Page 4 of 23:  Prev << 1 2 3 4  5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23  >> Next  (575 Items)

6.  High-performance, continuous-wave quantum-cascade lasers operating up to 85° C at λ ~ 8.8 μm
J.S. Yu, S. Slivken, A. Evans, and M. Razeghi
Applied Physics A: Materials Science & Processing, Vo. 93, No. 2, p. 405-408-- November 1, 2008 ...[Visit Journal]
High-temperature, high-power, and continuous-wave (CW) operation of quantum-cascade lasers with 35 active/injector stages at λ∼8.85 μm above room temperature is achieved without using a buried heterostructure. At this long wavelength, the use of a wider ridge waveguide in an epilayer-down bonding scheme leads to a superior performance of the laser. For a high-reflectivity-coated 21 μm×3 mm laser, the output power of 237 mW and the threshold current density of 1.44 kA·cm-2 at 298 K under CW mode are obtained with a maximum wall-plug efficiency of 1.7%. Further improvements were observed by using a 4-mm-long cavity. The device exhibits 294 mW of output power at 298 K and it operates at a high temperature, even up to 358 K (85°C). The full widths at half-maximum of the laser beam in CW operation for the parallel and the perpendicular far-field patterns are 25°and 63°, respectively. [reprint (PDF)]
 
6.  Band edge tunability of M-structure for heterojunction design in Sb based Type-II superlattice photodiodes
B.M. Nguyen, D. Hoffman, P.Y. Delaunay, E.K. Huang, M. Razeghi, and J. Pellegrino
Applied Physics Letters, Vol. 93, No. 16, p. 163502-1-- October 20, 2008 ...[Visit Journal]
We present theoretically and experimentally the effect of the band discontinuity in Type-II misaligned InAs/GaSb superlattice heterodiodes. Calculations using the empirical tight binding method have shown the great flexibility in tuning the energy levels of the band edge in M-structure superlattice as compared to the standard InAs/GaSb superlattice. Through the experimental realization of several p-pi-M-n photodiodes, the band discontinuity alignment between the standard binary-binary superlattice and the M-structured superlattice was investigated via optical characterization. The agreement between the theoretical predictions and the experimental measurement confirms the capability of controlling the M-structure band edges and suggests a way to exploit this advantage for the realization of heterostructures containing an M-structured superlattice without bias dependent operation. [reprint (PDF)]
 
6.  InGaAs/InGaP Quantum-Dot Photodetector with a High Detectivity
H. Lim, S. Tsao, M. Taguchi, W. Zhang, A. Quivy and M. Razeghi
SPIE Conference, San Jose, CA, Vol. 6127, pp. 61270N-- January 23, 2006 ...[Visit Journal]
Quantum-dot infrared photodetectors (QDIPs) have recently been considered as strong candidates for numerous applications such as night vision, space communication, gas analysis and medical diagnosis involving middle and long wavelength infrared (MWIR and LWIR respectively) operation. This is due to their unique properties arising from their 3-dimensional confinement potential that provides a discrete density of states. They are expected to outperform quantum-well infrared photodetectors (QWIPs) as a consequence of their natural sensitivity to normal incident radiation, their higher responsivity and their higher-temperature operation. So far, most of the QDIPs reported in the literature were based on the InAs/GaAs system and were grown by molecular beam epitaxy (MBE). Here, we report on the growth of a high detectivity InGaAs/InGaP QDIP grown on a GaAs substrate using low-pressure metalorganic chemical vapor deposition (MOCVD). [reprint (PDF)]
 
6.  Effect of sidewall surface recombination on the quantum efficiency in a Y2O3 passivated gated type-II InAs/GaSb long-infrared photodetector array
G. Chen, A. M. Hoang, S. Bogdanov, A. Haddadi, S. R. Darvish, and M. Razeghi
Appl. Phys. Lett. 103, 223501 (2013)-- November 25, 2013 ...[Visit Journal]
Y2O3 was applied to passivate a long-wavelength infrared type-II superlattice gated photodetector array with 50% cut-off wavelength at 11 μm, resulting in a saturated gate bias that was 3 times lower than in a SiO2 passivated array. Besides effectively suppressing surface leakage, gating technique exhibited its ability to enhance the quantum efficiency of 100 × 100 μm size mesa from 51% to 57% by suppressing sidewall surface recombination. At 77 K, the gated photodetector showed dark current density and resistance-area product at −300 mV of 2.5 × 10−5 A/cm² and 1.3 × 104 Ω·cm², respectively, and a specific detectivity of 1.4 × 1012 Jones. [reprint (PDF)]
 
6.  Type-II superlattice dual-band LWIR imager with M-barrier and Fabry-Perot resonance
E.K. Huang, A. Haddadi, G. Chen, B.M. Nguyen, M.A. Hoang, R. McClintock, M. Stegall, and M. Razeghi
OSA Optics Letters, Vol. 36, No. 13, p. 2560-2562-- July 1, 2011 ...[Visit Journal]
We report a high performance long-wavelength IR dual-band imager based on type-II superlattices with 100% cutoff wavelengths at 9.5 μm (blue channel) and 13 μm (red channel). Test pixels reveal background-limited behavior with specific detectivities as high as ∼5×1011 Jones at 7.9 μm in the blue channel and ∼1×1011 Jones at 10.2 μm in the red channel at 77 K. These performances were attributed to low dark currents thanks to the M-barrier and Fabry–Perot enhanced quantum efficiencies despite using thin 2 μm absorbing regions. In the imager, the high signal-to-noise ratio contributed to median noise equivalent temperature differences of ∼20 mK for both channels with integration times on the order of 0.5 ms, making it suitable for high speed applications. [reprint (PDF)]
 
6.  Background limited performance of long wavelength infrared focal plane arrays fabricated from M-structure InAs/GaSb superlattices
P.Y. Delaunay, B.M. Nguyen, D. Hoffman, E.K. Huang, P. Manurkar, S. Bogdanov and M. Razeghi
SPIE Proceedings, San Jose, CA Volume 7222-0W-- January 26, 2009 ...[Visit Journal]
Recent advances in the design and fabrication of Type-II InAs/GaSb superlattices allowed the realization of high performance long wavelength infrared focal plane arrays. The introduction of an Mstructure barrier between the n-type contact and the pi active region reduced the tunneling component of the dark current. The M-structure design improved the noise performance and the dynamic range of FPAs at low temperatures. At 81K, the NEDT of the focal plane array was 23 mK. The noise of the camera was dominated by the noise component due to the read out integrated circuit. At 8 µm, the median quantum efficiency of the detectors was 71%, mainly limited by the reflections on the backside of the array. [reprint (PDF)]
 
6.  Inductively coupled plasma etching and processing techniques for type-II InAs/GaSb superlattices infrared detectors toward high fill factor focal plane arrays
E.K. Huang, B.M. Nguyen, D. Hoffman, P.Y. Delaunay and M. Razeghi
SPIE Proceedings, San Jose, CA Volume 7222-0Z-- January 26, 2009 ...[Visit Journal]
A challenge for Type-II InAs/GaSb superlattice (T2SL) photodetectors is to achieve high fill factor, high aspect ratio etching for third generation focal plane arrays (FPAs). Initially, we compare the morphological and electrical results of single element T2SL photodiodes after BCl3/Ar inductively coupled plasma (ICP) and electron cyclotron resonance (ECR) dry etching. Using a Si3N4 hard mask, ICP-etched structures exemplify greater sidewall verticality and smoothness, which are essential toward the realization of high fill factor FPAs. ICP-etched single element devices with SiO2 passivation that are 9.3 µm in cutoff wavelength achieved vertical sidewalls of 7.7 µm in depth with a resistance area product at zero bias of greater than 1,000 Ω·cm2 and maximum differential resistance in excess of 10,000 Ω·cm2 at 77 K. By only modifying the etching technique in the fabrication steps, the ICP-etched photodiodes showed an order of magnitude decrease in their dark current densities in comparison to the ECR-etched devices. Finally, high aspect ratio etching is demonstrated on mutli-element arrays with 3 µm-wide trenches that are 11 µm deep. [reprint (PDF)]
 
6.  High performance bias-selectable three-color Short-wave/Mid-wave/Long-wave Infrared Photodetectors based on Type-II InAs/GaSb/AlSb superlattices
Anh Minh Hoang, Arash Dehzangi, Sourav Adhikary, & Manijeh Razeghi
Nature Scientific Reports 6, Article number: 24144 (2016)-- April 7, 2016 ...[Visit Journal]
We propose a new approach in device architecture to realize bias-selectable three-color shortwave-midwave-longwave infrared photodetectors based on InAs/GaSb/AlSb type-II superlattices. The effect of conduction band off-set and different doping levels between two absorption layers are employed to control the turn-on voltage for individual channels. The optimization of these parameters leads to a successful separation of operation regimes; we demonstrate experimentally three-color photodiodes without using additional terminal contacts. As the applied bias voltage varies, the photodiodes exhibit sequentially the behavior of three different colors, corresponding to the bandgap of three absorbers. Well defined cut-offs and high quantum efficiency in each channel are achieved. Such all-in-one devices also provide the versatility of working as single or dual-band photodetectors at high operating temperature. With this design, by retaining the simplicity in device fabrication, this demonstration opens the prospect for three-color infrared imaging. [reprint (PDF)]
 
6.  Transport and Photodetection in Self-Assembled Semiconductor Quantum Dots
M. Razeghi, H. Lim, S. Tsao, J. Szafraniec, W. Zhang, K. Mi, and B. Movaghar
Nanotechnology, 16-- January 7, 2005 ...[Visit Journal]
A great step forward in science and technology was made when it was discovered that lattice mismatch can be used to grow highly ordered, artificial atom-like structures called self-assembled quantum dots. Several groups have in the meantime successfully demonstrated useful infrared photodetection devices which are based on this technology. The new physics is fascinating, and there is no doubt that many new applications will be found when we have developed a better understanding of the underlying physical processes, and in particular when we have learned how to integrate the exciting new developments made in nanoscopic addressing and molecular self-assembly methods with semiconducting dots. In this paper we examine the scientific and technical questions encountered in current state of the art infrared detector technology and suggest ways of overcoming these difficulties. Promoting simple physical pictures, we focus in particular on the problem of high temperature detector operation and discuss the origin of dark current, noise, and photoresponse. [reprint (PDF)]
 
5.  Thermal analysis of buried heterostructure quantum cascade lasers for long-wavelength infrared emission using 2D anisotropic heat-dissipation model
H.K. Lee, K.S. Chung, J.S. Yu and M. Razeghi
Physica Status Solidi (a), Vol. 206, p. 356-362-- February 1, 2009 ...[Visit Journal]
We have theoretically investigated and compared the thermal characteristics of 10.6 μm InGaAs/InAlAs/InP buried heterostructure (BH) quantum cascade lasers (QCLs) with different heat-sinking configurations by a steady-state heat-transfer analysis. The heat-source densities were obtained from laser threshold power densities measured experimentally under room-temperature continuous-wave mode. The two-dimensional anisotropic heat-dissipation model was used to calculate the temperature distribution, heat flux, and thermal conductance (Gth) inside the device. For good thermal characteristics, the QCLs in the long-wavelength infrared region require the relatively narrow BH structure in combination with epilayer-down bonding due to thick active core/cladding layers and high insulator losses. The single-ridge BH structure results in slightly higher thermal conductance by 2-4% than the double-channel (DC) ridge BH structure. For W = 12 m with 5 μm thick electroplated Au, the single-ridge BH laser with epilayer-down bonding exhibited the highest Gth value of 201.9 W/K cm2, i.e. increased by nearly 36% with respect to the epilayer-up bonded DC ridge waveguide laser. This value is improved by 50% and 62% with respect to the single-ridge BH laser and DC ridge waveguide laser with W = 20 μm in the epilayer-up bonding scheme, respectively. [reprint (PDF)]
 
5.  High-power high-wall plug efficiency mid-infrared quantum cascade lasers based on InP/GaInAs/InAlAs material system
M. Razeghi
SPIE Proceedings, San Jose, CA Volume 7230-11-- January 26, 2009 ...[Visit Journal]
The latest result at the Center for Quantum Devices about high power, high wall plug efficiency, mid-infrared quantum cascade lasers (QCLs) is presented. At an emitting wavelength of 4.8 µm, an output power of 3.4 W and a wall plug efficiency of 16.5% are demonstrated from a single device operating in continuous wave at room temperature. At a longer wavelength of 10.2 µm, average power as high as 2.2 W is demonstrated at room temperature. Gas-source molecular beam epitaxy is used to grow the QCL core in an InP/GaInAs/InAlAs material system. Fe-doped semiinsulating regrowth is performed by metal organic chemical vapor deposition for efficient heat removal and low waveguide loss. This accomplishment marks an important milestone in the development of high performance midinfrared QCLs. [reprint (PDF)]
 
5.  Room temperature single-mode terahertz sources based on intracavity difference-frequency generation in quantum cascade lasers
Q.Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai and M. Razeghi
Applied Physics Letters, Vol. 99, Issue 13, p. 131106-1-- September 26, 2011 ...[Visit Journal]
We demonstrate room temperature single-mode THz emission at 4 THz based on intracavity difference-frequency generation from mid-infrared dual-wavelength quantum cascade lasers. An integrated dual-period distributed feedback grating is defined on the cap layer to purify both mid-infrared pumping wavelengths and in turn the THz spectra. Single mode operation of the pumping wavelengths results in a single-mode THz operation with a narrow linewidth of 6.6 GHz. A maximum THz power of 8.5 μW with a power conversion efficiency of 10 μW/W² is obtained at room temperature. [reprint (PDF)]
 
5.  High brightness angled cavity quantum cascade lasers
D. Heydari, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi
Applied Physics Letters 106, 091105 (2015)-- March 6, 2015 ...[Visit Journal]
A quantum cascade laser (QCL) with an output power of 203 W is demonstrated in pulsed mode at 283 K with an angled cavity. The device has a ridge width of 300 μm, a cavity length of 5.8 mm, and a tilt angle of 12°. The back facet is high reflection coated, and the front facet is anti-reflection coated. The emitting wavelength is around 4.8 μm. In distinct contrast to a straight cavity broad area QCL, the lateral far field is single lobed with a divergence angle of only 3°. An ultrahigh brightness value of 156 MW cm²·sr-1 is obtained, which marks the brightest QCL to date. [reprint (PDF)]
 
5.  Advances in antimonide-based Type-II superlattices for infrared detection and imaging at center for quantum devices
M. Razeghi, A. Haddadi, A.M. Hoang, E.K. Huang, G. Chen, S. Bogdanov, S.R. Darvish, F. Callewaert, R. McClintock
Infrared Physics & Technology, Volume 59, Pages 41-52 (2013)-- July 1, 2013 ...[Visit Journal]
Type-II InAs/GaSb superlattices (T2SLs), a system of multi-interacting quantum wells, was introduced by Nobel Laureate L. Esaki in the 1970s. Since then, this material system has drawn a lot of attention especially for infrared detection. In recent years, T2SL material system has experienced incredible improvements in material quality, device structure designs and device fabrication process which elevated the performances of T2SL-based photo-detectors to a comparable level to the state-of-the-art material systems for infrared detection such as Mercury Cadmium Telluride (MCT). In this paper, we will present the current status of T2SL-based photo-detectors and focal plane arrays for imaging in different infrared regions, from SWIR to VLWIR, and the future outlook of this material system. [reprint (PDF)]
 
5.  Growth and Characterization of Long-Wavelength Infrared Type-II Superlattice Photodiodes on a 3-in GaSb Wafer
B.M. Nguyen, G. Chen, M.A. Hoang, and M. Razeghi
IEEE Journal of Quantum Electronics (JQE), Vol. 47, No. 5, May 2011, p. 686-690-- May 11, 2011 ...[Visit Journal]
We report the molecular beam epitaxial growth and characterization of high performance Type-II superlattice photodiodes on 3” GaSb substrates for long wavelength infrared detection. A 7.3 micron thick device structure shows excellent structural homogeneity via atomic force microscopy and x-ray diffraction characterization. Optical and electrical measurements of photodiodes reveal not only the uniformity of the Type-II superlattice material but also of the fabrication process. Across the wafer, at 77 K, photodiodes with a 50% cut-off wavelength of 11 micron exhibit more than 45% quantum efficiency, and a dark current density of 1.0 x 10-4 A/cm² at 50 mV, resulting in a specific detectivity of 6x1011 cm·Hz1/2/W. [reprint (PDF)]
 
5.  Thermal imaging based on high-performance InAs/InP quantum-dot infrared photodetector operating at high temperature
M. Razeghi; H. Lim; S. Tsao; H. Seo; W. Zhang
Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS.15-16:[4382251] (2007).-- October 21, 2007 ...[Visit Journal]
We report a room temperature operating and high-performance InAs quantum-dot infrared photodetector on InP substrate and thermal imaging of 320times256 focal plane array based on this device up to 200 K. [reprint (PDF)]
 
5.  High performance antimony based type-II superlattice photodiodes on GaAs substrates
B.M. Nguyen, D. Hoffman, E.K. Huang, P.Y. Delaunay, and M. Razeghi
SPIE Porceedings, Vol. 7298, Orlando, FL 2009, p. 72981T-- April 13, 2009 ...[Visit Journal]
In recent years, Type-II InAs/GaSb superlattices grown on GaSb substrate have achieved significant advances in both structural design and material growth, making Type-II superlattice infrared detector a rival competitor to the state-of-the-art MCT technology. However, the limited size and strong infrared absorption of GaSb substrates prevent large format type-II superlattice infrared imagers from being realized. In this work, we demonstrate type-II superlattices grown on GaAs substrates, which is a significant step toward third generation infrared imaging at low cost. The device performances of Type-II superalttice photodetectors grown on these two substrates are compared. [reprint (PDF)]
 
5.  High Detectivity GaInAs/InP Quantum Well Infrared Photodetectors Grown on Si Substrates
J. Jiang, C. Jelen, M. Razeghi and G.J. Brown
IEEE Photonics Technology Letters 14 (3)-- March 1, 2002 ...[Visit Journal]
In this letter, we report an improvement in the growth and the device performance of GaInAs-InP quantum well infrared photodetectors grown on Si substrates. Material growth techniques, like low-temperature nucleation layers and thick buffer layers were used to grow InP on Si. An in situ thermal cycle annealing technique was used to reduce the threading dislocation density in the InP-on-Si. Detector dark current was reduced 2 orders of magnitude by this method. Record high detectivity of 2.3 × 109 cm·Hz½·W-1 was obtained for QWIP-on-Si detectors in the 7-9 μm range at 77 K [reprint (PDF)]
 
5.  Cubic Phase GaN on Nano-grooved Si (100) via Maskless Selective Area Epitaxy
Bayram, C., Ott, J. A., Shiu, K.-T., Cheng, C.-W., Zhu, Y., Kim, J., Razeghi, M. and Sadana, D. K.
Adv. Funct. Mater. 2014-- April 1, 2014 ...[Visit Journal]
A method of forming cubic phase (zinc blende) GaN (referred as c-GaN) on a CMOS-compatible on-axis Si (100) substrate is reported. Conventional GaN materials are hexagonal phase (wurtzite) (referred as h-GaN) and possess very high polarization fields (∼MV/cm) along the common growth direction of <0001>. Such large polarization fields lead to undesired shifts (e.g., wavelength and current) in the performance of photonic and vertical transport electronic devices. The cubic phase of GaN materials is polarization-free along the common growth direction of <001>, however, this phase is thermodynamically unstable, requiring low-temperature deposition conditions and unconventional substrates (e.g., GaAs). Here, novel nano-groove patterning and maskless selective area epitaxy processes are employed to integrate thermodynamically stable, stress-free, and low-defectivity c-GaN on CMOS-compatible on-axis Si. These results suggest that epitaxial growth conditions and nano-groove pattern parameters are critical to obtain such high quality c-GaN. InGaN/GaN multi-quantum-well structures grown on c-GaN/Si (100) show strong room temperature luminescence in the visible spectrum, promising visible emitter applications for this technology. [reprint (PDF)]
 
5.  Demonstration of mid-infrared type-II InAs/GaSb superlattice photodiodes grown on GaAs substrate
B.M. Nguyen, D. Hoffman, E.K. Huang, S. Bogdanov, P.Y. Delaunay, M. Razeghi and M.Z. Tidrow
Applied Physics Letters, Vol. 94, No. 22-- June 8, 2009 ...[Visit Journal]
We report the growth and characterization of type-II InAs/GaSb superlattice photodiodes grown on a GaAs substrate. Through a low nucleation temperature and a reduced growth rate, a smooth GaSb surface was obtained on the GaAs substrate with clear atomic steps and low roughness morphology. On the top of the GaSb buffer, a p+-i-n+ type-II InAs/GaSb superlattice photodiode was grown with a designed cutoff wavelength of 4 μm. The detector exhibited a differential resistance at zero bias (R0A)in excess of 1600 Ω·cm2 and a quantum efficiency of 36.4% at 77 K, providing a specific detectivity of 6 X 1011 cm·Hz½/W and a background limited operating temperature of 100 K with a 300 K background. Uncooled detectors showed similar performance to those grown on GaSb substrates with a carrier lifetime of 110 ns and a detectivity of 6 X 108 cm·Hz½/W. [reprint (PDF)]
 
5.  Pulsed metalorganic chemical vapor deposition of high quality AlN/GaN superlattices for intersubband transitions
C. Bayram, B. Fain, N. Pere-Laperne, R. McClintock and M. Razeghi
SPIE Proceedings, San Jose, CA Volume 7222-12-- January 26, 2009 ...[Visit Journal]
A pulsed metalorganic chemical vapor deposition (MOCVD) technique, specifically designed for high quality AlN/GaN superlattices (SLs) is introduced. Optical quality and precise controllability over layer thicknesses are investigated. Indium is shown to improve interface and surface quality. An AlN/GaN SL designed for intersubband transition at a telecommunication wavelength of ~1.5 µm, is grown, and processed for intersubband (ISB) absorption measurements. Room temperature measurements show intersubband absorption centered at 1.49 µm. Minimal (n-type) silicon doping of the well is shown to be crucial for good ISB absorption characteristics. The potential to extend this technology into the far infrared and even the terahertz (THz) region is also discussed. [reprint (PDF)]
 
5.  Comprehensive study of blue and green multi-quantum-well light-emitting diodes grown on conventional and lateral epitaxial overgrowth GaN
C. Bayram, J.L. Pau, R. McClintock and M. Razeghi
Applied Physics B: Lasers and Optics, Vol. 95, p. 307-314-- November 29, 2008 ...[Visit Journal]
Growths of blue and green multi-quantum wells (MQWs) and light-emitting diodes (LEDs) are realized on lateral epitaxial overgrowth (LEO) GaN, and compared with identical structures grown on conventional GaN. Atomic force microscopy is used to confirm the significant reduction of dislocations in the wing region of our LEO samples before active-region growth. Differences between surface morphologies of blue and green MQWs are analyzed. These MQWs are integrated into LEDs. All devices show a blue shift in the electroluminescence (EL) peak and narrowing in EL spectra with increasing injection current, both characteristics attributed to the band-gap renormalization. Green LEDs show a larger EL peak shift and a broader EL spectrum due to larger piezoelectric field and more indium segregation in the MQWs, respectively. Blue LEDs on LEO GaN show a higher performance than those on conventional GaN; however, no performance difference is observed for green LEDs on LEO GaN versus conventional GaN. The performance of the green LEDs is shown to be primarily limited by the active layer growth quality. [reprint (PDF)]
 
5.  High operating temperature 320 x 256 middle-wavelength infrared focal plane array imaging based on an InAs/InGaAs/InAlAs/InP quantum dot infrared photodetector
S. Tsao, H. Lim, W. Zhang, and M. Razeghi
Applied Physics Letters, Vol. 90, No. 20, p. 201109-- May 14, 2007 ...[Visit Journal]
This letter reports a 320×256 middle-wavelength infrared focal plane array operating at temperatures up to 200 K based on an InAs quantum dot/InGaAs quantum well/InAlAs barrier detector grown on InP substrate by low pressure metal organic chemical vapor deposition. The device's low dark current density and the persistence of the photocurrent up to room temperature enabled the high temperature imaging. The focal plane array had a peak detection wavelength of 4 µm, a responsivity of 34 mA/W, a conversion efficiency of 1.1%, and a noise equivalent temperature difference of 344 mK at an operating temperature of 120 K. [reprint (PDF)]
 
5.  High-performance bias-selectable dual-band mid-/long-wavelength infrared photodetectors and focal plane arrays based on InAs/GaSb Type-II superlattices
M. Razeghi; A. Haddadi; A.M. Hoang; G. Chen; S. Ramezani-Darvish; P. Bijjam
Proc. SPIE 8704, Infrared Technology and Applications XXXIX, 87040S (June 11, 2013)-- June 11, 2013 ...[Visit Journal]
We report a bias selectable dual-band mid-wave infrared (MWIR) and long-wave infrared (LWIR) co-located detector with 3 μm active region thickness per channel that is highly selective and can perform under high operating temperatures for the MWIR band. Under back-side illumination, a temperature evolution study of the MWIR detector's electro-optical performance found the 300 K background-limit with 2π field-of-view to be achieved below operating temperatures of 160 K, at which the temperature's 50% cutoff wavelength was 5.2 μm. The measured current reached the system limit of 0.1 pA at 110 K for 30 μm pixel-sized diodes. At 77 K, where the LWIR channel operated with a 50% cutoff wavelength at 11.2 μm, an LWIR selectivity of ∼17% was achieved in the MWIR wave band between 3 and 4.7 μm, making the detector highly selective. [reprint (PDF)]
 
5.  GaN-based nanostructured photodetectors
J.L. Pau, C. Bayram, P. Giedraitis, R. McClintock, and M. Razeghi
SPIE Proceedings, San Jose, CA Volume 7222-14-- January 26, 2009 ...[Visit Journal]
The use of nanostructures in semiconductor technology leads to the observation of new phenomena in device physics. Further quantum and non-quantum effects arise from the reduction of device dimension to a nanometric scale. In nanopillars, quantum confinement regime is only revealed when the lateral dimensions are lower than 50 nm. For larger mesoscopic systems, quantum effects are not observable but surface states play a key role and make the properties of nanostructured devices depart from those found in conventional devices. In this work, we present the fabrication of GaN nanostructured metal-semiconductor-metal (MSM) and p-i-n photodiodes (PIN PDs) by e-beam lithography, as well as the investigation of their photoelectrical properties at room temperature. The nanopillar height and diameter are about 520 nm and 200 nm, respectively. MSMs present dark currents densities of 0.4 A/cm2 at ±100 V. A strong increase of the optical response with bias is observed, resulting in responsivities higher than 1 A/W. The relationship between this gain mechanism and surface states is discussed. PIN PDs yield peak responsivities (Rpeak) of 35 mA/W at -4 V and show an abnormal increase of the response (Rpeak > 100 A/W) under forward biases. [reprint (PDF)]
 

Page 4 of 23:  Prev << 1 2 3 4  5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23  >> Next  (575 Items)