Page 3 of 6:  Prev << 1 2 3  4 5 6  >> Next  (128 Items)

2.  Extended short-wavelength infrared nBn photodetectors based on type-II InAs/AlSb/GaSb superlattices with an AlAsSb/GaSb superlattice barrier
A. Haddadi, R. Chevallier, A. Dehzangi, and M. Razeghi
Applied Physics Letters 110, 101104-- March 8, 2017 ...[Visit Journal]
Extended short-wavelength infrared nBn photodetectors based on type-II InAs/AlSb/GaSb superlattices on GaSb substrate have been demonstrated. An AlAsSb/GaSb H-structure superlattice design was used as the large-bandgap electron-barrier in these photodetectors. The photodetector is designed to have a 100% cut-off wavelength of ∼2.8 μm at 300 K. The photodetector exhibited a room-temperature (300 K) peak responsivity of 0.65 A/W at 1.9 μm, corresponding to a quantum efficiency of 41% at zero bias under front-side illumination, without any anti-reflection coating. With an R × A of 78 Ω·cm² and a dark current density of 8 × 10−3 A/cm² under −400 mV applied bias at 300 K, the nBn photodetector exhibited a specific detectivity of 1.51 × 1010 Jones. At 150 K, the photodetector exhibited a dark current density of 9.5 × 10−9 A/cm² and a quantum efficiency of 50%, resulting in a detectivity of 1.12 × 1013 Jones. [reprint (PDF)]
 
2.  InAs/InAs1-xSbx type-II superlattices for high performance long wavelength infrared detection
A. Haddadi , G. Chen , R. Chevallier , A. M. Hoang , and M. Razeghi
Appl. Phys. Lett. 105, 121104 (2014)-- September 22, 2014 ...[Visit Journal]
High performance long-wavelength infrared nBn photodetectors based on InAs/InAs1−xSbx type-II superlattices on GaSb substrate have been demonstrated. The photodetector's 50% cut-off wavelength was ∼10 μm at 77 K. The photodetector with a 6 μm-thick absorption region exhibited a peak responsivity of 4.47 A/W at 7.9 μm, corresponding to a quantum efficiency of 54% at −90 mV bias voltage under front-side illumination and without any anti-reflection coating. With an R × A of 119 Ω·cm² and a dark current density of 4.4 × 10−4 A/cm² under −90 mV applied bias at 77 K, the photodetector exhibited a specific detectivity of 2.8 × 1011 cm·Hz1/2·W-1. [reprint (PDF)]
 
1.  Demonstration of long wavelength infrared Type-II InAs/InAs1-xSbx superlattices photodiodes on GaSb substrate grown by metalorganic chemical vapor deposition
D. H. Wu, A. Dehzangi, Y. Y. Zhang, M. Razeghi
Applied Physics Letters 112, 241103-- June 12, 2018 ...[Visit Journal]
We report the growth and characterization of long wavelength infrared type-II InAs/InAs1−xSbx superlattices photodiodes with a 50% cut-off wavelength at 8.0 μm on GaSb substrate grown by metalorganic chemical vapor deposition. At 77 K, the photodiodes exhibited a differential resistance at zero bias (R0A) 8.0 Ω·cm2, peak responsivity of 1.26 A/W corresponding to a quantum efficiency of 21%. A specific detectivity of 5.4×1010 cm·Hz1/2/W was achieved at 7.5 μm. [reprint (PDF)]
 
1.  High performance mid-wavelength quantum dot infrared photodetectors for focal plane arrays
M. Razeghi, H. Lim, S. Tsao, M. Taguchi, W. Zhang and A.A. Quivy
SPIE Conference, San Diego, CA, Vol. 6297, pp. 62970C-- August 13, 2006 ...[Visit Journal]
Quantum dot infrared photodetectors (QDIPs) have recently emerged as promising candidates for detection in the middle wavelength infrared (MWIR) and long wavelength infrared (LWIR) ranges. Here, we report our recent results for mid-wavelength QDIPs grown by low-pressure metalorganic chemical vapor deposition. Three monolayer of In0.68Ga0.32As self-assembled via the Stranski-Krastanov growth mode and formed lens-shaped InGaAs quantum dots with a density around 3×1010 cm-2. The peak responsivity at 77 K was measured to be 3.4 A/W at a bias of -1.9 V with 4.7 µm peak detection wavelength. Focal plane arrays (FPAs) based on these devices have been developed. The preliminary result of FPA imaging is presented. [reprint (PDF)]
 
1.  Sb-based infrared materials and photodetectors for the near room temperature applications
J.D. Kim, E. Michel, H. Mohseni, J. Wojkowski, J.J. Lee and M. Razeghi
SPIE Conference, San Jose, CA, Vol. 2999, pp. 55-- February 12, 1997 ...[Visit Journal]
We report on the growth of InSb, InAsSb, and InTlSb alloys for infrared photodetector applications. The fabrication and characterization of photodetectors based on these materials are also reported. Both photoconductive and photovoltaic devices are investigated. The materials and detector structures were grown on (100) and (111)B semi-insulating GaAs and GaAs coated Si substrates by low pressure metalorganic chemical vapor deposition and solid source molecular beam epitaxy. Photoconductive detectors fabricated from InAsSb and InTlSb have been operated in the temperature range from 77 K to 300 K. The material parameters for photovoltaic device structures have been optimized through theoretical calculations based on fundamental mechanisms. InSb p-i-n photodiodes with 77 K peak responsivities approximately 103 V/W were grown on Si and (111) GaAs substrates. An InAsSb photovoltaic detector with a composition of x equals 0.85 showed photoresponse up to 13 micrometers at 300 K with a peak responsivity of 9.13 X 10-2 V/W at 8 micrometers . The RoA product of InAsSb detectors has been theoretically and experimentally analyzed. [reprint (PDF)]
 
1.  MOCVD grown β-Ga2O3 metal-oxide-semiconductor field effect transistors on sapphire
Ji-Hyeon Park , Ryan McClintock, Alexandre Jaud, Arash Dehzangi , Manijeh Razeghi
Applied Physics Express 12, 095503-- August 28, 2019 ...[Visit Journal]
We fabricated β-Ga2O3:Si metal-oxide field-effect transistors (MOSFETs) on c-plane sapphire substrates which typically showed maximum drain current of 100 mA·mm−1. β-Ga2O3:Si thin films were realized on c-plane sapphire substrates through a combination of metalorganic chemical vapor deposition and post-annealing. The MOSFET device presented excellent on/off drain current ratio of ∼1011 with very low gate leakage current, sharp pinch off behavior, and a breakdown voltage of 400 V at VG = −40 V. The growth and fabrication of β-Ga2O3:Si MOSFETs on c-plane sapphire is valuable to its demonstration of the great potential for future high-power electronic devices. [reprint (PDF)]
 
1.  Dark current reduction in microjunction-based double electron barrier type-II InAs/InAsSb superlattice long-wavelength infrared photodetectors
Romain Chevallier, Abbas Haddadi, & Manijeh Razeghi
Scientific Reports 7, Article number: 12617-- October 3, 2017 ...[Visit Journal]
Microjunction InAs/InAsSb type-II superlattice-based long-wavelength infrared photodetectors with reduced dark current density were demonstrated. A double electron barrier design was employed to reduce both bulk and surface dark currents. The photodetectors exhibited low surface leakage after passivation with SiO2, allowing the use of very small size features without degradation of the dark current. Fabricating microjunction photodetectors (25 × 25 µm² diodes with 10 × 10 µm² microjunctions) in combination with the double electron barrier design results in a dark current density of 6.3 × 10−6 A/cm² at 77 K. The device has an 8 µm cut-off wavelength at 77 K and exhibits a quantum efficiency of 31% for a 2 µm-thick absorption region, which results in a specific detectivity value of 1.2 × 1012 cm·Hz½/W. [reprint (PDF)]
 
1.  High-performance, continuous-wave operation of λ ~ 4.6 μm quantum-cascade lasers above room temperature
J.S. Yu, S. Slivken, A. Evans and M. Razeghi
IEEE Journal of Quantum Electronics, Vol. 44, No. 8, p. 747-754-- August 1, 2008 ...[Visit Journal]
We report the high-performance continuous-wave (CW) operation of 10-μm-wide quantum-cascade lasers (QCLs) emitting at λ ~ 4.6 μm, based on the GaInAs–AlInAs material without regrowth, in epilayer-up and -down bonding configurations. The operational characteristics of QCLs such as the maximum average power, peak output power, CW output power, and maximum CW operating temperature are investigated, depending on cavity length. Also, important device parameters, i.e., the waveguide loss, the transparency current density, the modal gain, and the internal quantum efficiency, are calculated from length-dependent results. For a high-reflectivity (HR) coated 4-mm-long cavity with epilayer-up bonding, the highest maximum average output power of 633 mW is measured at 65% duty cycle, with 469 mW still observed at 100%. The laser exhibits the maximum wall-plug efficiencies of 8.6% and 3.1% at 298 K, in pulsed and CW operatons, respectively. From 298 to 393 K, the temperature dependent threshold current density in pulsed operation shows a high characteristic temperature of 200 K. The use of an epilayer-down bonding further improves the device performance. A CW output power of 685 mW at 288 K is achieved for the 4-micron-long cavity. At 298 K, the output power of 590 mW, threshold current density of 1.52 kA / cm2, and maximum wall-plug efficiency of 3.73% are obtained under CW mode, operating up to 363 K (90 °C). For HR coated 3-micron-long cavities, laser characteristics across the same processed wafer show a good uniformity across the area of 2 x 1 cm2, giving similar output powers, threshold current densities, and emission wavelengths. The CW beam full-width at half-maximum of far-field patterns are 25 degree and 46 degree for the parallel and the perpendicular directions, respectively. [reprint (PDF)]
 
1.  InAs quantum dot infrared photodetectors on InP by MOCVD
W. Zhang, H. Lim, M. Taguchi, A. Quivy and M. Razeghi
SPIE Conference, San Jose, CA, Vol. 6127, pp. 61270M -- January 23, 2006 ...[Visit Journal]
We report our recent results of InAs quantum dots grown on InP substrate by low-pressure metalorganic chemical vapor deposition (MOCVD) for the application of quantum dot infrared photodetector (QDIP). We have previously demonstrated the first InP-based QDIP with a peak detection wavelength at 6.4 µm and a detectivity of 1010 cm·Hz½/W at 77K. Here we show our recent work toward shifting the detection wavelength to the 3-5 µm middlewavelength infrared (MWIR) range. The dependence of the quantum dot on the growth conditions is studied by atomic force microscopy, photoluminescence and Fourier transform infrared spectroscopy. Possible ways to increase the quantum efficiency of QDIPs are discussed. [reprint (PDF)]
 
1.  High differential resistance type-II InAs/GaSb superlattice photodiodes for the long-wavelength infrared
A. Hood, D. Hoffman, B.M. Nguyen, P.Y. Delaunay, E. Michel and M. Razeghi
Applied Physics Letters, 89 (9)-- August 28, 2006 ...[Visit Journal]
Type-II InAs/GaSb superlattice photodiodes with a 50% cutoff wavelength ranging from 11 to 13 μm are presented. Optimization of diffusion limited photodiodes provided superlattice structures for improved injection efficiency in direct injection hybrid focal plane array applications. [reprint (PDF)]
 
1.  Low frequency noise in 1024 x 1024 long wavelength infrared focal plane array base on Type-II InAs/GaSb superlattice
A. Haddadi, S.R. Darvish, G. Chen, A.M. Hoang, B.M. Nguyen and M. Razeghi
SPIE Proceedings, Vol. 8268, p. 82680X-- January 22, 2012 ...[Visit Journal]
Recently, the type-II InAs/GaSb superlattice (T2SL) material platform is considered as a potential alternative for HgCdTe technology in long wavelength infrared (LWIR) imaging. This is due to the incredible growth in the understanding of its material properties and improvement of device processing which leads to design and fabrication of better devices. In this paper, we report electrical low frequency noise measurement on a high performance type-II InAs/GaSb superlattice 1024×1024 LWIR focal plane array. [reprint (PDF)]
 
1.  Background–limited long wavelength infrared InAs/InAsSb type-II superlattice-based photodetectors operating at 110 K
Abbas Haddadi, Arash Dehzangi, Sourav Adhikary, Romain Chevallier, and Manijeh Razeghi
APL Materials 5, 035502 -- February 13, 2017 ...[Visit Journal]
We report the demonstration of high-performance long-wavelength infrared (LWIR) nBn photodetectors based on InAs/InAsSb type-II superlattices. A new saw-tooth superlattice design was used to implement the electron barrier of the photodetectors. The device exhibited a cut-off wavelength of ∼10 μm at 77 K. The photodetector exhibited a peak responsivity of 2.65 A/W, corresponding to a quantum efficiency of 43%. With an R × A of 664 Ω·cm² and a dark current density of 8 × 10−5 A/cm², under −80 mV bias voltage at 77 K, the photodetector exhibited a specific detectivity of 4.72 × 1011 Jones and a background–limited operating temperature of 110 K. [reprint (PDF)]
 
1.  Gain and recombination dynamics of quantum-dot infrared photodetectors
H. Lim, B. Movaghar, S. Tsao, M. Taguchi, W. Zhang, A.A. Quivy, and M. Razeghi
Physical Review B, 74 (20)-- November 15, 2006 ...[Visit Journal]
In this paper we present a theory of diffusion and recombination in QDIPs which is an attempt to explain the recently reported values of gain in these devices. We allow the kinetics to encompass both the diffusion and capture rate limited regimes of carrier relaxation using rigorous random walk and diffusion methods. The photoconductive gains are calculated and compared with the experimental values obtained from InGaAs/InGaP/GaAs and InAs/InP QDIPs using the generation-recombination noise analysis. [reprint (PDF)]
 
1.  Low-Threshold 7.3 μm Quantum Cascade Lasers Grown by Gas-Source Molecular Beam Epitaxy
S. Slivken, A. Matlis, A. Rybaltowski, Z. Wu and M. Razeghi
Applied Physics Letters 74 (19)-- May 19, 1999 ...[Visit Journal]
We report low-threshold 7.3 μm superlattice-based quantum cascade lasers. The threshold current density is 3.4 kA/cm² at 300 K and 1.25 kA/cm² at 79 K in pulsed mode for narrow (∼20 μm), 2 mm-long laser diodes. The characteristic temperature (T0) is 210 K. The slope efficiencies are 153 and 650 mW/A at 300 and 100 K, respectively. Power output is in excess of 100 mW at 300 K. Laser far-field intensity measurements give divergence angles of 64° and 29° in the growth direction and in the plane of the quantum wells, respectively. Far-field simulations show excellent agreement with the measured results. [reprint (PDF)]
 
1.  Room-temperature continuous-wave operation of quantum-cascade lasers at λ ~ 4 µm
J.S. Yu, S.R. Darvish, A. Evans, J. Nguyen, S. Slivken, and M. Razeghi
Applied Physics Letters 88 (4)-- January 23, 2006 ...[Visit Journal]
High-power cw λ~4 μm quantum-cascade lasers (QCLs) are demonstrated. The effect of different cavity length and laser die bonding is also investigated. For a high-reflectivity-coated 11-μm-wide and 4-mm-long epilayer-down bonded QCL, cw output powers as high as 1.6 W at 80 K and 160 mW at 298 K are obtained, and the cw operation is achieved up to 313 K with 12 mW. [reprint (PDF)]
 
1.  High Power, Room Temperature InP-Based Quantum Cascade Laser Grown on Si
Steven Slivken and Manijeh Razeghi
Journal of Quantum Electronics, Vol. 58, No. 6, 2300206 ...[Visit Journal]
We report on the realization of an InP-based long wavelength quantum cascade laser grown on top of a silicon substrate. This demonstration first required the development of an epitaxial template with a smooth surface, which combines two methods of dislocation filtering. Once wafer growth was complete, a lateral injection buried heterostructure laser geometry was employed for efficient current injection and low loss. The laser emits at a wavelength of 10.8 μm and is capable of operation above 373 K, with a high peak power (>4 W) at room temperature. Laser threshold behavior with temperature is characterized by a T0 of 178 K. The far field beam shape is single lobed, showing fundamental transverse mode operation. [reprint (PDF)]
 
1.  Buried heterostructure quantum cascade lasers with high continuous-wave wall plug efficiency
A. Evans, S.R. Darvish, S. Slivken, J. Nguyen, Y. Bai and M. Razeghi
Applied Physics Letters, Vol. 91, No. 7, p. 071101-1-- August 13, 2007 ...[Visit Journal]
The authors report on the development of ~4.7 µm strain-balanced InP-based quantum cascade lasers with high wall plug efficiency and room temperature continuous-wave operation. The use of narrow-ridge buried heterostructure waveguides and thermally optimized packaging is presented. Over 9.3% wall plug efficiency is reported at room temperature from a single device producing over 0.675 W of continuous-wave output power. Wall plug efficiencies greater than 18% are also reported for devices at a temperature of 150 K, with continuous-wave output powers of more than 1 W. [reprint (PDF)]
 
1.  High-detectivity quantum-dot infrared photodetectors grown by metal-organic chemical-vapor deposition
J. Szafraniec, S. Tsao, W. Zhang, H. Lim, M. Taguchi, A.A. Quivy, B. Movaghar and M. Razeghi
Applied Physics Letters 88 (121102)-- March 20, 2006 ...[Visit Journal]
A mid-wavelength infrared photodetector based on InGaAs quantum dots buried in an InGaP matrix and deposited on a GaAs substrate was demonstrated. Its photoresponse at T=77 K was measured to be around 4.7 μm with a cutoff at 5.5 μm. Due to the high peak responsivity of 1.2 A/W and low dark-current noise of the device, a specific peak detectivity of 1.1 x 1012 cm·Hz½·W−1 was achieved at −0.9 V bias [reprint (PDF)]
 
1.  Mid-wavelength infrared high operating temperature pBn photodetectors based on type-II InAs/InAsSb superlattice
Donghai Wu, Jiakai Li, Arash Dehzangi, and Manijeh Razeghi
AIP Advances 10, 025018-- February 11, 2020 ...[Visit Journal]
A high operating temperature mid-wavelength infrared pBn photodetector based on the type-II InAs/InAsSb superlattice on a GaSb substrate has been demonstrated. At 150 K, the photodetector exhibits a peak responsivity of 1.48 A/W, corresponding to a quantum efficiency of 47% at −50 mV applied bias under front-side illumination, with a 50% cutoff wavelength of 4.4 μm. With an R×A of 12,783 Ω·cm² and a dark current density of 1.16×10−5A/cm² under −50 mV applied bias, the photodetector exhibits a specific detectivity of 7.1×1011 cm·Hz½/W. At 300 K, the photodetector exhibits a dark current density of 0.44 A/cm²and a quantum efficiency of 39%, resultingin a specific detectivity of 2.5×109 cm·Hz½/W. [reprint (PDF)]
 
1.  Inductively coupled plasma etching and processing techniques for type-II InAs/GaSb superlattices infrared detectors toward high fill factor focal plane arrays
E.K. Huang, B.M. Nguyen, D. Hoffman, P.Y. Delaunay and M. Razeghi
SPIE Proceedings, San Jose, CA Volume 7222-0Z-- January 26, 2009 ...[Visit Journal]
A challenge for Type-II InAs/GaSb superlattice (T2SL) photodetectors is to achieve high fill factor, high aspect ratio etching for third generation focal plane arrays (FPAs). Initially, we compare the morphological and electrical results of single element T2SL photodiodes after BCl3/Ar inductively coupled plasma (ICP) and electron cyclotron resonance (ECR) dry etching. Using a Si3N4 hard mask, ICP-etched structures exemplify greater sidewall verticality and smoothness, which are essential toward the realization of high fill factor FPAs. ICP-etched single element devices with SiO2 passivation that are 9.3 µm in cutoff wavelength achieved vertical sidewalls of 7.7 µm in depth with a resistance area product at zero bias of greater than 1,000 Ω·cm2 and maximum differential resistance in excess of 10,000 Ω·cm2 at 77 K. By only modifying the etching technique in the fabrication steps, the ICP-etched photodiodes showed an order of magnitude decrease in their dark current densities in comparison to the ECR-etched devices. Finally, high aspect ratio etching is demonstrated on mutli-element arrays with 3 µm-wide trenches that are 11 µm deep. [reprint (PDF)]
 
1.  Suppressing Spectral Crosstalk in Dual-Band LongWavelength Infrared Photodetectors With Monolithically Integrated Air-Gapped Distributed Bragg Reflectors
Yiyun Zhang, Abbas Haddadi, Arash Dehzangi , Romain Chevallier, Manijeh Razeghi
IEEE Journal of Quantum Electronics Volume: 55, Issue:1-- November 22, 2018 ...[Visit Journal]
Antimonide-based type-II superlattices (T2SLs) have made possible the development of high-performance infrared cameras for use in a wide variety of thermal imaging applications, many of which could benefit from dual-band imaging. The performance of this material system has not reached its limits. One of the key issues in dual-band infrared photodetection is spectral crosstalk. In this paper, air-gapped distributed Bragg reflectors (DBRs) have been monolithically integrated between the two channels in long-/very long-wavelength dualband InAs/InAs1−xSbx/AlAs1−xSbx-based T2SLs photodetectors to suppress the spectral crosstalk. This air-gapped DBR has achieved a significant spectral suppression in the 4.5–7.5-µm photonic stopband while transmitting the optical wavelengths beyond 7.5 µm, which is confirmed by theoretical calculations, numerical simulation, and experimental results. [reprint (PDF)]
 
1.  High performance bias-selectable dual-band short-/mid-wavelength infrared photodetectors based on type-II InAs/GaSb/AlSb superlattices
A.M. Hoang, G. Chen, A. Haddadi and M. Razeghi
SPIE Proceedings, Vol. 8631, p. 86311K-1, Photonics West, San Francisco, CA-- February 5, 2013 ...[Visit Journal]
Active and passive imaging in a single camera based on the combination of short-wavelength and mid-wavelength infrared detection is highly needed in a number of tracking and reconnaissance missions. Due to its versatility in band-gap engineering, Type-II InAs/GaSb/AlSb superlattice has emerged as a candidate highly suitable for this multi-spectral detection. In this paper, we report the demonstration of high performance bias-selectable dual-band short-/mid-wavelength infrared photodetectors based on InAs/GaSb/AlSb type-II superlattice with designed cut-off wavelengths of 2 μm and 4 μm. Taking advantages of the high performance short-wavelength and mid-wavelength single color photodetectors, back-to-back p-i-n-n-i-p photodiode structures were grown on GaSb substrate by molecular beam epitaxy. At 150 K, the short-wave channel exhibited a quantum efficiency of 55%, a dark current density of 1.0x10-9 A/cm² at -50 mV bias voltage, providing an associated shot noise detectivity of 3.0x1013 Jones. The mid-wavelength channel exhibited a quantum efficiency of 33% and a dark current density of 2.6x10-5 A/cm² at 300 mV bias voltage, resulting in a detectivity of 4.0x1011 Jones. The operations of the two absorber channels are selectable by changing the polarity of applied bias voltage. [reprint (PDF)]
 
1.  Comparison of the Physical Properties of GaN Thin Films Deposited on (0112) and (0001) Sapphire Substrates
C.J. Sun and M. Razeghi
Applied Physics Letters 63 (7)-- August 16, 1993 ...[Visit Journal]
A direct comparison of the physical properties of GaN thin films is made as a function of the choice of substrate orientations. Gallium nitride single crystals were grown on (0001) and (0112) sapphire substrates by metalorganic chemical vapor deposition. Better crystallinity with fine ridgelike facets is obtained on the (0112) sapphire. Also lower carrier concentration and higher mobilities indicate both lower nitrogen vacancies and less oxygen incorporation on the (0112) sapphire. The results of this study show better physical properties of GaN thin films achieved on (0112) sapphire. [reprint (PDF)]
 
1.  Recent advances in IR semiconductor laser diodes and future trends
M. Razeghi; Y. Bai; N. Bandyopadhyay; B. Gokden; Q.Y. Lu; S. Slivken
Photonics Society Summer Topical Meeting Series, IEEE [6000041], pp. 55-56 (2011)-- July 18, 2011 ...[Visit Journal]
The wall plug efficiency of the mid-infrared quantum cascade laser in room temperature continuous wave (cw) operation is brought to 21%, with a maximum output power of 5.1 W. Using a surface grating distributed feedback (DFB) approach, we demonstrated 2.4 W single mode output in room temperature cw operation. With a photonic crystal distributed feedback (PCDFB) design, we achieved single mode spectrum and close to diffraction limited far field with a room temperature high peak power of 34 W. [reprint (PDF)]
 
1.  Toward realization of small-size dual-band long-wavelength infrared photodetectors based on InAs/GaSb/AlSb type-II superlattices
Romain Chevallier, Abbas Haddadi, Manijeh Razeghi
Solid-State Electronics 136, pp. 51-54-- June 20, 2017 ...[Visit Journal]
In this study, we demonstrate 12 × 12 µm² high-performance, dual-band, long-wavelength infrared (LWIR) photodetectors based on InAs/GaSb/AlSb type-II superlattices. The structure consists of two back-to-back heterojunction photodiodes with 2 µm-thick p-doped absorption regions. High quality dry etching combined with SiO2 passivation results in a surface resistivity value of 7.9 × 105 Ω·cm for the longer (red) channel and little degradation of the electrical performance. The device reaches dark current density values of 4.5 × 10−4 A/cm² for the longer (red) and 1.3 × 10−4 A/cm² for the shorter (blue) LWIR channels at quantum efficiency saturation. It has 50% cut-off wavelengths of 8.3 and 11.2 µm for the blue and red channel, respectively, at 77 K in back-side illumination configuration and exhibits quantum efficiencies of 37% and 29%, respectively. This results in specific detectivity values of 2.5 × 1011 cm·Hz½/W and 1.3 × 1011 cm·Hz½/W at 77 K. [reprint (PDF)]
 

Page 3 of 6:  Prev << 1 2 3  4 5 6  >> Next  (128 Items)