm. The electrical characteristics of the individual pixels are discussed, and the uniformity of the array is presented. The p–i–n photodiode array was hybridized to a 320×256 read-out integrated circuit entirely within our university research lab, and a working 320×256 camera was demonstrated. Several example solar-blind images from the camera are also provided. [reprint (PDF)]
 
2.  Recent advances in high performance antimonide-based superlattice FPAs
E.K. Huang, B.M. Nguyen, S.R. Darvish, S. Abdollahi Pour, G. Chen, A. Haddadi, and M.A. Hoang
SPIE Proceedings, Infrared technology and Applications XXXVII, Orlando, FL, Vol. 8012, p. 80120T-1-- April 25, 2011 ...[Visit Journal]
Infrared detection technologies entering the third generation demand performances for higher detectivity, higher operating temperature, higher resolution and multi-color detection, all accomplished with better yield and lower manufacturing/operating costs. Type-II antimonide based superlattices (T2SL) are making firm steps toward the new era of focal plane array imaging as witnessed in the unique advantages and significant progress achieved in recent years. In this talk, we will present the four research themes towards third generation imagers based on T2SL at the Center for Quantum Devices. High performance LWIR megapixel focal plane arrays (FPAs) are demonstrated at 80K with an NEDT of 23.6 mK using f/2 optics, an integration time of 0.13 ms and a 300 K background. MWIR and LWIR FPAs on non-native GaAs substrates are demonstrated as a proof of concept for the cost reduction and mass production of this technology. In the MWIR regime, progress has been made to elevate the operating temperature of the device, in order to avoid the burden of liquid nitrogen cooling. We have demonstrated a quantum efficiency above 50%, and a specific detectivity of 1.05x1012 cm·Hz1/2/W at 150 K for 4.2 μm cut-off single element devices. Progress on LWIR/LWIR dual color FPAs as well as novel approaches for FPA fabrication will also be discussed. [reprint (PDF)]
 
1.  Aluminum nitride films on different orientations of sapphire and silicon
K. Dovidenko, S. Oktyabrsky, J. Narayan, and M. Razeghi
Journal of Applied Physics79 (5)-- March 1, 1996 ...[Visit Journal]
The details of epitaxial growth and microstrictural characteristics of AlN films grown on sapphire (0001), (1012) and Si (100), (111) substrates were investigated using plan‐view and cross‐sectional high‐resolution transmission electron microscopy and x‐ray diffraction techniques. The films were grown by metalorganic chemical vapor deposition using TMA1+NH3+N2 gas mixtures. Different degrees of epitaxy were observed for the films grown on α‐Al2O3 and Si substrates in different orientations. The epitaxial relationship for (0001) sapphire was found to be (0001)AlN∥(0001)sap with in‐plane orientation relationship of [0110]AlN∥[1210]sap. This is equivalent to a 30° rotation in the basal (0001) plane. For (1012) sapphire substrates, the epitaxial relationship was determined to be (1120)AlN∥(1012)sap with the in‐plane alignment of [0001]AlN∥[1011]sap. The AlN films on (0001) α‐Al2O3 were found to contain inverted domain boundaries and a/3〈1120〉 threading dislocations with the estimated density of 1010 cm−2. The density of planar defects (stacking faults) found in AlN films was considerably higher in the case of (1012) compared to (0001) substrates. Films on Si substrates were found to be highly textured c axis oriented when grown on (111) Si, and c axis textured with random in‐plane orientation on (100) Si. The role of thin‐film defects and interfaces on device fabrication is discussed. [reprint (PDF)]
 
1.  III-Nitride photon counting avalanche photodiodes
R. McClintock, J.L. Pau, K. Minder, C. Bayram and M. Razeghi
SPIE Conference, January 20-25, 2008, San Jose, CA Proceedings – Quantum Sensing and Nanophotonic Devices V, Vol. 6900, p. 69000N-1-11.-- February 1, 2008 ...[Visit Journal]
In order for solar and visible blind III-Nitride based photodetectors to effectively compete with the detective performance of PMT there is a need to develop photodetectors that take advantage of low noise avalanche gain. Furthermore, in certain applications, it is desirable to obtain UV photon counting performance. In this paper, we review the characteristics of III-nitride visible-blind avalanche photodetectors (APDs), and present the state-of-the-art results on photon counting based on the Geiger mode operation of GaN APDs. The devices are fabricated on transparent AlN templates specifically for back-illumination in order to enhance hole-initiated multiplication. The spectral response and Geiger-mode photon counting performance are analyzed under low photon fluxes, with single photon detection capabilities being demonstrated in smaller devices. Other major technical issues associated with the realization of high-quality visible-blind APDs and Geiger mode APDs are also discussed in detail and solutions to the major problems are described where available. Finally, future prospects for improving upon the performance of these devices are outlined. [reprint (PDF)]
 
1.  III-Nitride Optoelectronic Devices: From ultraviolet detectors and visible emitters towards terahertz intersubband devices
M. Razeghi, C. Bayram, Z. Vashaei, E. Cicek and R. McClintock
IEEE Photonics Society 23rd Annual Meeting, November 7-10, 2010, Denver, CO, Proceedings, p. 351-352-- January 20, 2011 ...[Visit Journal]
III-nitride optoelectronic devices are discussed. Ultraviolet detectors and visible emitters towards terahertz intersubband devices are reported. Demonstration of single photon detection efficiencies of 33% in the ultraviolet regime, intersubband energy level as low as in the mid-infrared regime, and GaN-based resonant tunneling diodes with negative resistance of 67 Ω are demonstrated. [reprint (PDF)]
 
1.  Mid-infrared quantum cascade lasers with high wall plug efficiency
Y. Bai, B. Gokden, S. Slivken, S.R. Darvish, S.A. Pour, and M. Razeghi
SPIE Proceedings, San Jose, CA Volume 7222-0O-- January 26, 2009 ...[Visit Journal]
We demonstrate optimization of continuous wave (cw) operation of 4.6 µm quantum cascade lasers (QCLs). A 19.7 µm by 5 mm, double channel processed device exhibits 33% cw WPE at 80 K. Room temperature cw WPE as high as 12.5% is obtained from a 10.6 µm by 4.8 mm device, epilayer-down bonded on a diamond submount. With the semi-insulating regrowth in a buried ridge geometry, 15% WPE is obtained with 2.8 W total output power in cw mode at room temperature. This accomplishment is achieved by systematically decreasing the parasitic voltage drop, reducing the waveguide loss and improving the thermal management. [reprint (PDF)]
 
1.  Polarization-free GaN emitters in the ultraviolet and visible spectra via heterointegration on CMOS-compatible Si (100)
C. Bayram, J. Ott, K. T. Shiu, C. W. Cheng, Y. Zhu, J. Kim, D. K. Sadana, M. Razeghi
Proc. SPIE 9370, Quantum Sensing and Nanophotonic Devices XII, 93702F (February 8, 2015); -- February 8, 2015 ...[Visit Journal]
This work presents a new type of polarization-free GaN emitter. The unique aspect of this work is that the ultraviolet and visible emission originates from the cubic phase GaN and the cubic phase InGaN/GaN multi-quantum-wells, respectively. Conventionally, GaN emitters (e.g. light emitting diodes, laser diodes) are wurtzite phase thus strong polarization fields exist across the structure contributing to the “droop” behavior – a phenomenon defined as “the reduction in emitter efficiency as injection current increases”. The elimination of piezoelectric fields in GaN-based emitters as proposed in this work provide the potential for achieving a 100% internal efficiency and might lead to droopfree light emitting diodes. In addition, this work demonstrates co-integration of GaN emitters on cheap and scalable CMOS-compatible Si (100) substrate, which yields possibility of realizing a GaN laser diode uniquely – via forming mirrors along the naturally occurring cubic phase GaN-Si(100) cleavage planes. [reprint (PDF)]
 
1.  Electroluminescence of InAs/GaSb heterodiodes
D. Hoffman, A. Hood, E. Michel, F. Fuchs, and M. Razeghi
IEEE Journal of Quantum Electronics, 42 (2)-- February 1, 2006 ...[Visit Journal]
The electroluminescence of a Type-II InAs-GaSb superlattice heterodiode has been studied as a function of injection current and temperature in the spectral range between 3 and 13 μm. The heterodiode comprises a Be-doped midwavelength infrared (MWIR) superlattice with an effective bandgap around 270 meV and an undoped long wavelength infrared (LWIR) superlattice with an effective bandgap of 115 meV. [reprint (PDF)]
 
1.  High-power λ ~ 9.5 µm quantum-cascade lasers operating above room temperature in continuous-wave mode
J.S. Yu, S. Slivken, A. Evans, S.R. Darvish, J. Nguyen, and M. Razeghi
Applied Physics Letters, 88 (9)-- February 27, 2006 ...[Visit Journal]
We report high-power continuous-wave (cw) operation of λ~9.5 μm quantum-cascade lasers to a temperature of 318 K. A high-reflectivity-coated 19-μm-wide and 3-mm-long device exhibits cw output powers as high as 150 mW at 288 K and still 22 mW at 318 K. In cw operation at 298 K, a threshold current density of 1.57 kA/cm2, a slope efficiency of 391 mW/A, and a maximum wall-plug efficiency of 0.71% are obtained. [reprint (PDF)]
 
1.  Room temperature single-mode terahertz sources based on intracavity difference-frequency generation in quantum cascade lasers
Q.Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai and M. Razeghi
Applied Physics Letters, Vol. 99, Issue 13, p. 131106-1-- September 26, 2011 ...[Visit Journal]
We demonstrate room temperature single-mode THz emission at 4 THz based on intracavity difference-frequency generation from mid-infrared dual-wavelength quantum cascade lasers. An integrated dual-period distributed feedback grating is defined on the cap layer to purify both mid-infrared pumping wavelengths and in turn the THz spectra. Single mode operation of the pumping wavelengths results in a single-mode THz operation with a narrow linewidth of 6.6 GHz. A maximum THz power of 8.5 μW with a power conversion efficiency of 10 μW/W² is obtained at room temperature. [reprint (PDF)]
 
1.  Gain and recombination dynamics of quantum-dot infrared photodetecto
H. Lim, B. Movaghar, S. Tsao, M. Taguchi, W. Zhang, A.A. Quivy, and M. Razeghi
Virtual Journal of Nanoscale Science & Technology-- December 4, 2006 ...[Visit Journal][reprint (PDF)]
 
1.  Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency
Y. Bai, S. Slivken, S.R. Darvish, and M. Razeghi
Applied Physics Letters, Vol. 93, No. 2, p. 021103-1-- July 14, 2008 ...[Visit Journal]
An InP based quantum cascade laser heterostructure emitting at 4.6 µm was grown with gas-source molecular beam epitaxy. The wafer was processed into a conventional double-channel ridge waveguide geometry with ridge widths of 19.7 and 10.6 µm without semi-insulating InP regrowth. An uncoated, narrow ridge device with a 4.8 mm cavity length was epilayer down bonded to a diamond submount and exhibits 2.5 W maximum output power with a wall plug efficiency of 12.5% at room temperature in continuous wave operation. [reprint (PDF)]
 
1.  Buried heterostructure quantum cascade lasers with high continuous-wave wall plug efficiency
A. Evans, S.R. Darvish, S. Slivken, J. Nguyen, Y. Bai and M. Razeghi
Applied Physics Letters, Vol. 91, No. 7, p. 071101-1-- August 13, 2007 ...[Visit Journal]
The authors report on the development of ~4.7 µm strain-balanced InP-based quantum cascade lasers with high wall plug efficiency and room temperature continuous-wave operation. The use of narrow-ridge buried heterostructure waveguides and thermally optimized packaging is presented. Over 9.3% wall plug efficiency is reported at room temperature from a single device producing over 0.675 W of continuous-wave output power. Wall plug efficiencies greater than 18% are also reported for devices at a temperature of 150 K, with continuous-wave output powers of more than 1 W. [reprint (PDF)]
 
1.  Capacitance-voltage investigation of high purity InAs/GaSb superlattice photodiodes
A. Hood, D. Hoffman, Y. Wei, F. Fuchs, and M. Razeghi
Applied Physics Letters 88 (6)-- February 6, 2006 ...[Visit Journal]
The residual carrier backgrounds of binary type-II InAs/GaSb superlattice photodiodes with cutoff wavelengths around 5 μm have been studied in the temperature range between 20 and 200 K. By applying a capacitance-voltage measurement technique, a residual background concentration below 1015 cm–3 has been found. [reprint (PDF)]
 
1.  High-performance bias-selectable dual-band mid-/long-wavelength infrared photodetectors and focal plane arrays based on InAs/GaSb Type-II superlattices
M. Razeghi; A. Haddadi; A.M. Hoang; G. Chen; S. Ramezani-Darvish; P. Bijjam
Proc. SPIE 8704, Infrared Technology and Applications XXXIX, 87040S (June 11, 2013)-- June 11, 2013 ...[Visit Journal]
We report a bias selectable dual-band mid-wave infrared (MWIR) and long-wave infrared (LWIR) co-located detector with 3 μm active region thickness per channel that is highly selective and can perform under high operating temperatures for the MWIR band. Under back-side illumination, a temperature evolution study of the MWIR detector's electro-optical performance found the 300 K background-limit with 2π field-of-view to be achieved below operating temperatures of 160 K, at which the temperature's 50% cutoff wavelength was 5.2 μm. The measured current reached the system limit of 0.1 pA at 110 K for 30 μm pixel-sized diodes. At 77 K, where the LWIR channel operated with a 50% cutoff wavelength at 11.2 μm, an LWIR selectivity of ∼17% was achieved in the MWIR wave band between 3 and 4.7 μm, making the detector highly selective. [reprint (PDF)]
 
1.  Recent advances in III-Nitride materials, characterization and device applications
M. Razeghi, X. Zhang, P. Kung, A. Saxler, D. Walker, K.Y. Lim, and K.S. Kim
SPIE Conference: Solid State Crystals in Optoelectronics and Semiconductor Technology; Proceedings 3179-- October 7, 1996 ...[Visit Journal]
High-quality AlN, GaN, AlGaN have been grown on sapphire substrate by low-pressure metalorganic chemical vapor deposition (LP-MOCVD). The x-ray rocking curve of AlN and GaN were 100 arcsecs and 30 arcsecs respectively with Pendelloesung oscillations, which are the best reported to date. GaN with high crystallinity simultaneously exhibited high optical and electrical quality. Photoluminescence linewidth of GaN at 77K was as low as 17 meV, which is the best reported to date. Si-doped GaN had a mobility higher than 300 cm²/V·s. GaN has been also successfully grown on LiGaO2 substrate with LP-MOCVD for the first time. AlGaN for the entire composition range has been grown. These layers exhibited the lowest x-ray FWHM reported to date. The excellent optical quality of these layers have been characterized by room temperature UV transmission and photoluminescence. N-type doping of AlGaN with Si has ben achieved up to 60 percent Al with mobility as high as 78 cm²/V·s. AlxGa1-xN/AlyGa1-yN superlattice with atomically sharp interface have been demonstrated. Optically-pumped stimulated emission in GaN:Ge and GaN:Si has been observed with threshold optical power density as low as 0.4 MW/cm². AlGaN photoconductors with cut-off wavelengths from 200 nm to 365 nm have been achieved for the first time. GaN p-n junction photovoltaic detector with very selective photoresponse have been demonstrated and theoretically modeled. Ti/AlN/Si metal-insulator- semiconductor capacitor with high capacitance-voltage performances at both low and high frequencies and low interface trap level density have been demonstrated for the first time in this material system. [reprint (PDF)]
 
1.  High Carrier Lifetime InSb Grown on GaAs Substrates
E. Michel, H. Mohseni, J.D. Kim, J. Wojkowski, J. Sandven, J. Xu, M. Razeghi, R. Bredthauer, P. Vu, W. Mitchel, and M. Ahoujja
Applied Physics Letters 71 (8-- August 25, 1997 ...[Visit Journal]
We report on the growth of near bulklike InSb on GaAs substrates by molecular beam epitaxy despite the 14% lattice mismatch between the epilayer and the substrate. Structural, electrical, and optical properties were measured to assess material quality. X-ray full widths at half-maximum were as low as 55 arcsec for a 10 µm epilayer, peak mobilities as high as ~ 125 000 cm2/V s, and carrier lifetimes up to 240 ns at 80 K. [reprint (PDF)]
 
1.  Spatial Noise and Correctability of Type-II InAs/GaSb Focal Plane Arrays
P.Y. Delaunay and M. Razeghi
IEEE Journal of Quanutm Electronics, April 2010, Vol. 46, No. 4, p. 584-588-- April 1, 2010 ...[Visit Journal]
A long wavelength infrared focal plane array based on Type-II InAs/GaSb superlattices was fabricated and characterized at 80 K. The noise equivalent temperature difference of the array was measured as low as 23 mK (f# = 2), for an integration time of 0.129 ms. The spatial noise of the array was dominated by the nonuniformity of the illumination through the circular aperture. A standard two-point nonuniformity correction improved the inhomogeneity equivalent temperature difference to 16 mK. The correctability just after calibration was 0.6. The long-term stability time was superior to 25 hours. [reprint (PDF)]
 
1.  Demonstration of shortwavelength infrared photodiodes based on type-II InAs/GaSb/AlSb superlattices
A.M. Hoang, G. Chen, A. Haddadi, S. Abdollahi Pour, and M. Razeghi
Applied Physics Letters, Vol. 100, No. 21, p. 211101-1-- May 21, 2012 ...[Visit Journal]
We demonstrate the feasibility of the InAs/GaSb/AlSb type-II superlattice photodiodes operating at the short wavelength infrared regime below 3  μm. An n-i-p type-II InAs/GaSb/AlSb photodiode was grown with a designed cut-off wavelength of 2 μm on a GaSb substrate. At 150  K, the photodiode exhibited a dark current density of 5.6 × 10−8 A/cm² and a front-side-illuminated quantum efficiency of 40.3%, providing an associated shot noise detectivity of 1.0 × 1013 Jones. The uncooled photodiode showed a dark current density of 2.2 × 10−3 A/cm² and a quantum efficiency of 41.5%, resulting in a detectivity of 1.7 × 1010 Jones [reprint (PDF)]
 
1.  GaInAsP/InP 1.35 μm Double Heterostructure Laser Grown on Silicon Substrate by Metalorganic Chemical Vapor Deposition
K. Mobarhan, C. Jelen, E. Kolev, and M. Razeghi
Journal of Applied Physics 74 (1)-- July 1, 1993 ...[Visit Journal]
A 1.35 μm GaInAsP/InP double heterostructure laser has been grown on a Si substrate using low‐pressure metalorganic chemical vapor deposition. This was done without the use of a superlattice layer or a very thick InP buffer layer, which are used to prevent the dislocations from spreading into the active layer. Pulsed operation with output power of over 200 mW per facet was achieved at room temperature for broad area lasers with 20 μm width and 170 μm cavity length. The threshold current density of a 350 μm cavity length device was 9.8 kA/cm². The characteristic temperature was 66 K. [reprint (PDF)]
 
1.  Non-equilibrium radiation of long wavelength InAs/GaSb superlattice photodiodes
D. Hoffman, A. Hood, F. Fuchs and M. Razeghi
Journal of Applied Physics 99-- February 15, 2006 ...[Visit Journal]
The emission behavior of binary-binary type-II InAs/GaSb superlattice photodiodes has been studied in the spectral range between 8 and 13 μm. With a radiometric calibration of the experimental setup the internal and external quantum efficiencies have been determined in the temperature range between 80 and 300 K for both the negative and positive luminescences. [reprint (PDF)]
 
1.  Low irradiance background limited type-II superlattice MWIR M-barrier imager
E.K. Huang, S. Abdollahi Pour, M.A. Hoang, A. Haddadi, M. Razeghi and M.Z. Tidrow
OSA Optics Letters (OL), Vol. 37, No. 11, p. 2025-2027-- June 1, 2012 ...[Visit Journal]
We report a type-II superlattice mid-wave infrared 320 × 256 imager at 81 K with the M-barrier design that achieved background limited performance (BLIP) and ∼99%operability. The 280 K blackbody’s photon irradiance was limited by an aperture and a band-pass filter from 3.6 μm to 3.8 μm resulting in a total flux of ∼5 × 1012 ph·cm−2·s−1. Under these low-light conditions, and consequently the use of a 13.5 ms integration time, the imager was observed to be BLIP thanks to a ∼5 pA dark current from the 27 μm wide pixels. The total noise was dominated by the photon flux and read-out circuit which gave the imager a noise equivalent input of ∼5 × 1010 ph·cm−2·s−1 and temperature sensitivity of 9 mK with F∕2.3 optics. Excellent imagery obtained using a 1-point correction alludes to the array’s uniform responsivity. [reprint (PDF)]
 
1.  GaN, GaAlN, and AlN for use in UV Detectors for Astrophysics: An Update
P. Kung, A. Saxler, X. Zhang, D. Walker, M. Razeghi, and M. Ulmer
SPIE Photonics West '96 Photodetectors: Materials and Devices; Proceedings 2685-- January 27, 1996 ...[Visit Journal]
In SPIE Proceeding 2397 we demonstrated that there is a large payoff still to be gained by further improvements in the performance of solar blind UV detectors for astronomical purposes. We suggested that a particularly promising future technology is one based on the ability of investigators to produce high-quality films made of wide bandgap III-IV semiconductors. Here we report on significant progress we have made over the past year to fabricate and test single-pixel devices. The next step will be to measure and improve detective efficiency, measure the solar blindness over a larger dynamic range, and begin developing multiple-pixel designs. [reprint (PDF)]
 
1.  Growth and characterization of InAs/GaSb photoconductors for long wavelength infrared range
H. Mohseni, E. Michel, J. Sandven, M. Razeghi, W. Mitchel, and G. Brown
Applied Physics Letters 71 (10)-- September 8, 1997 ...[Visit Journal]
In this letter we report the molecular beam epitaxial growth and characterization of InAs/GaSb superlattices grown on semi-insulating GaAs substrates for long wavelength infrared detectors. Photoconductive detectors fabricated from the superlattices showed photoresponse up to 12 µm and peak responsivity of 5.5 V/W with Johnson noise limited detectivity of 1.33 × 109 cm·Hz½/W at 10.3 µm at 78 K. [reprint (PDF)]
 
1.  Research activity on Type-II InAs/GaSb superlattice for LWIR detection and imaging at the Center for Quantum Devices
M. Razeghi and B.M. Nguyen
American Institute of Physics Conference Proceedings Vol. 949, Issue 1, p. 35-42, 6th International Workshop on Information Optics (WIO'07), Reykjavik, Iceland, June 25-30, 2007-- October 24, 2007 ...[Visit Journal]
Type-II superlattice photodetectors have recently experienced significant improvements in both theoretical structure design and experimental realization. Empirical Tight Binding Method was initiated and developed for Type-II superlattice. A new Type-II structure, called M-structure, was introduced and theoretically demonstrated high R0A, high quantum efficiency. Device design and growth condition were optimized to improve the performance. As a result, a 54% quantum efficiency, a 12 Ω·cm2 R0A were achieved for 11 µm cut-off photodetector at 77 K. Effective surface passivation techniques for MWIR and LWIR Type-II superlattice were developed. FPA imaging at MWIR and LWIR were demonstrated with a capability of imaging up to room temperature and 211 K respectively. The noise equivalent temperature difference presented a peak at 50 mK for MWIR FPA at 121 K and 26 mK for LWIR FPA at 81 K. [reprint (PDF)]
 

Page 6 of 10:  Prev << 1 2 3 4 5 6  7 8 9 10  >> Next  (226 Items)