| About the CQD | | News | | Conferences | | Publications | | Books | | Research | | People | | History | | Patents | | Contact | Channel | |
Page 6 of 6: Prev << 1 2 3 4 5 6 (132 Items)
| 1. | Radiative recombination of confined electrons at the MgZnO/ ZnO heterojunction interface Sumin Choi, David J. Rogers, Eric V. Sandana, Philippe Bove, Ferechteh H. Teherani, Christian Nenstiel, Axel Hoffmann, Ryan McClintock, Manijeh Razeghi, David Look, Angus Gentle, Matthew R. Phillips & Cuong Ton-That Nature Scientific Reports 7, pp. 7457-- August 7, 2017 ...[Visit Journal] We investigate the optical signature of the interface in a single MgZnO/ZnO heterojunction, which exhibits two orders of magnitude lower resistivity and 10 times higher electron mobility compared with the MgZnO/Al2O3 film grown under the same conditions. These impressive transport properties are attributed to increased mobility of electrons at the MgZnO/ZnO heterojunction interface. Depthresolved cathodoluminescence and photoluminescence studies reveal a 3.2 eV H-band optical emission from the heterointerface, which exhibits excitonic properties and a localization energy of 19.6 meV. The emission is attributed to band-bending due to the polarization discontinuity at the interface, which leads to formation of a triangular quantum well and localized excitons by electrostatic coupling. [reprint (PDF)] |
| 1. | Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency Y. Bai, S. Slivken, S.R. Darvish, and M. Razeghi Applied Physics Letters, Vol. 93, No. 2, p. 021103-1-- July 14, 2008 ...[Visit Journal] An InP based quantum cascade laser heterostructure emitting at 4.6 µm was grown with gas-source molecular beam epitaxy. The wafer was processed into a conventional double-channel ridge waveguide geometry with ridge widths of 19.7 and 10.6 µm without semi-insulating InP regrowth. An uncoated, narrow ridge device with a 4.8 mm cavity length was epilayer down bonded to a diamond submount and exhibits 2.5 W maximum output power with a wall plug efficiency of 12.5% at room temperature in continuous wave operation. [reprint (PDF)] |
| 1. | Highly temperature insensitive quantum cascade lasers Y. Bai, N. Bandyopadhyay, S. Tsao, E. Selcuk, S. Slivken and M. Razeghi Applied Physics Letters, Vol. 97, No. 25-- December 20, 2010 ...[Visit Journal] An InP based quantum cascade laser (QCL) heterostructure emitting around 5 μm is grown with gas-source molecular beam epitaxy. The QCL core design takes a shallow-well approach to maximize the characteristic temperatures, T(0) and T(1), for operations above room temperature. A T(0) value of 383 K and a T(1) value of 645 K are obtained within a temperature range of 298–373 K. In room temperature continuous wave operation, this design gives a single facet output power of 3 W and a wall plug efficiency of 16% from a device with a cavity length of 5 mm and a ridge width of 8 μm. [reprint (PDF)] |
| 1. | Room Temperature, Continuous Wave Quantum Cascade Laser Grown Directly on a Si Wafer Steven Slivken and Manijeh Razeghi S. Slivken and M. Razeghi,, Journal of Quantum Electronics, Vol. 59, No. 4, doi: 10.1109/JQE.2023.3282710 ...[Visit Journal] We report the room temperature demonstration of a high power, continuous wave, LWIR quantum cascade laser grown directly on a Si substrate. A new wafer, based on a high efficiency, strain-balanced laser core was processed into a lateral injection buried heterostructure laser geometry. A pulsed efficiency of 11.1% was demonstrated at room temperature, with
an emission wavelength of 8.35 μm. With low fidelity, epilayer-up packaging, CW emission up to 343 K was also demonstrated, with a maximum output power of >0.7 W near room temperature. [reprint (PDF)] |
| 1. | Ga2O3 Metal-oxide-semiconductor Field Effect Transistors on Sapphire Substrate by MOCVD Ji-Hyeon Park, Ryan McClintock and Manijeh Razeghi Semiconductor Science and Technology, Volume 34, Number 8-- June 26, 2019 ...[Visit Journal] Si-doped gallium oxide (Ga2O3) thin films were grown on a c-plane sapphire substrate by metalorganic chemical vapor deposition (MOCVD) and fabricated into metal oxide semiconductor field effect transistors (MOSFETs). The Ga2O3 MOSFETs exhibited effective gate modulation of the drain current with a complete channel pinch-off for VG < −25 V, and the three-terminal off-state breakdown voltage was 390 V. The device shows a very low gate leakage current (~50 pA/mm), which led to a high on/off ratio of ~108. These transistor characteristics were stable from room temperature to 250 °C [reprint (PDF)] |
| 1. | Effect of sidewall surface recombination on the quantum efficiency in a Y2O3 passivated gated type-II InAs/GaSb long-infrared photodetector array G. Chen, A. M. Hoang, S. Bogdanov, A. Haddadi, S. R. Darvish, and M. Razeghi Appl. Phys. Lett. 103, 223501 (2013)-- November 25, 2013 ...[Visit Journal] Y2O3 was applied to passivate a long-wavelength infrared type-II superlattice gated photodetector array with 50% cut-off wavelength at 11 μm, resulting in a saturated gate bias that was 3 times lower than in a SiO2 passivated array. Besides effectively suppressing surface leakage, gating technique exhibited its ability to enhance the quantum efficiency of 100 × 100 μm size mesa from 51% to 57% by suppressing sidewall surface recombination. At 77 K, the gated photodetector showed dark current density and resistance-area product at −300 mV of 2.5 × 10−5 A/cm² and 1.3 × 104 Ω·cm², respectively, and a specific detectivity of 1.4 × 1012 Jones. [reprint (PDF)] |
| 1. | Use of Yttria-Stabilised Zirconia Substrates for Zinc Oxide Mediated Epitaxial Lift-off of Superior Yttria-Stabilised Zirconia Thin Films D. J. Rogers, T. Maroutian, V. E. Sandana, P. Lecoeur, F. H. Teherani, P. Bove and M. Razeghi Proc. of SPIE Vol. 12887, Oxide-based Materials and Devices XV, 128870P 2024, San Francisco),doi: 10.1117/12.3023431 ...[Visit Journal] ZnO layers were grown on (100) and (111) oriented YSZ substrates by pulsed laser deposition (PLD). X-ray diffraction
studies revealed growth of wurtzite ZnO with strong preferential (0002) orientation. The ZnO layer on YSZ (111)
showed distinct Pendellosung fringes and a more pronounced c-axis orientation (rocking curve of 0.08°). Atomic force
microscopy revealed RMS roughnesses of 0.7 and 2.2nm for the ZnO on the YSZ (111) and YSZ (100), respectively.
YSZ was then grown on the ZnO buffered YSZ (111) substrate by PLD. XRD revealed that the YSZ overlayer grew
with a strong preferential (111) orientation. The YSZ/ZnO/YSZ (111) top surface was temporary bonded to an Apiezon
wax carrier and the sample was immersed in 0.1M HCl so as to preferentially etch/dissolve away the ZnO underlayer
and release the YSZ from the substrate. XRD revealed only the characteristic (111) peak of YSZ after lift-off and thus
confirmed both the dissolution of the ZnO and the preservation of the crystallographic integrity of the YSZ on the wax
carrier. Optical and Atomic Force Microscopy revealed some buckling, roughening and cracking of the lifted YSZ,
however. XRD suggested that this may have been due to compressive epitaxial strain release. [reprint (PDF)] |
Page 6 of 6: Prev << 1 2 3 4 5 6 (132 Items)
|