About the CQD | News | Conferences | Publications | Books | Research | People | History | Patents | Contact | Channel | |
Page 6 of 28: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 >> Next (677 Items)
3. | InAs/InAs1-xSbx type-II superlattices for high performance long wavelength infrared detection A. Haddadi , G. Chen , R. Chevallier , A. M. Hoang , and M. Razeghi Appl. Phys. Lett. 105, 121104 (2014)-- September 22, 2014 ...[Visit Journal] High performance long-wavelength infrared nBn photodetectors based on InAs/InAs1−xSbx type-II superlattices on GaSb substrate have been demonstrated. The photodetector's 50% cut-off wavelength was ∼10 μm at 77 K. The photodetector with a 6 μm-thick absorption region exhibited a peak responsivity of 4.47 A/W at 7.9 μm, corresponding to a quantum efficiency of 54% at −90 mV bias voltage under front-side illumination and without any anti-reflection coating. With an R × A of 119 Ω·cm² and a dark current density of 4.4 × 10−4 A/cm² under −90 mV applied bias at 77 K, the photodetector exhibited a specific detectivity of 2.8 × 1011 cm·Hz1/2·W-1. [reprint (PDF)] |
3. | On the performance and surface passivation of type-II InAs/GaSb superlattice photodiodes for the very-long- wavelength infrared A. Hood, M. Razeghi, E. Aifer, G.J. Brown Applied Physics Letters 87 (1)-- October 10, 2005 ...[Visit Journal] We demonstrate very-long-wavelength infrared Type-II InAs/GaSb superlattice photodiodes with a cutoff wavelength (λc,50%) of 17 μm. We observed a zero-bias, peak Johnson noise-limited detectivity of 7.63×109 cm·Hz½/W at 77 K with a 90%-10% cutoff width of 17 meV, and quantum efficiency of 30%. Variable area diode zero-bias resistance-area product (R0A) measurements indicated that silicon dioxide passivation increased surface resistivity by nearly a factor of 5, over unpassivated photodiodes, and increased overall R0A uniformity. The bulk R0A at 77 K was found to be 0.08 Ω·cm2, with RA increasing more than twofold at 25 mV reverse bias. [reprint (PDF)] |
3. | High-Performance Type-II InAs/GaSb Superlattice Photodiodes with Cutoff Wavelength Around 7 µm Y. Wei, A. Hood, H. Yau, V. Yazdanpanah, M. Razeghi, M.Z. Tidrow and V. Nathan Applied Physics Letters, 86 (9)-- February 28, 2005 ...[Visit Journal] We report the most recent result in the area of type-II InAs/GaSb superlattice photodiodes that have a cutoff wavelength around 7 µm at 77 K. Superlattice with a period of 40 Å lattice matched to GaSb was realized using GaxIn1–x type interface engineering technique. Compared with significantly longer period superlattices, we have reduced the dark current density under reverse bias dramatically. For a 3 µm thick structure, using sulfide-based passivation, the dark current density reached 2.6×10–5 A/cm2 at –3 V reverse bias at 77 K. At this temperature the photodiodes have R0A of 9300 Ω·cm2 and a thermally limited zero bias detectivity of 1×1012 cm·Hz½/W. The 90%–10% cutoff energy width was only 16.5 meV. The devices did not show significant dark current change at 77 K after three months storage in the atmosphere. [reprint (PDF)] |
3. | Dual section quantum cascade lasers with wide electrical tuning S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q.Y. Lu and M. Razeghi SPIE Proceedings, Vol. 8631, p. 86310P-1, Photonics West, San Francisco, CA-- February 3, 2013 ...[Visit Journal] This paper describes our development efforts at Northwestern University regarding dual-section sampled grating distributed feedback (SGDFB) QCLs. These devices are the same size, but have much wider electrical tuning, than a traditional DFB laser. In this paper, I will show how we have dramatically extended the monolithic tuning range
of high power quantum cascade lasers with high side mode suppression. This includes individual laser element tuning of up to 50 cm-1 and 24 dB average side mode suppression. These lasers are capable of room temperature continuous operation with high power (>100 mW) output. Additionally, we have demonstrated a broad spectral coverage of over
350 cm-1 on a single chip, which is equivalent to 87.5% of the gain bandwidth. The eventual goal is to realize an extended array of such laser modules in order to continuously cover a similar or broader spectral range, similar to an external cavity device without any external components. [reprint (PDF)] |
3. | Investigation of impurities in type-II InAs/GaSb superlattices via capacitance-voltage measurement G. Chen, A. M. Hoang, S. Bogdanov, A. Haddadi, P. R. Bijjam, B.-M. Nguyen, and M. Razeghi Applied Physics Letters 103, 033512 (2013)-- July 17, 2013 ...[Visit Journal] Capacitance-voltage measurement was utilized to characterize impurities in the non-intentionally doped region of Type-II InAs/GaSb superlattice p-i-n photodiodes. Ionized carrier concentration versus temperature dependence revealed the presence of a kind of defects with activation energy below 6 meV and a total concentration of low 1015 cm−3. Correlation between defect characteristics and superlattice designs was studied. The defects exhibited a p-type behavior with decreasing activation energy as the InAs thickness increased from 7 to 11 monolayers, while maintaining the GaSb thickness of 7 monolayers. With 13 monolayers of InAs, the superlattice became n-type and the activation energy deviated from the p-type trend. [reprint (PDF)] |
3. | High brightness ultraviolet light-emitting diodes grown on patterned silicon substrate Yoann Robin, Kai Ding, Ilkay Demir, Ryan McClintock, Sezai Elagoz, Manijeh Razeghi Materials Science in Semiconductor Processing 90, pp. 87–91-- November 5, 2018 ...[Visit Journal] We report on the fabrication of high brightness AlGaN-based ultraviolet light emitting diodes (UV-LED) on patterned silicon. Using the lateral epitaxial overgrowth
approach, we demonstrate the growth of a 6 μm thick AlN layer of high crystalline quality. X-ray diffraction characterization showed a rocking curve with a full width
at half maximum of 553 and 768″ for the (00.2) and (10.2) planes, respectively. The low dislocation density of the AlN template enabled the growth of bright AlGaN/
GaN quantum wells emitting at 336 nm. By appropriate flip-chip bonding and silicon substrate removal processing steps, the patterned AlN surface was exposed and
efficient bottom-emission UV-LEDs were realized. Improvement of the AlN quality and the structure design allowed the optical output power to reach the milliwatt
range under pulsed current, exceeding the previously reported maximum efficiency. Further investigations of the optical power at different pulsed currents and duty
cycles show that thermal management in this device structure is still challenging, especially in continuous wave mode operation. The strategy presented here is of
interest, since AlN crystalline quality improvement and optimization of the light extraction are the main issues inhibiting efficient UV emitter on silicon fabrication. [reprint (PDF)] |
3. | Ultraviolet Detectors for AstroPhysics Present and Future M. Ulmer, M. Razeghi, and E. Bigan Optoelectronic Integrated Circuit Materials, Physics and Devices, SPIE Conference, San Jose, CA; Proceedings, Vol. 239-- February 6, 1995 ...[Visit Journal] Astronomical instruments for the study of UV astronomy have been developed for NASA missions such as the Hubble Space Telescope. The systems that are `blind to the visible' (`solar-blind') yet sensitive to the UV that have been flown in satellites have detective efficiencies of about 10 to 20%, although typically electron bombardment charge coupled devices are higher at 30 - 40% and ordinary CCDs achieve 1 - 5%. Therefore, there is a large payoff still to be gained by further improvements in the performance of solar blind UV detectors. We provide a brief review of some aspects of UV astronomy, UV detector development, and possible technologies for the future. We suggest that a particularly promising future technology is one based on the ability of investigators to produce high quality films made of wide bandgap III-V semiconductors. [reprint (PDF)] |
3. | High-performance, continuous-wave operation of λ ~ 4.6 μm quantum-cascade lasers above room temperature J.S. Yu, S. Slivken, A. Evans and M. Razeghi IEEE Journal of Quantum Electronics, Vol. 44, No. 8, p. 747-754-- August 1, 2008 ...[Visit Journal] We report the high-performance continuous-wave (CW) operation of 10-μm-wide quantum-cascade lasers (QCLs) emitting at λ ~ 4.6 μm, based on the GaInAs–AlInAs material without regrowth, in epilayer-up and -down bonding configurations. The operational characteristics of QCLs such as the maximum average power, peak output power, CW output power, and maximum CW operating temperature are investigated, depending on cavity length. Also, important device parameters, i.e., the waveguide loss, the transparency current density, the modal gain, and the internal quantum efficiency, are calculated from length-dependent results. For a high-reflectivity (HR) coated 4-mm-long cavity with epilayer-up bonding, the highest maximum average output power of 633 mW is measured at 65% duty cycle, with 469 mW still observed at 100%. The laser exhibits the maximum wall-plug efficiencies of 8.6% and 3.1% at 298 K, in pulsed and CW operatons, respectively. From 298 to 393 K, the temperature dependent threshold current density in pulsed operation shows a high characteristic temperature of 200 K. The use of an epilayer-down bonding further improves the device performance. A CW output power of 685 mW at 288 K is achieved for the 4-micron-long cavity. At 298 K, the output power of 590 mW, threshold current density of 1.52 kA / cm2, and maximum wall-plug efficiency of 3.73% are obtained under CW mode, operating up to 363 K (90 °C). For HR coated 3-micron-long cavities, laser characteristics across the same processed wafer show a good uniformity across the area of 2 x 1 cm2, giving similar output powers, threshold current densities, and emission wavelengths. The CW beam full-width at half-maximum of far-field patterns are 25 degree and 46 degree for the parallel and the perpendicular directions, respectively. [reprint (PDF)] |
3. | Sharp/Tuneable UVC Selectivity and Extreme Solar Blindness in Nominally Undoped Ga2O3 MSM Photodetectors Grown by Pulsed Laser Deposition D. J. Rogers, A. Courtois, F. H. Teherani, V. E. Sandana, P. Bove, X. Arrateig, L. Damé, P. Maso, M. Meftah, W. El Huni, Y. Sama, H. Bouhnane, S. Gautier, A. Ougazzaden, M. Razeghi Proc. SPIE 11687, Oxide-based Materials and Devices XII, 116872D (24 March 2021); doi: 10.1117/12.2596194 ...[Visit Journal] Ga2O3 layers were grown on c-sapphire substrates by pulsed laser deposition. Optical transmission spectra were coherent with a bandgap engineering from 4.9 to 6.2 eV controlled via the growth conditions. X-ray diffraction revealed that the films were mainly β-Ga2O3 (monoclinic) with strong (-201) orientation. Metal-Semiconductor-Metal photodetectors based on gold/nickel Inter- Digitated-Transducer structures were fabricated by single-step negative photolithography. 240 nm peak response sensors gave over 2 orders-of-magnitude of separation between dark and light signal with state-of-the-art solar and visible rejection ratios ((I240 : I290) of > 3 x 105 and (I240 : I400) of > 2 x 106) and dark signals of <50 pA (at a bias of -5V). Spectral responsivities showed an exceptionally narrow linewidth (16.5 nm) and peak values exhibited a slightly superlinear increase with applied bias up to a value of 6.5 A/W (i.e. a quantum efficiency of > 3000%) at 20V bias. [reprint (PDF)] |
3. | Active and passive infrared imager based on short-wave and mid-wave type-II superlattice dual-band detectors E.K. Huang, A. Haddadi, G. Chen, A.M. Hoang, and M. Razeghi Optics Letters, Vol. 38, no. 1, p. 22-24-- January 1, 2013 ...[Visit Journal] A versatile dual-band detector capable of active and passive use is demonstrated using short-wave (SW) and midwave(MW) IR type-II superlattice photodiodes. A bilayer etch-stop scheme is introduced for back-side-illuminated detectors, which enhanced the external quantum efficiency both in the SWIR and MWIR spectral regions. Temperature-dependent dark current measurements of pixel-sized 27 μm detectors found the dark current density
to be ~1 × 10-5 A/cm² for the ∼4.2 μm cutoff MWIR channel at 140 K. This corresponded to a reasonable imager noise equivalent difference in temperature of ∼49 mK using F∕2.3 optics and a 10 ms integration time (tint), which lowered to ∼13 mK at 110 K using tint 30 ms, illustrating the potential for high-temperature operation. The SWIR channel was found to be limited by readout noise below 150 K. Excellent imagery from the dual-band imager exemplifying pixel coincidence is shown. [reprint (PDF)] |
3. | Inductively coupled plasma etching and processing techniques for type-II InAs/GaSb superlattices infrared detectors toward high fill factor focal plane arrays E.K. Huang, B.M. Nguyen, D. Hoffman, P.Y. Delaunay and M. Razeghi SPIE Proceedings, San Jose, CA Volume 7222-0Z-- January 26, 2009 ...[Visit Journal] A challenge for Type-II InAs/GaSb superlattice (T2SL) photodetectors is to achieve high fill factor, high aspect ratio etching for third generation focal plane arrays (FPAs). Initially, we compare the morphological and electrical results of single element T2SL photodiodes after BCl3/Ar inductively coupled plasma (ICP) and electron cyclotron resonance (ECR) dry etching. Using a Si3N4 hard mask, ICP-etched structures exemplify greater sidewall verticality and smoothness, which are essential toward the realization of high fill factor FPAs. ICP-etched single element devices with SiO2 passivation that are 9.3 µm in cutoff wavelength achieved vertical sidewalls of 7.7 µm in depth with a resistance area product at zero bias of greater than 1,000 Ω·cm2 and maximum differential resistance in excess of 10,000 Ω·cm2 at 77 K. By only modifying the etching technique in the fabrication steps, the ICP-etched photodiodes showed an order of magnitude decrease in their dark current densities in comparison to the ECR-etched devices. Finally, high aspect ratio etching is demonstrated on mutli-element arrays with 3 µm-wide trenches that are 11 µm deep. [reprint (PDF)] |
3. | Fabrication of nanostructured heterojunction LEDs using self-forming Moth-Eye Arrays of n-ZnO Nanocones Grown on p-Si (111) by PLD D.J. Rogers; V.E. Sandana; F. Hosseini Teherani; M. Razeghi; H.-J. Drouhin Proc. SPIE 7217, Zinc Oxide Materials and Devices IV, 721708 (February 17, 2009)-- February 17, 2009 ...[Visit Journal] ZnO nanostructures were grown on Si (111) substrates using Pulsed Laser Deposition. The impact of growth temperature (Ts) and Ar pressure (PAr) on the morphology, crystal structure and photoluminescence was investigated. Various types of ZnO nanostructures were obtained. Self-forming arrays of vertically-aligned nanorods and nanocones with strong c-axis crystallographic orientation and good optical response were obtained at higher Ts. The nanocone, or "moth-eye" type structures were selected for LED development because of their graded effective refractive index, which could facilitate improved light extraction at the LED/air interface. Such moth-eye arrays were grown on p-type Si (111) substrates to form heteroj unction LEDs with the n-type ZnO nanocones acting as an active component of the device. These nanostructured LEDs gave rectifying I/V characteristics with a threshold voltage of about 6V and a blueish-white electroluminescence, which was clearly visible to the naked eye. [reprint (PDF)] |
3. | Effect of contact doping on superlattice-based minority carrier unipolar detectors B.M. Nguyen, G. Chen, A.M. Hoang, S. Abdollahi Pour, S. Bogdanov, and M. Razeghi Applied Physics Letters, Vol. 99, No. 3, p. 033501-1-- July 18, 2011 ...[Visit Journal] We report the influence of the contact doping profile on the performance of superlattice-based minority carrier unipolar devices for mid-wave infrared detection. Unlike in a photodiode, the space charge in the p-contact of a pMp unipolar device is formed with accumulated mobile carriers, resulting in higher dark current in the device with highly doped p-contact. By reducing the doping concentration in the contact layer, the dark current is decreased by one order of magnitude. At 150 K, 4.9 μm cut-off devices exhibit a dark current of 2 × 10−5A/cm² and a quantum efficiency of 44%. The resulting specific detectivity is 6.2 × 1011 cm·Hz1/2/W at 150 K and exceeds 1.9 × 1014 cm·Hz1/2/W at 77 K. [reprint (PDF)] |
3. | Temperature dependence of the dark current and activation energy at avalanche onset of GaN Avalanche Photodiodes M.P. Ulmer, E. Cicek, R. McClintock, Z. Vashaei and M. Razeghi SPIE Proceedings, Vol. 8460, p. 84601G-1-- August 15, 2012 ...[Visit Journal] We report a study of the performance of an avalanche photodiode (APD) as a function of temperature from 564 K to 74 K. The dark current at avalanche onset decreases from 564 K to 74 K by approximately a factor of 125 and from 300 K to 74K the dark current at avalanche offset is reduced by a factor of about 10. The drop would have been considerably larger if the activation energy at avalanche onset (Ea) did not also decrease with
decreasing temperature. These data give us insights into how to improve the single-photon counting performance of a GaN based ADP. [reprint (PDF)] |
3. | Type-II superlattice-based heterojunction phototransistors for high speed applications Jiakai Li, Arash Dehzangi, Donghai Wu, Ryan McClintock, Manijeh Razeghi Infrared Physics and Technology 108, 1033502-- May 2, 2020 ...[Visit Journal] In this study, high speed performance of heterojunction phototransistors (HPTs) based on InAs/GaSb/AlSb type-II superlattice with 30 nm base thickness and 50% cut-off wavelength of 2.0 μm at room temperature are demonstrated. We studied the relationship between -3 dB cut-off frequency of these HPT versus mesa size, applied bias, and collector layer thickness. For 8 μm diameter circular mesas HPT devices with a 0.5 μm collector layer, under 20 V applied bias voltage, we achieved a -3 dB cut-off frequency of 2.8 GHz.
[reprint (PDF)] |
3. | High-power, high-wall-plug-efficiency quantum cascade lasers with high-brightness in continuous wave operation at 3–300μm Manijeh Razeghi, Yanbo Bai and Feihu Wang Razeghi et al. Light: Science & Applications (2025) 14:252 ...[Visit Journal] Quantum cascade lasers (QCLs) are unipolar quantum devices based on inter-sub-band transitions. They break the electron-hole recombination mechanism in traditional semiconductor lasers, overcome the long-lasting bottleneck which is that the emission wavelength of semiconductor laser is completely dependent on the bandgap of semiconductor materials. Therefore, their emission wavelength is able to cover the mid-infrared (mid-IR) range and the “Terahertz gap” that is previously inaccessible by any other semiconductor lasers. [reprint (PDF)] |
3. | High operating temperature MWIR photon detectors based on Type II InAs/GaSb superlattice M. Razeghi, S. Abdollahi Pour, E.K. Huang, G. Chen, A. Haddadi and B.M. Nguyen SPIE Proceedings, Infrared Technology and Applications XXXVII, Orlando, FL, Vol. 8012, p. 80122Q-1-- April 26, 2011 ...[Visit Journal] Recent efforts have been paid to elevate the operating temperature of Type II superlattice Mid Infrared photon detectors. Using M-structure superlattice, novel device architectures have been developed, resulting in significant improvement of the device performances. In this paper, we will compare different photodetector architectures and discuss the optimization scheme which leads to almost one order of magnitude of improvement to the electrical performance. At 150K, single element detectors exhibit a quantum efficiency above 50%, and a specific detectivity of 1.05x10(12) cm.Hz(1/2)/W. BLIP operation with a 300K background and 2π FOV can be reached with an operating temperature up to 180K. High quality focal plane arrays were demonstrated with a noise equivalent temperature difference (NEDT) of 11mK up to 120K. Human body imaging is achieved at 150K with NEDT of 150mK. [reprint (PDF)] |
3. | High power photonic crystal distributed feedback quantum cascade lasers emitting at 4.5 micron B. Gokden, S. Slivken and M. Razeghi SPIE Proceedings, San Francisco, CA (January 22-28, 2010), Vol. 7608, p. 760806-1-- January 22, 2010 ...[Visit Journal] Quantum cascade lasers possess very small linewidth enhancement factor, which makes them very prominent candidates for realization of high power, nearly diffraction limited and single mode photonic crystal distributed feedback broad area lasers in the mid-infrared frequencies. In this paper, we present room temperature operation of a two dimensional photonic crystal distributed feedback quantum cascade laser emitting at 4.5 µm. peak power up to ~0.9 W per facet is obtained from a 2 mm long laser with 100 µm cavity width at room temperature. The observed spectrum is single mode with a very narrow linewidth. Far-field profile has nearly diffraction limited single lobe with full width at half maximum of 3.5 degree normal to the facet. The mode selection and power output relationships are experimentally established with respect to different cavity lengths for photonic crystal distributed feedback quantum cascade lasers. [reprint (PDF)] |
3. | Type-II Antimonide-based Superlattices for the Third Generation Infrared Focal Plane Arrays Manijeh Razeghi, Edward Kwei-wei Huang, Binh-Minh Nguyen, Siamak Abdollahi Pour, and Pierre-Yves Delaunay SPIE Proceedings, Infrared Technology and Applications XXXVI, Vol. 7660, pp. 76601F-- May 10, 2010 ...[Visit Journal] In recent years, the Type-II superlattice (T2SL) material platform has seen incredible growth in
the understanding of its material properties which has lead to unprecedented development in the arena
of device design. Its versatility in band-structure engineering is perhaps one of the greatest hallmarks
of the T2SL that other material platforms are lacking. In this paper, we discuss advantages of the
T2SL, specifically the M-structure T2SL, which incorporates AlSb in the traditional InAs/GaSb
superlattice. Using the M-structure, we present a new unipolar minority electron detector coined as
the p-M-p, the letters which describe the composition of the device. Demonstration of this device structure with a 14 μm cutoff attained a detectivity of 4x1010 Jones (-50 mV) at 77 K. As device performance improves year after year with novel design contributions from the many researchers in this field, the natural progression in further enabling the ubiquitous use of this technology is to reduce cost and support the fabrication of large infrared imagers. In this paper, we also discuss the use of GaAs substrates as an enabling technology for third generation imaging on T2SLs. Despite the 7.8% lattice mismatch between the native GaSb and alternative GaAs substrates, T2SL photodiodes grown on GaAs at the MWIR and LWIR have been demonstrated at an operating temperature of 77 K [reprint (PDF)] |
3. | Photoluminescence linewidth narrowing in Yb-doped GaN and InGaN thin films K. Dasari, J. Wang, W.M. Jadwisienczak, V. Dierolf, M. Razeghi, R. Palai Journal of Luminescence Volume 209, May 2019, Pages 237-243-- January 14, 2019 ...[Visit Journal] We report on photoluminescence (PL) properties of GaN, GaN:Yb, InGaN, and InGaN:Yb thin films grown on (0001) sapphire substrates by plasma assisted molecular beam epitaxy (MBE). X-ray diffraction pattern of the films confirms c-axis oriented growth. The concentration of Yb and In was obtained by X-ray photoelectron spectroscopy (XPS) and was found to be 5 (+/- 0.5) at.% and 30 (+/- 1.5) at.%, respectively. The GaN:Yb and InGaN:Yb thin films show a significant linewidth narrowing in PL spectra compared to GaN and InGaN thin films. This could be attributed to the reduction of the defect related non-radiative recombination paths and suppression of the structural defects and dislocations because of the in situ rare earth (Yb)-doping during the growth. The temperature dependent photoluminescence of GaN:Yb thin film follows the Varshni model, whereas InGaN:Yb film shows a complex S-shaped like behavior, which can be explained by the localization effect using the Band-Tail model. [reprint (PDF)] |
3. | Continuous wave, room temperature operation of λ ~ 3μm quantum cascade laser N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken and M. Razeghi SPIE Proceedings, Vol. 8631, p. 86310M-1, Photonics West, San Francisco, CA-- February 3, 2013 ...[Visit Journal] Quantum Cascade Lasers (QCLs), operating in continuous wave (CW) at room temperature(RT) in 3-3.5 μm spectral range, which overlaps the spectral fingerprint region of many hydrocarbons, is essential in spectroscopic trace gas detection, environment monitoring, and pollution control. A
3 μm QCL, operating in CW at RT is demonstrated. This initial result makes it possible, for the most
popular material system (AlInAs/GaInAs on InP) used in QCLs in mid-infrared and long-infrared, to cover the entire spectral range of mid-infrared atmospheric window (3-5 μm).
In0.79Ga0.21As/In0.11Al0.89As strain balanced superlattice, which has a large conduction band offset, was grown. The strain was balanced with composite barriers (In0.11Al0.89As /In0.4Al0.6As) in the injector region, to eliminate the need of extremely high compressively strained GaInAs, whose pseudomorphic growth is very difficult. [reprint (PDF)] |
3. | Study on the effects of minority carrier leakage in InAsSb/InPAsSb double heterostructure B. Lane, D. Wu, H.J. Yi, J. Diaz, A. Rybaltowski, S. Kim, M. Erdtmann, H. Jeon and M. Razeghi Applied Physics Letters 70 (11)-- April 17, 1997 ...[Visit Journal] InAsxSb1−x/InP1−x−yAsxSby double heterostructures have been grown on InAs substrates by metal-organic chemical vapor deposition. The minority carrier leakage to the cladding layers was studied with photoluminescence measurements on the InAsSb/InPAsSb double heterostructures. A carrier leakage model is used to extract parameters related to the leakage current (diffusion-coefficient and length) from experimental results. Using the obtained parameters, the temperature dependence of the threshold current density of InAsSb/InPAsSb double heterostructure lasers is predicted and compared with experimental results. [reprint (PDF)] |
3. | Aluminum nitride films on different orientations of sapphire and silicon K. Dovidenko, S. Oktyabrsky, J. Narayan, and M. Razeghi Journal of Applied Physics79 (5)-- March 1, 1996 ...[Visit Journal] The details of epitaxial growth and microstrictural characteristics of AlN films grown on sapphire (0001), (1012) and Si (100), (111) substrates were investigated using plan‐view and cross‐sectional high‐resolution transmission electron microscopy and x‐ray diffraction techniques. The films were grown by metalorganic chemical vapor deposition using TMA1+NH3+N2 gas mixtures. Different degrees of epitaxy were observed for the films grown on α‐Al2O3 and Si substrates in different orientations. The epitaxial relationship for (0001) sapphire was found to be (0001)AlN∥(0001)sap with in‐plane orientation relationship of [0110]AlN∥[1210]sap. This is equivalent to a 30° rotation in the basal (0001) plane. For (1012) sapphire substrates, the epitaxial relationship was determined to be (1120)AlN∥(1012)sap with the in‐plane alignment of [0001]AlN∥[1011]sap. The AlN films on (0001) α‐Al2O3 were found to contain inverted domain boundaries and a/3〈1120〉 threading dislocations with the estimated density of 1010 cm−2. The density of planar defects (stacking faults) found in AlN films was considerably higher in the case of (1012) compared to (0001) substrates. Films on Si substrates were found to be highly textured c axis oriented when grown on (111) Si, and c axis textured with random in‐plane orientation on (100) Si. The role of thin‐film defects and interfaces on device fabrication is discussed. [reprint (PDF)] |
3. | Direct growth of thick AlN layers on nanopatterned Si substrates by cantilever epitaxy Ilkay Demir, Yoann Robin, Ryan McClintock, Sezai Elagoz, Konstantinos Zekentes, and Manijeh Razeghi Physica Status Solidi 214 (4), pp. 1770120-- April 4, 2017 ...[Visit Journal] The growth of thick, high quality, and low stress AlN films on Si substrates is highly desired for a number of applications like the development of micro and nano electromechanical system (MEMS and NEMS) technologies [1] and particularly for fabricating AlGaNbased UV LEDs [2–5]. UV LEDs are attractive as they are applied in many areas, such as biomedical instrumentations and dermatology, curing of industrial resins and inks, air
purification, water sterilization, and many others [2, 3]. UV LEDs have been generally fabricated on AlN, GaN, Al2O3, or SiC substrates because of better lattice mismatching to AlGaN material systems. [reprint (PDF)] |
3. | Quantum-dot infrared photodetectors and focal plane arrays M. Razeghi, H. Lim, S. Tsao, M. Taguchi, W. Zhang, and A.A. Quivy SPIE Infrared Technology and Applications Conference, April 17-21, 2006, Orlando, FL Proceedings – Infrared Technology and Applications XXXII, Vol. 6206, p. 62060I-1-- April 21, 2006 ...[Visit Journal] We report our recent results about mid-wavelength infrared quantum-dot infrared photodetectors (QDIPs) grown by low-pressure metalorganic chemical vapor deposition. A very high responsivity and a very low dark current were obtained. A high peak detectivity of the order of 3×1012 Jones was achieved at 77 K. The temperature dependent device performance was also investigated. The improved temperature insensitivity compared to QWIPs was attributed to the properties of quantum dots. The device showed a background limited performance temperature of 220 K with a 45° field of view and 300K background. [reprint (PDF)] |
Page 6 of 28: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 >> Next (677 Items)
|