About the CQD | News | Conferences | Publications | Books | Research | People | History | Patents | Contact | Channel | |
Page 5 of 28: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 >> Next (676 Items)
3. | Structural, Optical, Electrical and Morphological Study of Transparent p-NiO/n-ZnO Heterojunctions Grown by PLD V. E. Sandana, D. J. Rogers, F. Hosseini Teherani, P. Bove, N. Ben Sedrine, M. R. Correia, T. Monteiro, R. McClintock, and M. Razeghi Proc. SPIE 9364, Oxide-based Materials and Devices VI, 93641O-- March 24, 2015 ...[Visit Journal] NiO/ZnO heterostructures were fabricated on FTO/glass and bulk hydrothermal ZnO substrates by pulsed laser deposition. X-Ray diffraction and Room Temperature (RT) Raman studies were consistent with the formation of (0002) oriented wurtzite ZnO and (111) oriented fcc NiO. RT optical transmission studies revealed bandgap energy values of ~3.70 eV and ~3.30 eV for NiO and ZnO, respectively and more than 80% transmission for the whole ZnO/NiO/FTO/glass stack over the majority of the visible spectrum. Lateral p-n heterojunction mesas (~6mm x 6mm) were fabricated using a shadow mask during PLD growth. n-n and p-p measurements showed that Ti/Au contacting
gave an Ohmic reponse for the NiO, ZnO and FTO. Both heterojunctions had rectifying I/V characteristics. The junction on FTO/glass gave forward bias currents (243mA at +10V) that were over 5 orders of magnitude higher than those for the junction formed on bulk ZnO. At ~ 10-7 A (for 10V of reverse bias) the heterojunction leakage current was approximately two orders of magnitude lower on the bulk ZnO substrate than on FTO. Overall, the lateral p-NiO/n-ZnO/FTO/glass device proved far superior to that formed by growing p-NiO directly on the bulk n-ZnO substrate and gave a combination of electrical performance and visible wavelength transparency that could predispose it for use in various third generation transparent electronics applications. [reprint (PDF)] |
3. | Low Dark Current Deep UV AlGaN Photodetectors on AlN Substrate Lakshay Gautam, Junhee Lee, Gail Brown, Manijeh Razeghi IEEE Journal of Quantum Electronics, vol. 58, no. 3, pp. 1-5, June 2022, Art no. 4000205 ...[Visit Journal] We report high quality, low dark current, deep Ultraviolet AlGaN/AlN Photodetectors on AlN substrate. AlGaN based Photodetectors are grown and fabricated both on AlN and Sapphire substrates with the same epilayer structure. Subsequently, electrical characteristics of both photodetectors on AlN substrate and Sapphire are compared. A reduction of 4 orders of magnitude of dark current density is reported in UV detectors grown on AlN substrate with respect to Sapphire substrate. [reprint (PDF)] |
3. | Demonstration of long wavelength infrared Type-II InAs/InAs1-xSbx superlattices photodiodes on GaSb substrate grown by metalorganic chemical vapor deposition D. H. Wu, A. Dehzangi, Y. Y. Zhang, M. Razeghi Applied Physics Letters 112, 241103-- June 12, 2018 ...[Visit Journal] We report the growth and characterization of long wavelength infrared type-II InAs/InAs1−xSbx superlattices photodiodes with a 50% cut-off wavelength at 8.0 μm on GaSb substrate grown by metalorganic chemical vapor deposition. At 77 K, the photodiodes exhibited a differential resistance at zero bias (R0A) 8.0 Ω·cm2, peak responsivity of 1.26 A/W corresponding to a quantum efficiency of 21%. A specific detectivity of 5.4×1010 cm·Hz1/2/W was achieved at 7.5 μm. [reprint (PDF)] |
3. | Mid-infrared quantum cascade lasers with high wall plug efficiency Y. Bai, B. Gokden, S. Slivken, S.R. Darvish, S.A. Pour, and M. Razeghi SPIE Proceedings, San Jose, CA Volume 7222-0O-- January 26, 2009 ...[Visit Journal] We demonstrate optimization of continuous wave (cw) operation of 4.6 µm quantum cascade lasers (QCLs). A 19.7 µm by 5 mm, double channel processed device exhibits 33% cw WPE at 80 K. Room temperature cw WPE as high as 12.5% is obtained from a 10.6 µm by 4.8 mm device, epilayer-down bonded on a diamond submount. With the semi-insulating regrowth in a buried ridge geometry, 15% WPE is obtained with 2.8 W total output power in cw mode at room temperature. This accomplishment is achieved by systematically decreasing the parasitic voltage drop, reducing the waveguide loss and improving the thermal management. [reprint (PDF)] |
3. | High power photonic crystal distributed feedback quantum cascade lasers emitting at 4.5 micron B. Gokden, S. Slivken and M. Razeghi SPIE Proceedings, San Francisco, CA (January 22-28, 2010), Vol. 7608, p. 760806-1-- January 22, 2010 ...[Visit Journal] Quantum cascade lasers possess very small linewidth enhancement factor, which makes them very prominent candidates for realization of high power, nearly diffraction limited and single mode photonic crystal distributed feedback broad area lasers in the mid-infrared frequencies. In this paper, we present room temperature operation of a two dimensional photonic crystal distributed feedback quantum cascade laser emitting at 4.5 µm. peak power up to ~0.9 W per facet is obtained from a 2 mm long laser with 100 µm cavity width at room temperature. The observed spectrum is single mode with a very narrow linewidth. Far-field profile has nearly diffraction limited single lobe with full width at half maximum of 3.5 degree normal to the facet. The mode selection and power output relationships are experimentally established with respect to different cavity lengths for photonic crystal distributed feedback quantum cascade lasers. [reprint (PDF)] |
3. | Inductively coupled plasma etching and processing techniques for type-II InAs/GaSb superlattices infrared detectors toward high fill factor focal plane arrays E.K. Huang, B.M. Nguyen, D. Hoffman, P.Y. Delaunay and M. Razeghi SPIE Proceedings, San Jose, CA Volume 7222-0Z-- January 26, 2009 ...[Visit Journal] A challenge for Type-II InAs/GaSb superlattice (T2SL) photodetectors is to achieve high fill factor, high aspect ratio etching for third generation focal plane arrays (FPAs). Initially, we compare the morphological and electrical results of single element T2SL photodiodes after BCl3/Ar inductively coupled plasma (ICP) and electron cyclotron resonance (ECR) dry etching. Using a Si3N4 hard mask, ICP-etched structures exemplify greater sidewall verticality and smoothness, which are essential toward the realization of high fill factor FPAs. ICP-etched single element devices with SiO2 passivation that are 9.3 µm in cutoff wavelength achieved vertical sidewalls of 7.7 µm in depth with a resistance area product at zero bias of greater than 1,000 Ω·cm2 and maximum differential resistance in excess of 10,000 Ω·cm2 at 77 K. By only modifying the etching technique in the fabrication steps, the ICP-etched photodiodes showed an order of magnitude decrease in their dark current densities in comparison to the ECR-etched devices. Finally, high aspect ratio etching is demonstrated on mutli-element arrays with 3 µm-wide trenches that are 11 µm deep. [reprint (PDF)] |
3. | Demonstration of mid-infrared type-II InAs/GaSb superlattice photodiodes grown on GaAs substrate B.M. Nguyen, D. Hoffman, E.K. Huang, S. Bogdanov, P.Y. Delaunay, M. Razeghi and M.Z. Tidrow Applied Physics Letters, Vol. 94, No. 22-- June 8, 2009 ...[Visit Journal] We report the growth and characterization of type-II InAs/GaSb superlattice photodiodes grown on
a GaAs substrate. Through a low nucleation temperature and a reduced growth rate, a smooth GaSb
surface was obtained on the GaAs substrate with clear atomic steps and low roughness morphology.
On the top of the GaSb buffer, a p+-i-n+ type-II InAs/GaSb superlattice photodiode was grown with
a designed cutoff wavelength of 4 μm. The detector exhibited a differential resistance at zero bias (R0A)in excess of 1600 Ω·cm2 and a quantum efficiency of 36.4% at 77 K, providing a specific detectivity of 6 X 1011 cm·Hz½/W and a background limited operating temperature of 100 K with a 300 K background. Uncooled detectors showed similar performance to those grown on GaSb
substrates with a carrier lifetime of 110 ns and a detectivity of 6 X 108 cm·Hz½/W. [reprint (PDF)] |
3. | High-Power Distributed-Feedback Quantum Cascade Lasers W.W. Bewley, I. Vurgaftman, C.S. Kim, J.R. Meyer, J. Nguyen, A.J. Evans, J.S. Yu, S.R. Darvish, S. Slivken and M. Razeghi SPIE Conference, San Jose, CA, Vol. 6127, pp. 612704-- January 23, 2006 ...[Visit Journal] Recently, a distributed-feedback quantum cascade laser operating in a single spectral mode at 4.8 µm and at temperatures up to 333 K has been reported. In the present work, we provide detailed measurements and modeling of its performance characteristics. The sidemode suppression ratio exceeds 25 dB, and the emission remains robustly single-mode at all currents and temperatures tested. Cw output powers of 99 mW at 298 K and 357 mW at 200 K are obtained at currents well below the thermal rollover point. [reprint (PDF)] |
3. | Transport properties in n-type InSb films grown by metalorganic chemical vapor deposition S.N. Song, J.B. Ketterson, Y.H. Choi, R. Sudharsanan, and M. Razeghi Applied Physics Letters 63 (7)-- August 16, 1993 ...[Visit Journal] We have measured the temperature and magnetic field dependence of the Hall mobility and transverse magnetoresistance in n-type InSb films epitaxially grown on GaAs substrates by metalorganic chemical vapor deposition. The films show a giant magnetoresistance: e.g., at 240 K the resistivity increases over 20 times at a magnetic field of 5 T; the low field coefficient of resistivity at 77 K is as high as 47.5 μ·Ω· cm/G. The Hall mobility decreases with magnetic field and saturates at higher fields. By taking the interface carrier transport into account, the observed field dependence of the Hall mobility and magnetoresistance may be understood based on a two-layer model. [reprint (PDF)] |
3. | Study on the effects of minority carrier leakage in InAsSb/InPAsSb double heterostructure B. Lane, D. Wu, H.J. Yi, J. Diaz, A. Rybaltowski, S. Kim, M. Erdtmann, H. Jeon and M. Razeghi Applied Physics Letters 70 (11)-- April 17, 1997 ...[Visit Journal] InAsxSb1−x/InP1−x−yAsxSby double heterostructures have been grown on InAs substrates by metal-organic chemical vapor deposition. The minority carrier leakage to the cladding layers was studied with photoluminescence measurements on the InAsSb/InPAsSb double heterostructures. A carrier leakage model is used to extract parameters related to the leakage current (diffusion-coefficient and length) from experimental results. Using the obtained parameters, the temperature dependence of the threshold current density of InAsSb/InPAsSb double heterostructure lasers is predicted and compared with experimental results. [reprint (PDF)] |
3. | Monolithic, steerable, mid-infrared laser realized with no moving parts Slivken S, Wu D, Razeghi M Scientific Reports 7, 8472 -- May 24, 2018 ...[Visit Journal] The mid-infrared (2.5 < λ < 25 μm) spectral region is utilized for many purposes, such as chemical/biological sensing, free space communications, and illuminators/countermeasures. Compared to near-infrared optical systems, however, mid-infrared component technology is still rather crude, with isolated components exhibiting limited functionality. In this manuscript, we make a significant leap forward in mid-infrared technology by developing a platform which can combine functions of multiple mid-infrared optical elements, including an integrated light source. In a single device, we demonstrate wide wavelength tuning (240 nm) and beam steering (17.9 degrees) in the mid-infrared with a significantly reduced beam divergence (down to 0.5 degrees). The architecture is also set up to be manufacturable and testable on a wafer scale, requiring no cleaved facets or special mirror coating to function. [reprint (PDF)] |
3. | Kinetics of Quantum States in Quantum Cascade Lasers: Device Design Principles and fabrication M. Razeghi special issue of Microelectronics Journal 30 (10)-- October 1, 1999[reprint (PDF)] |
3. | Type II superlattice infrared detectors and focal plane arrays Vaidya Nathan; Manijeh Razeghi Proc. SPIE 6542, Infrared Technology and Applications XXXIII, 654209 (May 14, 2007)-- May 14, 2007 ...[Visit Journal] Type II superlattce photodetectors have recently experienced significant improvements in both theoretical structure design and experimental realization. Empirical Tight Binding Method is initiated and developed for Type II superlattice. Growth characteristics such as group V segregation and incorporation phenomena are taken into account in the model and shown higher precision. A new Type II structure, called M-structure, is introduced and theoretically demonstrated high R0A, high quantum efficiency. Device design is optimized to improve the performance. As a result, 55% quantum efficiency and 10 Ohm·cm² R0A are achieved for an 11.7 μm cut-off photodetector at 77K. FPA imaging at longwavelength is demonstrated with a capability of imaging up to 171K. At 81K, the noise equivalent temperature difference presented a peak at 0.33K. [reprint (PDF)] |
3. | 8-13 μm InAsSb heterojunction photodiode operating at near room temperature J.D. Kim, S. Kim, D. Wu, J. Wojkowski, J. Xu, J. Piotrowski, E. Bigan, and M. Razeghi Applied Physics Letters 67 (18)-- October 30, 1995 ...[Visit Journal] p+-InSb/π-InAs1−xSbx/n+-InSb heterojunction photodiodes operating at near room temperature in the 8–13 μm region of infrared (IR) spectrum are reported. A room‐temperature photovoltaic response of up to 13 μm has been observed at 300 K with an x≊0.85 sample. The voltage responsivity‐area product of 3×10−5 V· cm²/W has been obtained at 300 K for the λ=10.6 μm optimized device. This was close to the theoretical limit set by the Auger mechanism, with a detectivity at room temperature of ≊1.5×108 cm ·Hz½/W. [reprint (PDF)] |
3. | State-of-the-art Type II Antimonide-based superlattice photodiodes for infrared detection and imaging M. Razeghi, B.M. Nguyen, P.Y. Delaunay, E.K. Huang, S. Abdollahi Pour, P. Manurkar, and S. Bogdanov SPIE Proceedings, Nanophotonics and Macrophotonics for Space Environments II, San Diego, CA, Vol. 7467, p. 74670T-1-- August 5, 2009 ...[Visit Journal] Type-II InAs/GaSb Superlattice (SL), a system of multi interacting quantum wells was first introduced by Nobel Laureate L. Esaki in the 1970s. Since then, this low dimensional system has drawn a lot of attention for its attractive quantum mechanics properties and its grand potential for the emergence into the application world, especially in infrared detection. In recent years, Type-II InAs/GaSb superlattice photo-detectors have experienced significant improvements in material quality, structural designs and imaging applications which elevated the performances of Type-II InAs/GaSb superlattice photodetectors to a comparable level to the state-of-the-art Mercury Cadmium Telluride. We will present in this talk the current status of the state-of-the-art Type II superlattice photodetectors and focal plane arrays, and the future outlook for this material system. [reprint (PDF)] |
3. | Type-II Antimonide-based Superlattices for the Third Generation Infrared Focal Plane Arrays Manijeh Razeghi, Edward Kwei-wei Huang, Binh-Minh Nguyen, Siamak Abdollahi Pour, and Pierre-Yves Delaunay SPIE Proceedings, Infrared Technology and Applications XXXVI, Vol. 7660, pp. 76601F-- May 10, 2010 ...[Visit Journal] In recent years, the Type-II superlattice (T2SL) material platform has seen incredible growth in
the understanding of its material properties which has lead to unprecedented development in the arena
of device design. Its versatility in band-structure engineering is perhaps one of the greatest hallmarks
of the T2SL that other material platforms are lacking. In this paper, we discuss advantages of the
T2SL, specifically the M-structure T2SL, which incorporates AlSb in the traditional InAs/GaSb
superlattice. Using the M-structure, we present a new unipolar minority electron detector coined as
the p-M-p, the letters which describe the composition of the device. Demonstration of this device structure with a 14 μm cutoff attained a detectivity of 4x1010 Jones (-50 mV) at 77 K. As device performance improves year after year with novel design contributions from the many researchers in this field, the natural progression in further enabling the ubiquitous use of this technology is to reduce cost and support the fabrication of large infrared imagers. In this paper, we also discuss the use of GaAs substrates as an enabling technology for third generation imaging on T2SLs. Despite the 7.8% lattice mismatch between the native GaSb and alternative GaAs substrates, T2SL photodiodes grown on GaAs at the MWIR and LWIR have been demonstrated at an operating temperature of 77 K [reprint (PDF)] |
3. | Aluminum free GaInP/GaAs Quantum Well Infrared Photodetectors for Long Wavelength Detection C. Jelen, S. Slivken, J. Hoff, M. Razeghi, and G. Brown Applied Physics Letters 70 (3)-- January 20, 1997 ...[Visit Journal] We demonstrate quantum well infrared photodetectors based on a GaAs/Ga0.51In0.49P superlattice structure grown by gas-source molecular beam epitaxy. Wafers were grown with varying well widths. Wells of 40, 65, and 75 Å resulted in peak detection wavelengths of 10.4, 12.8, and 13.3 μm with a cutoff wavelength of 13.5, 15, and 15.5 μm, respectively. The measured peak and cutoff wavelengths match those predicted by eight band theoretical analysis. Measured dark currents were lower than equivalent GaAs/AlGaAs samples. [reprint (PDF)] |
3. | High performance LWIR Type-II InAs/GaSb superlattice photodetectors and infrared focal plane array Y. Wei, A. Hood, A. Gin, V. Yazdanpanah, M. Razeghi and M. Tidrow SPIE Conference, Jose, CA, Vol. 5732, pp. 309-- January 22, 2005 ...[Visit Journal] We report on the demonstration of a focal plane array based on Type-II InAs-GaSb superlattices grown on n-type GaSb substrate with a 50% cutoff wavelength at 10 μm. The surface leakage occurring after flip-chip bonding and underfill in the Type-II devices was suppressed using a double heterostructure design. The R0A of diodes passivated with SiO2 was 23 Ω·cm2 after underfill. A focal plane array hybridized to an Indigo readout integrated circuit demonstrated a noise equivalent temperature difference of 33 mK at 81 K, with an integration time of 0.23 ms. [reprint (PDF)] |
3. | Growth and Characterization of Type-II Non-Equilibrium Photovoltaic Detectors for Long Wavelength Infrared Range H. Mohseni, J. Wojkowski, A. Tahraoui, M. Razeghi, G. Brown and W. Mitche SPIE Conference, San Jose, CA, -- January 26, 2000 ...[Visit Journal] Growth and characterization of type-II detectors for mid-IR wavelength range is presented. The device has a p-i-n structure is designed to operate in the non-equilibrium mode with low tunneling current. The active layer is a short period InAs/GaSb superlattice. Wider bandgap p-type AlSb and n-type InAs layers are used to facilitate the extraction of both electronics and holes from the active layer for the first time. The performance of these devices were compared to the performance of devices grown at the same condition, but without the AlSb barrier layers. The processed devices with the AlSb barrier show a peak responsivity of about 1.2 A/W with Johnson noise limited detectivity of 1.1 X 1011 cm·Hz½/W at 8 μm at 80 K at zero bias. The details of the modeling, growth, and characterizations will be presented. [reprint (PDF)] |
3. | Pulsed metal-organic chemical vapor deposition of high quality AlN/GaN superlattices for near-infrared intersubband transitions C. Bayram, N. Pere-Laperne, R. McClintock, B. Fain and M. Razeghi Applied Physics Letters, Vol. 94, No. 12, p. 121902-1-- March 23, 2009 ...[Visit Journal] A pulsed metal-organic chemical vapor deposition technique is developed for the growth of high-quality AlN/GaN superlattices (SLs) with intersubband (ISB) transitions at optical communications wavelengths. Tunability of the AlN and GaN layers is demonstrated. Indium is shown to improve SL surface and structural quality. Capping thickness is shown to be crucial for ISB transition characteristics. Effects of barrier- and well-doping on the ISB absorption are reported. [reprint (PDF)] |
3. | Determination of of Band Gap Energy of Al1-xInxN Grown by Metal Organic Chemical Vapor Deposition in the High Al Composition Regime K.S. Kim, A. Saxler, P. Kung, M. Razeghi, and K.Y. Lim Applied Physics Letters 71 (6)-- August 11, 1997 ...[Visit Journal] Ternary AlInN was grown by metal–organic chemical-vapor deposition in the high Al composition regime. The band-gap energy of AlInN ternary was measured by optical absorption spectroscopy at room temperature. The band-gap energy of Al0.92In0.08N is 5.26 eV. The potential application of AlInN as a barrier material for GaN is also discussed. [reprint (PDF)] |
3. | Crack-free AlGaN for solar-blind focal plane arrays through reduced area expitaxy E. Cicek, R. McClintock, Z. Vashaei, Y. Zhang, S. Gautier, C.Y. Cho and M. Razeghi Applied Physics Letters, Vol. 102, No. 05, p. 051102-1-- February 4, 2013 ...[Visit Journal] We report on crack reduction for solar-blind ultraviolet detectors via the use of a reduced area epitaxy (RAE) method to regrow on patterned AlN templates. With the RAE method, a pre-deposited AlN template is patterned into isolated mesas in order to reduce the formation of cracks in the subsequently grown high Al-content AlxGa1−xN structure. By restricting the lateral dimensions of the epitaxial growth area, the biaxial strain is relaxed by the edges of the patterned squares, which resulted in ∼97% of the pixels being crack-free. After successful implementation of RAE method, we studied the optical characteristics, the external quantum efficiency, and responsivity of average pixel-sized detectors of the patterned sample increased from 38% and 86.2 mA/W to 57% and 129.4 mA/W, respectively, as the reverse bias is increased from 0 V to 5 V. Finally, we discussed the possibility of extending this approach for focal plane array, where crack-free large area material is necessary for high quality imaging. [reprint (PDF)] |
3. | Background limited performance of long wavelength infrared focal plane arrays fabricated from M-structure InAs-GaSb superlattices P.Y. Delaunay, B.M. Nguyen, D. Hoffman, E.K. Huang, and M. Razeghi IEEE Journal of Quantum Electronics, Vol. 45, No. 2, p. 157-162.-- February 1, 2009 ...[Visit Journal] The recent introduction of a M-structure design improved both the dark current and R0A performances of Type-II InAs-GaSb photodiodes. A focal plane array fabricated with this design was characterized at 81 K. The dark current of individual pixels was measured between 1.1 and 1.6 nA, 7 times lower than previous superlattice FPAs. This led to a higher dynamic range and longer integration times. The quantum efficiency of detectors without antireflective coating was 74%. The noise equivalent temperature difference reached 23 mK, limited only by the performance of the testing system and the read out integrated circuit. Background limited performances were demonstrated at 81 K for a 300 K background. [reprint (PDF)] |
3. | High-performance bias-selectable dual-band mid-/long-wavelength infrared photodetectors and focal plane arrays based on InAs/GaSb Type-II superlattices M. Razeghi; A. Haddadi; A.M. Hoang; G. Chen; S. Ramezani-Darvish; P. Bijjam Proc. SPIE 8704, Infrared Technology and Applications XXXIX, 87040S (June 11, 2013)-- June 11, 2013 ...[Visit Journal] We report a bias selectable dual-band mid-wave infrared (MWIR) and long-wave infrared (LWIR) co-located detector with 3 μm active region thickness per channel that is highly selective and can perform under high operating temperatures for the MWIR band. Under back-side illumination, a temperature evolution study of the MWIR detector's electro-optical performance found the 300 K background-limit with 2π field-of-view to be achieved below operating temperatures of 160 K, at which the temperature's 50% cutoff wavelength was 5.2 μm. The measured current reached the system limit of 0.1 pA at 110 K for 30 μm pixel-sized diodes. At 77 K, where the LWIR channel operated with a 50% cutoff wavelength at 11.2 μm, an LWIR selectivity of ∼17% was achieved in the MWIR wave band between 3 and 4.7 μm, making the detector highly selective. [reprint (PDF)] |
3. | Surface leakage investigation via gated type-II InAs/GaSb long-wavelength infrared photodetectors G. Chen, E.K. Huang, A.M. Hoang, S. Bogdanov, S.R. Darvish, and M. Razeghi Applied Physics Letters, Vol. 101, No. 21, p. 213501-1-- November 19, 2012 ...[Visit Journal] By using gating technique, surface leakage generated by SiO2 passivation in long-wavelength infrared type-II superlattice photodetector is suppressed, and different surface leakage mechanisms are disclosed. By reducing the SiO2 passivation layer thickness, the saturated gated bias is reduced to −4.5 V. At 77 K, dark current densities of gated devices are reduced by more than 2 orders of magnitude, with 3071 Ω·cm² differential-resistance-area product at −100 mV. With quantum efficiency of 50%, the 11 μm 50% cut-off gated photodiode has a specific detectivity of 7 × 1011 Jones, and the detectivity stays above 2 × 1011 Jones from 0 to −500 mV operation bias. [reprint (PDF)] |
Page 5 of 28: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 >> Next (676 Items)
|