Page 6 of 12:  Prev << 1 2 3 4 5 6  7 8 9 10 11 12  >> Next  (276 Items)

2.  Dark current suppression in Type-II InAs/GaSb superlattice long wavelength infrared photodiodes with M-structure barrier
B.M. Nguyen, D. Hoffman, P.Y. Delaunay, and M. Razeghi
Applied Physics Letters, Vol. 91, No. 16, p. 163511-1-- October 15, 2007 ...[Visit Journal]
We presented an alternative design of Type-II superlattice photodiodes with the insertion of a mid-wavelength infrared M-structure AlSb/GaSb/InAs/GaSb/AlSb superlattice for the reduction of dark current. The M-structure superlattice has a larger carrier effective mass and a greater band discontinuity as compared to the standard Type-II superlattices at the valence band. It acts as an effective medium that weakens the diffusion and tunneling transport at the depletion region. As a result, a 10.5 µm cutoff Type-II superlattice with 500 nm M-superlattice barrier exhibited a R0A of 200 cm2 at 77 K, approximately one order of magnitude higher than the design without the barrier. The quantum efficiency of such structures does not show dependence on either barrier thickness or applied bias. [reprint (PDF)]
 
2.  High differential resistance type-II InAs/GaSb superlattice photodiodes for the long-wavelength infrared
A. Hood, D. Hoffman, B.M. Nguyen, P.Y. Delaunay, E. Michel and M. Razeghi
Applied Physics Letters, 89 (9)-- August 28, 2006 ...[Visit Journal]
Type-II InAs/GaSb superlattice photodiodes with a 50% cutoff wavelength ranging from 11 to 13 μm are presented. Optimization of diffusion limited photodiodes provided superlattice structures for improved injection efficiency in direct injection hybrid focal plane array applications. [reprint (PDF)]
 
2.  Crack-free AlGaN for solar-blind focal plane arrays through reduced area expitaxy
E. Cicek, R. McClintock, Z. Vashaei, Y. Zhang, S. Gautier, C.Y. Cho and M. Razeghi
Applied Physics Letters, Vol. 102, No. 05, p. 051102-1-- February 4, 2013 ...[Visit Journal]
We report on crack reduction for solar-blind ultraviolet detectors via the use of a reduced area epitaxy (RAE) method to regrow on patterned AlN templates. With the RAE method, a pre-deposited AlN template is patterned into isolated mesas in order to reduce the formation of cracks in the subsequently grown high Al-content AlxGa1−xN structure. By restricting the lateral dimensions of the epitaxial growth area, the biaxial strain is relaxed by the edges of the patterned squares, which resulted in ∼97% of the pixels being crack-free. After successful implementation of RAE method, we studied the optical characteristics, the external quantum efficiency, and responsivity of average pixel-sized detectors of the patterned sample increased from 38% and 86.2 mA/W to 57% and 129.4 mA/W, respectively, as the reverse bias is increased from 0 V to 5 V. Finally, we discussed the possibility of extending this approach for focal plane array, where crack-free large area material is necessary for high quality imaging. [reprint (PDF)]
 
2.  Uncooled operation of Type-II InAs/GaSb superlattice photodiodes in the mid- wavelength infrared range
Y. Wei, A. Hood, H. Yau, A. Gin, M. Razeghi, M.Z. Tidrow, V. Natha
Applied Physics Letters, 86 (23)-- June 6, 2005 ...[Visit Journal]
We report high performance uncooled midwavelength infrared photodiodes based on interface-engineered InAs/GaSb superlattice. Two distinct superlattices were designed with a cutoff wavelength around 5 µm for room temperature and 77 K. The device quantum efficiency reached more than 25% with responsivity around 1 A/W. Detectivity was measured around 109 cm·Hz½/W at room temperature and 1.5×1013 cm·Hz½/W at 77 K under zero bias. The devices were without antireflective coating. The device quantum efficiency stays at nearly the same level within this temperature range. Additionally, Wannier–Stark oscillations in the Zener tunneling current were observed up to room temperature. [reprint (PDF)]
 
2.  Techniques for High-Quality SiO2 Films
J. Nguyen and M. Razeghi
SPIE Conference, January 25-29, 2007, San Jose, CA Proceedings – Quantum Sensing and Nanophotonic Devices IV, Vol. 6479, p. 64791K-1-8-- January 29, 2007 ...[Visit Journal]
We report on the comparison of optical, structural, and electrical properties of SiO2 using plasma-enhanced chemical vapor deposition and ion-beam sputtering deposition. High-quality, low-temperature deposition of SiO2 by ion-beam sputtering deposition is shown to have lower absorption, smoother and more densely packed films, a lower amount of fixed oxide charges, and a lower trapped-interface density than SiO2 by plasma-enhanced chemical vapor deposition. This high-quality SiO2 is then demonstrated as an excellent electrical and mechanical surface passivation layer on Type-II InAs/GaSb photodetectors [reprint (PDF)]
 
2.  High quantum efficiency two color type-II InAs/GaSb n-i-p-p-i-n photodiodes
P.Y. Delaunay, B.M. Nguyen, D. Hoffman, A. Hood, E.K. Huang, M. Razeghi, and M.Z. Tidrow
Applied Physics Letters, Vol. 92, No. 11, p. 111112-1-- March 17, 2008 ...[Visit Journal]
A n-i-p-p-i-n photodiode based on type-II InAs/GaSb superlattice was grown on a GaSb substrate. The two channels, with respective 50% of responsivity cutoff wavelengths at 7.7 and 10 µm, presented quantum efficiencies (QEs) of 47% and 39% at 77 K. The devices can be operated as two diodes for simultaneous detection or as a single n-i-p-p-i-n detector for sequential detection. In the latter configuration, the QEs at 5.3 and 8.5 µm were measured as high as 40% and 39% at 77 K. The optical cross-talk between the two channels could be reduced from 0.36 to 0.08 by applying a 50 mV bias. [reprint (PDF)]
 
2.  Effect of contact doping on superlattice-based minority carrier unipolar detectors
B.M. Nguyen, G. Chen, A.M. Hoang, S. Abdollahi Pour, S. Bogdanov, and M. Razeghi
Applied Physics Letters, Vol. 99, No. 3, p. 033501-1-- July 18, 2011 ...[Visit Journal]
We report the influence of the contact doping profile on the performance of superlattice-based minority carrier unipolar devices for mid-wave infrared detection. Unlike in a photodiode, the space charge in the p-contact of a pMp unipolar device is formed with accumulated mobile carriers, resulting in higher dark current in the device with highly doped p-contact. By reducing the doping concentration in the contact layer, the dark current is decreased by one order of magnitude. At 150 K, 4.9 μm cut-off devices exhibit a dark current of 2 × 10−5A/cm² and a quantum efficiency of 44%. The resulting specific detectivity is 6.2 × 1011 cm·Hz1/2/W at 150 K and exceeds 1.9 × 1014 cm·Hz1/2/W at 77 K. [reprint (PDF)]
 
2.  Capacitance-voltage investigation of high purity InAs/GaSb superlattice photodiodes
A. Hood, D. Hoffman, Y. Wei, F. Fuchs, and M. Razeghi
Applied Physics Letters 88 (6)-- February 6, 2006 ...[Visit Journal]
The residual carrier backgrounds of binary type-II InAs/GaSb superlattice photodiodes with cutoff wavelengths around 5 μm have been studied in the temperature range between 20 and 200 K. By applying a capacitance-voltage measurement technique, a residual background concentration below 1015 cm–3 has been found. [reprint (PDF)]
 
2.  On the performance and surface passivation of type-II InAs/GaSb superlattice photodiodes for the very-long- wavelength infrared
A. Hood, M. Razeghi, E. Aifer, G.J. Brown
Applied Physics Letters 87 (1)-- October 10, 2005 ...[Visit Journal]
We demonstrate very-long-wavelength infrared Type-II InAs/GaSb superlattice photodiodes with a cutoff wavelength (λc,50%) of 17 μm. We observed a zero-bias, peak Johnson noise-limited detectivity of 7.63×109 cm·Hz½/W at 77 K with a 90%-10% cutoff width of 17 meV, and quantum efficiency of 30%. Variable area diode zero-bias resistance-area product (R0A) measurements indicated that silicon dioxide passivation increased surface resistivity by nearly a factor of 5, over unpassivated photodiodes, and increased overall R0A uniformity. The bulk R0A at 77 K was found to be 0.08 Ω·cm2, with RA increasing more than twofold at 25 mV reverse bias. [reprint (PDF)]
 
2.  High performance photodiodes based on InAs/InAsSb type-II superlattices for very long wavelength infrared detection
A. M. Hoang, G. Chen, R. Chevallier, A. Haddadi, and M. Razeghi
Appl. Phys. Lett. 104, 251105 (2014)-- June 23, 2014 ...[Visit Journal]
Very long wavelength infrared photodetectors based on InAs/InAsSb Type-II superlattices are demonstrated on GaSb substrate. A heterostructure photodiode was grown with 50% cut-off wavelength of 14.6 μm. At 77 K, the photodiode exhibited a peak responsivity of 4.8 A/W, corresponding to a quantum efficiency of 46% at −300 mV bias voltage from front side illumination without antireflective coating. With the dark current density of 0.7 A/cm², it provided a specific detectivity of 1.4 × 1010 Jones. The device performance was investigated as a function of operating temperature, revealing a very stable optical response and a background limited performance below 50 K. [reprint (PDF)]
 
2.  Mid-infrared quantum cascade lasers with high wall plug efficiency
Y. Bai, B. Gokden, S. Slivken, S.R. Darvish, S.A. Pour, and M. Razeghi
SPIE Proceedings, San Jose, CA Volume 7222-0O-- January 26, 2009 ...[Visit Journal]
We demonstrate optimization of continuous wave (cw) operation of 4.6 µm quantum cascade lasers (QCLs). A 19.7 µm by 5 mm, double channel processed device exhibits 33% cw WPE at 80 K. Room temperature cw WPE as high as 12.5% is obtained from a 10.6 µm by 4.8 mm device, epilayer-down bonded on a diamond submount. With the semi-insulating regrowth in a buried ridge geometry, 15% WPE is obtained with 2.8 W total output power in cw mode at room temperature. This accomplishment is achieved by systematically decreasing the parasitic voltage drop, reducing the waveguide loss and improving the thermal management. [reprint (PDF)]
 
2.  Minority electron unipolar photodetectors based on Type-II InAs/GaSb/AlSb superlattices for very long wavelength infrared detection
B.M. Nguyen, S. Abdollahi Pour, S. Bogdanov and M. Razeghi
SPIE Proceedings, San Francisco, CA (January 22-28, 2010), Vol. 7608, p. 760825-1-- January 22, 2010 ...[Visit Journal]
The bandstructure tunability of Type-II antimonide-based superlattices has been significantly enhanced since the introduction of the M-structure superlattice, resulting in significant improvements of Type-II superlattice infrared detectors. By using M-structure, we developed the pMp design, a novel infrared photodetector architecture that inherits the advantages of traditional photoconductive and photovoltaic devices. This minority electron unipolar device consists of an M-structure barrier layer blocking the transport of majority holes in a p-type semiconductor, resulting in an electrical transport due to minority carriers with low current density. Applied for the very long wavelength detection, at 77K, a 14µm cutoff detector exhibits a dark current 3.3 mA·cm−2, a photoresponsivity of 1.4 A/W at 50mV bias and the associated shot-noise detectivity of 4x1010 Jones. [reprint (PDF)]
 
2.  Passivation of Type-II InAs/GaSb superlattice photodetectors
A. Hood, Y. Wei, A. Gin, M. Razeghi, M. Tidrow, and V. Nathan
SPIE Conference, Jose, CA, Vol. 5732, pp. 316-- January 22, 2005 ...[Visit Journal]
Leakage currents limit the operation of high performance Type-II InAs/GaSb superlattice photodiode technology. Surface leakage current becomes a dominant limiting factor, especially at the scale of a focal plane array pixel (< 25 µm) and must be addressed. A reduction of the surface state density, unpinning the Fermi level at the surface, and appropriate termination of the semiconductor crystal are all aims of effective passivation. Recent work in the passivation of Type-II InAs\GaSb superlattice photodetectors with aqueous sulfur-based solutions has resulted in increased R0A products and reduced dark current densities by reducing the surface trap density. Additionally, photoluminescence of similarly passivated Type-II InAs/GaSb superlattice and InAs GaSb bulk material will be discussed. [reprint (PDF)]
 
2.  High operating temperature MWIR photon detectors based on Type II InAs/GaSb superlattice
M. Razeghi, S. Abdollahi Pour, E.K. Huang, G. Chen, A. Haddadi and B.M. Nguyen
SPIE Proceedings, Infrared Technology and Applications XXXVII, Orlando, FL, Vol. 8012, p. 80122Q-1-- April 26, 2011 ...[Visit Journal]
Recent efforts have been paid to elevate the operating temperature of Type II superlattice Mid Infrared photon detectors. Using M-structure superlattice, novel device architectures have been developed, resulting in significant improvement of the device performances. In this paper, we will compare different photodetector architectures and discuss the optimization scheme which leads to almost one order of magnitude of improvement to the electrical performance. At 150K, single element detectors exhibit a quantum efficiency above 50%, and a specific detectivity of 1.05x10(12) cm.Hz(1/2)/W. BLIP operation with a 300K background and 2π FOV can be reached with an operating temperature up to 180K. High quality focal plane arrays were demonstrated with a noise equivalent temperature difference (NEDT) of 11mK up to 120K. Human body imaging is achieved at 150K with NEDT of 150mK. [reprint (PDF)]
 
2.  Continuous wave, room temperature operation of λ ~ 3μm quantum cascade laser
N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken and M. Razeghi
SPIE Proceedings, Vol. 8631, p. 86310M-1, Photonics West, San Francisco, CA-- February 3, 2013 ...[Visit Journal]
Quantum Cascade Lasers (QCLs), operating in continuous wave (CW) at room temperature(RT) in 3-3.5 μm spectral range, which overlaps the spectral fingerprint region of many hydrocarbons, is essential in spectroscopic trace gas detection, environment monitoring, and pollution control. A 3 μm QCL, operating in CW at RT is demonstrated. This initial result makes it possible, for the most popular material system (AlInAs/GaInAs on InP) used in QCLs in mid-infrared and long-infrared, to cover the entire spectral range of mid-infrared atmospheric window (3-5 μm). In0.79Ga0.21As/In0.11Al0.89As strain balanced superlattice, which has a large conduction band offset, was grown. The strain was balanced with composite barriers (In0.11Al0.89As /In0.4Al0.6As) in the injector region, to eliminate the need of extremely high compressively strained GaInAs, whose pseudomorphic growth is very difficult. [reprint (PDF)]
 
2.  Ammonium Sulfide Passivation of Type-II InAs/GaSb Superlattice Photodiodes
A. Gin, Y. Wei, A. Hood, A. Bajowala, V. Yazdanpanah, M. Razeghi and M.Z. Tidrow
Applied Physics Letters, 84 (12)-- March 22, 2004 ...[Visit Journal]
We report on the surface passivation of Type-II InAs/GaSb superlattice photodetectors using various ammonium sulfide solutions. Compared to unpassivated detectors, zero-bias resistance of treated 400 µm×400 µm devices with 8 µm cutoff wavelength was improved by over an order of magnitude to ~20 kΩ at 80 K. Reverse-bias dark current density was reduced by approximately two orders of magnitude to less than 10 mA/cm2 at –2 V. Dark current modeling, which takes into account trap-assisted tunneling, indicates greater than 70 times reduction in bulk trap density for passivated detectors. [reprint (PDF)]
 
2.  Demonstration of high performance long wavelength infrared Type-II InAs/GaSb superlattice photodidoe grown on GaAs substrate
S. Abdollahi Pour, B.M. Nguyen, S. Bogdanov, E.K. Huang, and M. Razeghi
Applied Physics Letters, Vol. 95, No. 17, p. 173505-- October 26, 2009 ...[Visit Journal]
We report the growth and characterization of long wavelength infrared type-II InAs/GaSb superlattice photodiodes with a 50% cut-off wavelength at 11 µm, on GaAs substrate. Despite a 7.3% lattice mismatch to the substrate, photodiodes passivated with polyimide exhibit an R0A value of 35 Ω·cm² at 77 K, which is in the same order of magnitude as reference devices grown on native GaSb substrate. With a reverse applied bias less than 500 mV, the dark current density and differential resistance-area product are close to that of devices on GaSb substrate, within the tolerance of the processing and measurement. The quantum efficiency attains the expected value of 20% at zero bias, resulting in a Johnson limited detectivity of 1.1×1011 Jones. Although some difference in performances is observed, devices grown on GaAs substrate already attained the background limit performance at 77 K with a 300 K background and a 2-π field of view. [reprint (PDF)]
 
2.  Structural and compositional characterization of MOVPE GaN thin films transferred from sapphire to glass substrates using chemical lift-off and room temperature direct wafer bonding and GaN wafer scale MOVPE growth on ZnO-buffered sapphire
S. Gautier, T. Moudakir, G. Patriarche, D.J. Rogers, V.E. Sandana, F. Hosseini Teherani, P. Bove, Y. El Gmili, K. Pantzas, Suresh Sundaram, D. Troadec, P.L. Voss, M. Razeghi, A. Ougazzaden
Journal of Crystal Growth, Volume 370, Pages 63-67 (2013)-- May 1, 2013 ...[Visit Journal]
GaN thin films were grown on ZnO/c-Al2O3 with excellent uniformity over 2 in. diameter wafers using a low temperature/pressure MOVPE process with N2 as a carrier and dimethylhydrazine as an N source. 5 mm×5 mm sections of similar GaN layers were direct-fusion-bonded onto soda lime glass substrates after chemical lift-off from the sapphire substrates. X-Ray Diffraction, Scanning Electron Microscopy and Transmission Electron Microscopy confirmed the bonding of crack-free wurtzite GaN films onto a glass substrate with a very good quality of interface, i.e. continuous/uniform adherence and absence of voids or particle inclusions. Using this approach, (In) GaN based devices can be lifted-off expensive single crystal substrates and bonded onto supports with a better cost-performance profile. Moreover, the approach offers the possibility of reclaiming the expensive sapphire substrate so it can be utilized again for growth. [reprint (PDF)]
 
2.  High-performance, continuous-wave quantum-cascade lasers operating up to 85° C at λ ~ 8.8 μm
J.S. Yu, S. Slivken, A. Evans, and M. Razeghi
Applied Physics A: Materials Science & Processing, Vo. 93, No. 2, p. 405-408-- November 1, 2008 ...[Visit Journal]
High-temperature, high-power, and continuous-wave (CW) operation of quantum-cascade lasers with 35 active/injector stages at λ∼8.85 μm above room temperature is achieved without using a buried heterostructure. At this long wavelength, the use of a wider ridge waveguide in an epilayer-down bonding scheme leads to a superior performance of the laser. For a high-reflectivity-coated 21 μm×3 mm laser, the output power of 237 mW and the threshold current density of 1.44 kA·cm-2 at 298 K under CW mode are obtained with a maximum wall-plug efficiency of 1.7%. Further improvements were observed by using a 4-mm-long cavity. The device exhibits 294 mW of output power at 298 K and it operates at a high temperature, even up to 358 K (85°C). The full widths at half-maximum of the laser beam in CW operation for the parallel and the perpendicular far-field patterns are 25°and 63°, respectively. [reprint (PDF)]
 
2.  Very high wall plug efficiency of quantum cascade lasers
Y. Bai, S. Slivken, S.R. Darvish, and M. Razeghi
SPIE Proceedings, San Francisco, CA (January 22-28, 2010), Vol. 7608, p. 76080F-1-- January 22, 2010 ...[Visit Journal]
We demonstrate very high wall plug efficiency (WPE) of mid-infrared quantum cascade lasers (QCLs) in low temperature pulsed mode operation (53%), room temperature pulsed mode operation (23%), and room temperature continuous wave operation (18%). All of these values are the highest to date for any QCLs. The optimization of WPE takes the route of understanding the limiting factors of each sub-efficiency, exploring new designs to overcome the limiting factor, and constantly improving the material quality. [reprint (PDF)]
 
2.  Near milliwatt power AlGaN-based ultraviolet light emitting diodes based on lateral epitaxial overgrowth of AlN on Si(111)
Y. Zhang, S. Gautier, C. Cho, E. Cicek, Z, Vashaei, R. McClintock, C. Bayram, Y. Bai and M. Razeghi
Applied Physics Letters, Vol. 102, No. 1, p. 011106-1-- January 7, 2013 ...[Visit Journal]
We report on the growth, fabrication, and device characterization of AlGaN-based thin-film ultraviolet (UV) (λ ∼ 359 nm) light emitting diodes (LEDs). First, AlN/Si(111) template is patterned. Then, a fully coalesced 7-μm-thick lateral epitaxial overgrowth (LEO) of AlN layer is realized on patterned AlN/Si(111) template followed by UV LED epi-regrowth. Metalorganic chemical vapor deposition is employed to optimize LEO AlN and UV LED epitaxy. Back-emission UV LEDs are fabricated and flip-chip bonded to AlN heat sinks followed by Si(111) substrate removal. A peak pulsed power and slope efficiency of ∼0.6 mW and ∼1.3 μW/mA are demonstrated from these thin-film UV LEDs, respectively. For comparison, top-emission UV LEDs are fabricated and back-emission LEDs are shown to extract 50% more light than top-emission ones. [reprint (PDF)]
 
2.  Widely tuned room temperature terahertz quantum cascade laser sources
Q.Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai and M. Razeghi
SPIE Proceedings, Vol. 8631, p. 863108-1, Photonics West, San Francisco, CA-- February 3, 2013 ...[Visit Journal]
Room temperature THz quantum cascade laser sources with a broad spectral coverage based on intracavity difference frequency generation are demonstrated. Two mid-infrared active cores in the longer mid-IR wavelength range (9-11 micron)based on the single-phonon resonance scheme are designed with a second-order difference frequency nonlinearity specially optimized for the high operating fields that correspond to the highest mid-infrared output powers. A Čerenkov phase-matching scheme along with integrated dual-period distributed feedback gratings are used for efficient THz extraction and spectral purification. Single mode emissions from 1.0 to 4.6 THz with a side-mode suppression ratio and output power up to 40 dB and 32 μW are obtained, respectively. [reprint (PDF)]
 
2.  High-Average-Power, High-Duty-Cycle (~6 μm) Quantum Cascade Lasers
S. Slivken, A. Evans, J. David, and M. Razeghi
Virtual Journal of Nanoscience & Technology 9-- December 9, 2002 ...[Visit Journal][reprint (PDF)]
 
2.  High Quantum Efficiency Solar-Blind Photodetectors
R. McClintock, A. Yasan, K. Mayes, D. Shiell, S. Darvish, P. Kung and M. Razeghi
SPIE Conference, Jose, CA, Vol. 5359, pp. 434-- January 25, 2004 ...[Visit Journal]
We report AlGaN-based back-illuminated solar-blind p-i-n photodetectors with a record peak responsivity of 150 mA/W at 280 nm, corresponding to a high external quantum efficiency of 68%, increasing to 74% under 5 volts reverse bias. Through optimization of the p-AlGaN layer, we were able to remove the out-of-band negative photoresponse originating from the Schottky-like p-type metal contact, and hence significantly improve the degree of solar-blindness [reprint (PDF)]
 
2.  Type-II Antimonide-based Superlattices for the Third Generation Infrared Focal Plane Arrays
Manijeh Razeghi, Edward Kwei-wei Huang, Binh-Minh Nguyen, Siamak Abdollahi Pour, and Pierre-Yves Delaunay
SPIE Proceedings, Infrared Technology and Applications XXXVI, Vol. 7660, pp. 76601F-- May 10, 2010 ...[Visit Journal]
In recent years, the Type-II superlattice (T2SL) material platform has seen incredible growth in the understanding of its material properties which has lead to unprecedented development in the arena of device design. Its versatility in band-structure engineering is perhaps one of the greatest hallmarks of the T2SL that other material platforms are lacking. In this paper, we discuss advantages of the T2SL, specifically the M-structure T2SL, which incorporates AlSb in the traditional InAs/GaSb superlattice. Using the M-structure, we present a new unipolar minority electron detector coined as the p-M-p, the letters which describe the composition of the device. Demonstration of this device structure with a 14 μm cutoff attained a detectivity of 4x1010 Jones (-50 mV) at 77 K. As device performance improves year after year with novel design contributions from the many researchers in this field, the natural progression in further enabling the ubiquitous use of this technology is to reduce cost and support the fabrication of large infrared imagers. In this paper, we also discuss the use of GaAs substrates as an enabling technology for third generation imaging on T2SLs. Despite the 7.8% lattice mismatch between the native GaSb and alternative GaAs substrates, T2SL photodiodes grown on GaAs at the MWIR and LWIR have been demonstrated at an operating temperature of 77 K [reprint (PDF)]
 

Page 6 of 12:  Prev << 1 2 3 4 5 6  7 8 9 10 11 12  >> Next  (276 Items)