Page 3 of 6:  Prev << 1 2 3  4 5 6  >> Next  (142 Items)

2.  Scaling in back-illuminated GaN avalanche photodiodes
K. Minder, J.L. Pau, R. McClintock, P. Kung, C. Bayram, M. Razeghi and D. Silversmith
Applied Physics Letters, Vol. 91, No. 7, p. 073513-1-- August 13, 2007 ...[Visit Journal]
Avalanche p-i-n photodiodes of various mesa areas were fabricated on AlN templates for back illumination for enhanced performance through hole-initiated multiplication, and the effects of increased area on device performance were studied. Avalanche multiplication was observed in mesa sizes up to 14,063 µm^2 under linear mode operation. Uniform gain and a linear increase of the dark current with area were demonstrated. [reprint (PDF)]
 
2.  Mid-wavelength infrared high operating temperature pBn photodetectors based on type-II InAs/InAsSb superlattice
Donghai Wu, Jiakai Li, Arash Dehzangi, and Manijeh Razeghi
AIP Advances 10, 025018-- February 11, 2020 ...[Visit Journal]
A high operating temperature mid-wavelength infrared pBn photodetector based on the type-II InAs/InAsSb superlattice on a GaSb substrate has been demonstrated. At 150 K, the photodetector exhibits a peak responsivity of 1.48 A/W, corresponding to a quantum efficiency of 47% at −50 mV applied bias under front-side illumination, with a 50% cutoff wavelength of 4.4 μm. With an R×A of 12,783 Ω·cm² and a dark current density of 1.16×10−5A/cm² under −50 mV applied bias, the photodetector exhibits a specific detectivity of 7.1×1011 cm·Hz½/W. At 300 K, the photodetector exhibits a dark current density of 0.44 A/cm²and a quantum efficiency of 39%, resultingin a specific detectivity of 2.5×109 cm·Hz½/W. [reprint (PDF)]
 
2.  Ga2O3 Metal-oxide-semiconductor Field Effect Transistors on Sapphire Substrate by MOCVD
Ji-Hyeon Park, Ryan McClintock and Manijeh Razeghi
Semiconductor Science and Technology, Volume 34, Number 8-- June 26, 2019 ...[Visit Journal]
Si-doped gallium oxide (Ga2O3) thin films were grown on a c-plane sapphire substrate by metalorganic chemical vapor deposition (MOCVD) and fabricated into metal oxide semiconductor field effect transistors (MOSFETs). The Ga2O3 MOSFETs exhibited effective gate modulation of the drain current with a complete channel pinch-off for VG < −25 V, and the three-terminal off-state breakdown voltage was 390 V. The device shows a very low gate leakage current (~50 pA/mm), which led to a high on/off ratio of ~108. These transistor characteristics were stable from room temperature to 250 °C [reprint (PDF)]
 
1.  MOCVD grown β-Ga2O3 metal-oxide-semiconductor field effect transistors on sapphire
Ji-Hyeon Park , Ryan McClintock, Alexandre Jaud, Arash Dehzangi , Manijeh Razeghi
Applied Physics Express 12, 095503-- August 28, 2019 ...[Visit Journal]
We fabricated β-Ga2O3:Si metal-oxide field-effect transistors (MOSFETs) on c-plane sapphire substrates which typically showed maximum drain current of 100 mA·mm−1. β-Ga2O3:Si thin films were realized on c-plane sapphire substrates through a combination of metalorganic chemical vapor deposition and post-annealing. The MOSFET device presented excellent on/off drain current ratio of ∼1011 with very low gate leakage current, sharp pinch off behavior, and a breakdown voltage of 400 V at VG = −40 V. The growth and fabrication of β-Ga2O3:Si MOSFETs on c-plane sapphire is valuable to its demonstration of the great potential for future high-power electronic devices. [reprint (PDF)]
 
1.  Recent advances in mid infrared (3-5 μm) quantum cascade lasers
Manijeh Razeghi; Neelanjan Bandyopadhyay; Yanbo Bai; Quanyong Lu; Steven Slivken
Optical Materials Express, Vol. 3, Issue 11, pp. 1872-1884 (2013)-- November 2, 2013 ...[Visit Journal]
Quantum cascade laser (QCL) is an important source of electromagnetic radiation in mid infrared region. Recent research in mid-IR QCLs has resulted in record high wallplug efficiency (WPE), high continuous wave (CW) output power, single mode operation and wide tunability. CW output power of 5.1 W with 21% WPE has been achieved at room temperature (RT). A record high WPE of 53% at 40K has been demonstrated. Operation wavelength of QCL in CW at RT has been extended to as short as 3μm. Very high peak power of 190 W has been obtained from a broad area QCL of ridge width 400μm. 2.4W RT, CW power output has been achieved from a distributed feedback (DFB) QCL. Wide tuning based on dual section sample grating DFB QCLs has resulted in individual tuning of 50cm-1 and 24 dB side mode suppression ratio with continuous wave power greater than 100 mW. [reprint (PDF)]
 
1.  Advances in mid-infrared detection and imaging: a key issues review
Manijeh Razeghi and Binh-Minh Nguyen
Rep. Prog. Phys. 77 (2014) 082401-- August 4, 2014 ...[Visit Journal]
It has been over 200 years since people recognized the presence of infrared radiation, and developed methods to capture this signal. However, current material systems and technologies for infrared detections have not met the increasing demand for high performance infrared detectors/cameras, with each system having intrinsic drawbacks. Type-II InAs/GaSb superlattice has been recently considered as a promising candidate for the next generation of infrared detection and imaging. Type-II superlattice is a man-made crystal structure, consisting of multiple quantum wells placed next to each other in a controlled way such that adjacent quantum wells can interact. The interaction between multiple quantum wells offers an additional degree of freedom in tailoring the material's properties. Another advantage of type-II superlattice is the experimental benefit of inheriting previous research on material synthesis and device fabrication of bulk semiconductors. It is the combination of these two unique strengths of type-II superlattice—novel physics and easy manipulation—that has enabled unprecedented progress in recent years. In this review, we will describe historical development, and current status of type-II InAs/GaSb superlattice for advanced detection and imaging in the mid-infrared regime (λ = 3–5 µm). [reprint (PDF)]
 
1.  High-quality MOCVD-grown heteroepitaxial gallium oxide growth on III-nitrides enabled by AlOx interlayer
Junhee Lee, Lakshay Gautam, and Manijeh Razeghi
Junhee Lee, Manijeh RazeghiAppl. Phys. Lett. 123, 151902 (2023) https://doi.org/10.1063/5.0170383 ...[Visit Journal]
We report high-quality Ga2O3 grown on an AlGaN/AlN/Sapphire in a single growth run in the same Metal Organic Chemical Vapor Deposition reactor with an AlOx interlayer at the Ga2O3/AlGaN interface. AlOx interlayer was found to enable the growth of single crystalline Ga2O3 on AlGaN in spite of the high lattice mismatch between the two material systems. The resulting nitride/oxide heterogenous heterostructures showed superior material qualities, which were characterized by structural, electrical, and optical characterization techniques. In particular, a significant enhancement of the electron mobility of the nitride/oxide heterogenous heterostructure is reported when compared to the individual electron mobilities of the Ga2O3 epilayer on the sapphire substrate and the AlGaN/AlN heterostructure on the sapphire substrate. This enhanced mobility marks a significant step in realizing the next generation of power electronic devices and transistors. [reprint (PDF)]
 
1.  Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ ∼ 3.76 μm
N. Bandyopadhyay, Y. Bai, B. Gokden, A. Myzaferi, S. Tsao, S. Slivken and M. Razeghi
Applied Physics Letters, Vol. 97, No. 13-- September 27, 2010 ...[Visit Journal]
An InP-based quantum cascade laser heterostructure emitting at 3.76 μm is grown with gas-source molecular beam epitaxy. The laser core is composed of strain balanced In0.76Ga0.24As/In0.26Al0.74As. Pulsed testing at room temperature exhibits a low threshold current density (1.5 kA/cm²) and high wall plug efficiency (10%). Room temperature continuous wave operation gives 6% wall plug efficiency with a maximum output power of 1.1 W. Continuous wave operation persists up to 95 °C. [reprint (PDF)]
 
1.  Investigation of MgZnO/ZnO heterostructures grown on c-sapphire substrates by pulsed laser deposition
D. J. Rogers ; F. Hosseini Teherani ; P. Bove ; A. Lusson ; M. Razeghi
Proc. SPIE 8626, Oxide-based Materials and Devices IV, 86261X (March 18, 2013)-- March 18, 2013 ...[Visit Journal]
MgZnO thin films were grown on c-sapphire and ZnO-coated c-sapphire substrates by pulsed laser deposition from a ZnMgO target with 4 at% Mg. The MgZnO grown on the ZnO underlayer showed significantly better crystal quality than that grown directly on sapphire. AFM studies revealed a significant deterioration in surface morphology for the MgZnO layers compared with the ZnO underlayer. Optical transmission studies indicated a MgZnO bandgap of 3.61eV (compared with 3.34eV for the ZnO), which corresponds to a Mg content of about 16.1 at%. The MgZnO/ZnO heterojunction showed an anomalously low resistivity, which was more than two orders of magnitude less than the MgZnO layer and an order of magnitude lower than that for the ZnO layer. It was suggested that this may be attributable to the presence of a 2D electron gas at the ZnMgO/ZnO heterointerface. [reprint (PDF)]
 
1.  High performance long wavelength infrared mega-pixel focal plane array based on type-II superlattices
P. Manurkar, S.R. Darvish, B.M. Nguyen, M. Razeghi and J. Hubbs
Applied Physics Letters, Vol. 97, No 19, p. 193505-1-- November 8, 2010 ...[Visit Journal]
A large format 1k × 1k focal plane array (FPA) is realized using type-II superlattice photodiodes for long wavelength infrared detection. Material growth on a 3 in. GaSb substrate exhibits a 50% cutoff wavelength of 11 μm across the entire wafer. The FPA shows excellent imaging. Noise equivalent temperature differences of 23.6 mK at 81 K and 22.5 mK at 68 K are achieved with an integration time of 0.13 ms, a 300 K background and f/4 optics. We report a dark current density of 3.3×10−4 A·cm−2 and differential resistance-area product at zero bias R0A of 166 Ω·cm² at 81 K, and 5.1×10−5 A·cm−2 and 1286 Ω·cm², respectively, at 68 K. The quantum efficiency obtained is 78%. [reprint (PDF)]
 
1.  Monolithic terahertz source
Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai and M. Razeghi
Nature Photonics | Research Highlights -- July 31, 2014 ...[Visit Journal]
To date, the production of continuous-wave terahertz (THz) sources based on intracavity difference-frequency generation from mid-infrared quantum cascade lasers operating at room temperature has proved elusive. A critical problem is that, to achieve a large nonlinear susceptibility for frequency conversion, the active region of the quantum cascade laser requires high doping, which elevates the lasing threshold current density. Now, Quan-Yong Lu and colleagues from Northwestern University in the USA have overcome this problem and demonstrated a room-temperature continuous-wave THz source based on difference-frequency generation in quantum cascade lasers. They designed quantum-well structures based on In0.53Ga0.47As/In0.52Al0.48As material system for two mid-infrared wavelengths. The average doping in the active region was about 2.5 × 1016 cm−3. A buried ridge, buried composite distributed-feedback waveguide with the Čerenkov phase-matching scheme was used to reduce the waveguide loss and enhance heat dissipation. As a result, single-mode emission at 3.6 THz was observed at 293 K. The continuous-wave THz power reached 3 μW with a conversion efficiency of 0.44 mW W−2 from mid-infrared to THz waves. Using a similar device design, a THz peak power of 1.4 mW was achieved in pulse mode. [reprint (PDF)]
 
1.  High Power Mid-Infrared Quantum Cascade Lasers Grown on Si
Steven Slivken, Nirajman Shrestha, and Manijeh Razeghi
Photonics, vol. 9, 626 ...[Visit Journal]
This article details the demonstration of a strain-balanced, InP-based mid-infrared quantum cascade laser structure that is grown directly on a Si substrate. This is facilitated by the creation of a metamorphic buffer layer that is used to convert from the lattice constant of Si (0.543 nm) to that of InP (0.587 nm). The laser geometry utilizes two top contacts in order to be compatible with future large-scale integration. Unlike previous reports, this device is capable of room temperature operation with up to 1.6 W of peak power. The emission wavelength at 293 K is 4.82 um, and the device operates in the fundamental transverse mode. [reprint (PDF)]
 
1.  High power photonic crystal distributed feedback quantum cascade lasers emitting at 4.5 micron
B. Gokden, S. Slivken and M. Razeghi
SPIE Proceedings, San Francisco, CA (January 22-28, 2010), Vol. 7608, p. 760806-1-- January 22, 2010 ...[Visit Journal]
Quantum cascade lasers possess very small linewidth enhancement factor, which makes them very prominent candidates for realization of high power, nearly diffraction limited and single mode photonic crystal distributed feedback broad area lasers in the mid-infrared frequencies. In this paper, we present room temperature operation of a two dimensional photonic crystal distributed feedback quantum cascade laser emitting at 4.5 µm. peak power up to ~0.9 W per facet is obtained from a 2 mm long laser with 100 µm cavity width at room temperature. The observed spectrum is single mode with a very narrow linewidth. Far-field profile has nearly diffraction limited single lobe with full width at half maximum of 3.5 degree normal to the facet. The mode selection and power output relationships are experimentally established with respect to different cavity lengths for photonic crystal distributed feedback quantum cascade lasers. [reprint (PDF)]
 
1.  Nickel oxide growth on Si (111), c-Al2O3 and FTO/glass by pulsed laser deposition
V. E. Sandana ; D. J. Rogers ; F. Hosseini Teherani ; P. Bove ; R. McClintock ; M. Razeghi
03/07/2014-- March 7, 2014 ...[Visit Journal]
NiO was grown on Si (111), c-Al2O3 and FTO/glass substrates by pulsed laser deposition (PLD). X-Ray Diffraction (XRD) and scanning electron microscope (SEM) studies revealed that layers grown on c-Al2O3 were fcc NiO with a dense morphology of cubic grains that were strongly (111) oriented along the growth direction. The relatively low ω rocking curve linewidth, of 0.12°suggests that there may have been epitaxial growth on the c-Al2O3 substrate. XRD and SEM indicated that films grown on Si (111) were also fcc NiO, with cubic grains, but that the grain orientation was random. This is consistent with the presence of an amorphous SiO2 layer at the surface of the Si substrate, which precluded epitaxial growth. NiO grown at lower temperature (200°C) on temperature-sensitive FTO/glass substrates showed no evidence of crystallinity in XRD and SEM studies. After flash annealing in air, however, peaks characteristic of randomly oriented fcc NiO appeared in the XRD scans and the surface morphology became more granular in appearance. Such layers appear promising for the development of future dye-sensitised solar cell devices based on NiO grown by PLD. [reprint (PDF)]
 
1.  Room temperature compact THz sources based on quantum cascade laser technology
M. Razeghi; Q.Y. Lu; N. Bandyopadhyay; S. Slivken; Y. Bai
Proc. SPIE 8846, Terahertz Emitters, Receivers, and Applications IV, 884602 (September 24, 2013)-- November 24, 2013 ...[Visit Journal]
We present the high performance THz sources based on intracavity difference-frequency generation from mid-infrared quantum cascade lasers. Room temperature single-mode operation in a wide THz spectral range of 1-4.6 THz is demonstrated from our Čerenkov phase-matched THz sources with dual-period DFB gratings. High THz power up to 215 μW at 3.5 THz is demonstrated via epi-down mounting of our THz device. The rapid development renders this type of THz sources promising local oscillators for many astronomical and medical applications. [reprint (PDF)]
 
1.  Type-II superlattice-based extended short-wavelength infrared focal plane array with an AlAsSb/GaSb superlattice etch-stop layer to allow near-visible light detection
Romain Chevallier, Arash Dehzangi, Abbas Haddadi, and Manijeh Razeghi
Optics Letters Vol. 42, Iss. 21, pp. 4299-4302-- October 17, 2017 ...[Visit Journal]
A versatile infrared imager capable of imaging the near-visible to the extended short-wavelength infrared (e-SWIR) is demonstrated using e-SWIR InAs/GaSb/AlSb type-II superlattice-based photodiodes. A bi-layer etch-stop scheme consisting of bulk InAs0.91Sb0.09 and AlAs0.1Sb0.9/GaSb superlattice layers is introduced for substrate removal from the hybridized back-side illuminated photodetectors. The implementation of this new technique on an e-SWIR focal plane array results in a significant enhancement in the external quantum efficiency (QE) in the 1.8–0.8μm spectral region, while maintaining a high QE at wavelengths longer than 1.8μm. Test pixels exhibit 100% cutoff wavelengths of ∼2.1 and ∼2.25μm at 150 and 300K, respectively. They achieve saturated QE values of 56% and 68% at 150 and 300K, respectively, under back-side illumination and without any anti-reflection coating. At 150K, the photodetectors (27μm×27μm area) exhibit a dark current density of 4.7×10−7  A/cm2 under a −50  mV applied bias providing a specific detectivity of 1.77×1012  cm·Hz1/2/W. At 300K, the dark current density reaches 6.6×10−2  A/cm2 under −50 mV bias, providing a specific detectivity of 5.17×109  cm·Hz1/2/W. [reprint (PDF)]
 
1.  High power broad area quantum cascade lasers
Y. Bai, S. Slivken, S.R. Darvish, A. Haddadi, B. Gokden and M. Razeghi
Applied Physics Letters, Vol. 95, No. 22, p. 221104-1-- November 30, 2009 ...[Visit Journal]
Broad area quantum cascade lasers (QCLs) are studied with ridge widths up to 400 µm, in room temperature pulsed mode operation at an emission wavelength around 4.45 µm. The peak output power scales linearly with the ridge width. A maximum total peak output power of 120 W is obtained from a single 400-µm-wide device with a cavity length of 3 mm. A stable far field emission characteristic is observed with dual lobes at ±38° for all tested devices, which suggests that these broad area QCLs are highly resistant to filamentation. [reprint (PDF)]
 
1.  Structural, Optical, Electrical and Morphological Study of Transparent p-NiO/n-ZnO Heterojunctions Grown by PLD
V. E. Sandana, D. J. Rogers, F. Hosseini Teherani, P. Bove, N. Ben Sedrine, M. R. Correia, T. Monteiro, R. McClintock, and M. Razeghi
Proc. SPIE 9364, Oxide-based Materials and Devices VI, 93641O-- March 24, 2015 ...[Visit Journal]
NiO/ZnO heterostructures were fabricated on FTO/glass and bulk hydrothermal ZnO substrates by pulsed laser deposition. X-Ray diffraction and Room Temperature (RT) Raman studies were consistent with the formation of (0002) oriented wurtzite ZnO and (111) oriented fcc NiO. RT optical transmission studies revealed bandgap energy values of ~3.70 eV and ~3.30 eV for NiO and ZnO, respectively and more than 80% transmission for the whole ZnO/NiO/FTO/glass stack over the majority of the visible spectrum. Lateral p-n heterojunction mesas (~6mm x 6mm) were fabricated using a shadow mask during PLD growth. n-n and p-p measurements showed that Ti/Au contacting gave an Ohmic reponse for the NiO, ZnO and FTO. Both heterojunctions had rectifying I/V characteristics. The junction on FTO/glass gave forward bias currents (243mA at +10V) that were over 5 orders of magnitude higher than those for the junction formed on bulk ZnO. At ~ 10-7 A (for 10V of reverse bias) the heterojunction leakage current was approximately two orders of magnitude lower on the bulk ZnO substrate than on FTO. Overall, the lateral p-NiO/n-ZnO/FTO/glass device proved far superior to that formed by growing p-NiO directly on the bulk n-ZnO substrate and gave a combination of electrical performance and visible wavelength transparency that could predispose it for use in various third generation transparent electronics applications. [reprint (PDF)]
 
1.  Room-temperature continuous-wave operation of quantum-cascade lasers at λ ~ 4 µm
J.S. Yu, S.R. Darvish, A. Evans, J. Nguyen, S. Slivken, and M. Razeghi
Applied Physics Letters 88 (4)-- January 23, 2006 ...[Visit Journal]
High-power cw λ~4 μm quantum-cascade lasers (QCLs) are demonstrated. The effect of different cavity length and laser die bonding is also investigated. For a high-reflectivity-coated 11-μm-wide and 4-mm-long epilayer-down bonded QCL, cw output powers as high as 1.6 W at 80 K and 160 mW at 298 K are obtained, and the cw operation is achieved up to 313 K with 12 mW. [reprint (PDF)]
 
1.  Antimonite-based gap-engineered type-II superlattice materials grown by MBE and MOCVD for the third generation of infrared imagers
Manijeh Razeghi, Arash Dehzangi, Donghai Wu, Ryan McClintock, Yiyun Zhang, Quentin Durlin, Jiakai Li, Fanfei Meng
Proc. SPIE Defense + Commercial Sensing,Infrared Technology and Applications XLV, 110020G -- May 7, 2019 ...[Visit Journal]
Third generation of infrared imagers demand performances for higher detectivity, higher operating temperature, higher resolution, and multi-color detection all accomplished with better yield and lower manufacturing costs. Antimonidebased gap-engineered Type-II superlattices (T2SLs) material system is considered as a potential alternative for MercuryCadmium-Telluride (HgCdTe) technology in all different infrared detection regimes from short to very long wavelengths for the third generation of infrared imagers. This is due to the incredible growth in the understanding of its material properties and improvement of device processing which leads to design and fabrication of better devices. We will present the most recent research results on Antimonide-based gap-engineered Type-II superlattices, such as highperformance dual-band SWIR/MWIR photo-detectors and focal plane arrays for different infrared regimes, toward the third generation of infrared imaging systems at the Center for Zuantum Devices. Comparing metal-organic chemical vapor deposition (MOCVD), vs molecular beam epitaxy (MBE). [reprint (PDF)]
 
1.  AlxGa1−xN-based solar-blind ultraviolet photodetector based on lateral epitaxial overgrowth of AlN on Si substrate
E. Cicek, R. McClintock, C. Y. Cho, B. Rahnema, and M. Razeghi
Appl. Phys. Lett. 103, 181113 (2013)-- October 30, 2013 ...[Visit Journal]
We report on AlxGa1−xN-based solar-blind ultraviolet (UV) photodetector (PD) grown on Si(111) substrate. First, Si(111) substrate is patterned, and then metalorganic chemical vapor deposition is implemented for a fully-coalesced ∼8.5 μm AlN template layer via a pulsed atomic layer epitaxial growth technique. A back-illuminated p-i-n PD structure is subsequently grown on the high quality AlN template layer. After processing and implementation of Si(111) substrate removal, the optical and electrical characteristic of PDs are studied. Solar-blind operation is observed throughout the array; at the peak detection wavelength of 290 nm, 625 μm² area PD showed unbiased peak external quantum efficiency and responsivity of ∼7% and 18.3 mA/W, respectively, with a UV and visible rejection ratio of more than three orders of magnitude. Electrical measurements yielded a low-dark current density below 1.6 × 10−8 A/cm² at 10 V reverse bias. [reprint (PDF)]
 
1.  Investigation of Enhanced Heteroepitaxy and Electrical Properties in k-Ga2O3 due to Interfacing with β-Ga2O3 Template Layers
Junhee Lee, Lakshay Gautam, Ferechteh H. Teherani, Eric V. Sandana, P. Bove, David J. Rogers and Manijeh Razeghi
J. Lee, M. Razeghi, Physica Status Solidi A 2023,220, 2200559, https://doi.org/10.1002/pssa.202200559 ...[Visit Journal]
Heteroepitaxial k-Ga2O3 films grown by metal-organic chemical vapor deposition (MOCVD) were found to have superior materials and electrical properties thanks to the interfacing with a b-Ga2O3 template layer. k-Ga2O3grown on sapphire has not been able to demonstrate its full potential due to materials imperfections created by strain induced by the lattice mismatch at the interface between the epilayer and the substrate. By adopting a b-Ga2O3 template on a c-sapphire substrate, higher quality k-Ga2O3thin films were obtained, as evidenced by a smoother surface morphology, narrower XRD peaks, and superior electrical performance. The implications of this phenomenon, caused by b-Ga2O3 buffer layer, are already very encouraging for both boosting current device performance and opening up the perspective of novel applications for Ga2O3. [reprint (PDF)]
 
1.  High Performance Solar-Blind Ultraviolet Focal Plane Arrays Based on AlGaN
Erdem Cicek, Ryan McClintock, Abbas Haddadi, William A. Gaviria Rojas, and Manijeh Razeghi
IEEE Journal of Quantum Electronics, Vol. 50, Issue 8, p 591-595-- August 1, 2014 ...[Visit Journal]
We report on solar-blind ultraviolet, AlxGa1-x N- based,p-i-n,focal plane array (FPA) with 92% operability. At the peak detection wavelength of 278 nm, 320×256-FP A-pixel showed unbiased peak external quantum efficiency (EQE) and responsivity of 49% and 109 mA/W, respectively, increasing to 66% under 5 volts of reverse bias. Electrical measurements yielded a low-dark current density: <7×10-9A/cm², at FPA operating voltage of 2 volts of reverse bias. [reprint (PDF)]
 
1.  Resonant cavity enhanced heterojunction phototransistors based on type-II superlattices
Jiakai Li, Arash Dehzangi, Donghai Wu, Ryan McClintock, Manijeh Razeghi
Infrared Physics & Technology Available online 27 October 2020, 103552 https://doi.org/10.1016/j.infrared.2020.103552-- October 27, 2020 ...[Visit Journal]
Resonant cavity enhanced heterojunction phototransistor based on InAs/GaSb/AlSb type-II superlattice grown by molecular beam epitaxy has been demonstrated. The resonant wavelength was designed to be at near 1.9 μm wavelength range at room temperature. An eleven-pair lattice matched GaSb-AlAsSb quarter-wavelength Bragg reflector was used in the RCE-HPT to enhance the photoresponse. The device showed the wavelength selectivity and a cavity enhancement of the responsivity at 1.9 μm at room temperature. [reprint (PDF)]
 
1.  Photonic crystal distributed feedback quantum cascade lasers with 12 W output power
Y. Bai, B. Gokden, S.R. Darvish, S. Slivken, and M. Razeghi
Applied Physics Letters, Vol. 95, No. 3-- July 20, 2009 ...[Visit Journal]
We demonstrate room temperature, high power, and diffraction limited operation of photonic crystal distributed feedback (PCDFB) quantum cascade lasers emitting around 4.7 µm. PCDFB gratings with three distinctive periods are fabricated on the same wafer. Peak output power up to 12 W is demonstrated. Lasers with different periods show expected wavelength shifts according to the design. Dual mode spectra are attributed to a purer index coupling by putting the grating layer 100 nm away from the laser core. Single lobed diffraction limited far field profiles are observed. [reprint (PDF)]
 

Page 3 of 6:  Prev << 1 2 3  4 5 6  >> Next  (142 Items)