Page 3 of 5:  Prev << 1 2 3  4 5  >> Next  (124 Items)

2.  Growth and Characterization of Type-II Non-Equilibrium Photovoltaic Detectors for Long Wavelength Infrared Range
H. Mohseni, J. Wojkowski, A. Tahraoui, M. Razeghi, G. Brown and W. Mitche
SPIE Conference, San Jose, CA, -- January 26, 2000 ...[Visit Journal]
Growth and characterization of type-II detectors for mid-IR wavelength range is presented. The device has a p-i-n structure is designed to operate in the non-equilibrium mode with low tunneling current. The active layer is a short period InAs/GaSb superlattice. Wider bandgap p-type AlSb and n-type InAs layers are used to facilitate the extraction of both electronics and holes from the active layer for the first time. The performance of these devices were compared to the performance of devices grown at the same condition, but without the AlSb barrier layers. The processed devices with the AlSb barrier show a peak responsivity of about 1.2 A/W with Johnson noise limited detectivity of 1.1 X 1011 cm·Hz½/W at 8 μm at 80 K at zero bias. The details of the modeling, growth, and characterizations will be presented. [reprint (PDF)]
 
1.  Suppressing Spectral Crosstalk in Dual-Band LongWavelength Infrared Photodetectors With Monolithically Integrated Air-Gapped Distributed Bragg Reflectors
Yiyun Zhang, Abbas Haddadi, Arash Dehzangi , Romain Chevallier, Manijeh Razeghi
IEEE Journal of Quantum Electronics Volume: 55, Issue:1-- November 22, 2018 ...[Visit Journal]
Antimonide-based type-II superlattices (T2SLs) have made possible the development of high-performance infrared cameras for use in a wide variety of thermal imaging applications, many of which could benefit from dual-band imaging. The performance of this material system has not reached its limits. One of the key issues in dual-band infrared photodetection is spectral crosstalk. In this paper, air-gapped distributed Bragg reflectors (DBRs) have been monolithically integrated between the two channels in long-/very long-wavelength dualband InAs/InAs1−xSbx/AlAs1−xSbx-based T2SLs photodetectors to suppress the spectral crosstalk. This air-gapped DBR has achieved a significant spectral suppression in the 4.5–7.5-µm photonic stopband while transmitting the optical wavelengths beyond 7.5 µm, which is confirmed by theoretical calculations, numerical simulation, and experimental results. [reprint (PDF)]
 
1.  High performance bias-selectable dual-band short-/mid-wavelength infrared photodetectors based on type-II InAs/GaSb/AlSb superlattices
A.M. Hoang, G. Chen, A. Haddadi and M. Razeghi
SPIE Proceedings, Vol. 8631, p. 86311K-1, Photonics West, San Francisco, CA-- February 5, 2013 ...[Visit Journal]
Active and passive imaging in a single camera based on the combination of short-wavelength and mid-wavelength infrared detection is highly needed in a number of tracking and reconnaissance missions. Due to its versatility in band-gap engineering, Type-II InAs/GaSb/AlSb superlattice has emerged as a candidate highly suitable for this multi-spectral detection. In this paper, we report the demonstration of high performance bias-selectable dual-band short-/mid-wavelength infrared photodetectors based on InAs/GaSb/AlSb type-II superlattice with designed cut-off wavelengths of 2 μm and 4 μm. Taking advantages of the high performance short-wavelength and mid-wavelength single color photodetectors, back-to-back p-i-n-n-i-p photodiode structures were grown on GaSb substrate by molecular beam epitaxy. At 150 K, the short-wave channel exhibited a quantum efficiency of 55%, a dark current density of 1.0x10-9 A/cm² at -50 mV bias voltage, providing an associated shot noise detectivity of 3.0x1013 Jones. The mid-wavelength channel exhibited a quantum efficiency of 33% and a dark current density of 2.6x10-5 A/cm² at 300 mV bias voltage, resulting in a detectivity of 4.0x1011 Jones. The operations of the two absorber channels are selectable by changing the polarity of applied bias voltage. [reprint (PDF)]
 
1.  Bias-selectable dual-band mid-/long-wavelength infrared photodetectors based on InAs/InAs1−xSbx type-II superlattices
A. Haddadi, R. Chevallier, G. Chen, A. M. Hoang, and M. Razeghi
Applied Physics Letters 106 , 011104-- January 8, 2015 ...[Visit Journal]
A high performance bias-selectable mid-/long-wavelength infrared photodetector based on InAs/InAs1−xSbx type-II superlattices on GaSb substrate has been demonstrated. The mid- and long-wavelength channels' 50% cut-off wavelengths were ∼5.1 and ∼9.5 μm at 77 K. The mid-wavelength channel exhibited a quantum efficiency of 45% at 100 mV bias voltage under front-side illumination and without any anti-reflection coating. With a dark current density of 1 × 10−7 A/cm² under 100 mV applied bias, the mid-wavelength channel exhibited a specific detectivity of 8.2 × 1012 cm·Hz½·W-1 at 77 K. The long-wavelength channel exhibited a quantum efficiency of 40%, a dark current density of 5.7 × 10−4 A/cm² under −150 mV applied bias at 77 K, providing a specific detectivity value of 1.64 × 1011 cm·Hz½·W-1. [reprint (PDF)]
 
1.  High power broad area quantum cascade lasers
Y. Bai, S. Slivken, S.R. Darvish, A. Haddadi, B. Gokden and M. Razeghi
Applied Physics Letters, Vol. 95, No. 22, p. 221104-1-- November 30, 2009 ...[Visit Journal]
Broad area quantum cascade lasers (QCLs) are studied with ridge widths up to 400 µm, in room temperature pulsed mode operation at an emission wavelength around 4.45 µm. The peak output power scales linearly with the ridge width. A maximum total peak output power of 120 W is obtained from a single 400-µm-wide device with a cavity length of 3 mm. A stable far field emission characteristic is observed with dual lobes at ±38° for all tested devices, which suggests that these broad area QCLs are highly resistant to filamentation. [reprint (PDF)]
 
1.  Toward realization of small-size dual-band long-wavelength infrared photodetectors based on InAs/GaSb/AlSb type-II superlattices
Romain Chevallier, Abbas Haddadi, Manijeh Razeghi
Solid-State Electronics 136, pp. 51-54-- June 20, 2017 ...[Visit Journal]
In this study, we demonstrate 12 × 12 µm² high-performance, dual-band, long-wavelength infrared (LWIR) photodetectors based on InAs/GaSb/AlSb type-II superlattices. The structure consists of two back-to-back heterojunction photodiodes with 2 µm-thick p-doped absorption regions. High quality dry etching combined with SiO2 passivation results in a surface resistivity value of 7.9 × 105 Ω·cm for the longer (red) channel and little degradation of the electrical performance. The device reaches dark current density values of 4.5 × 10−4 A/cm² for the longer (red) and 1.3 × 10−4 A/cm² for the shorter (blue) LWIR channels at quantum efficiency saturation. It has 50% cut-off wavelengths of 8.3 and 11.2 µm for the blue and red channel, respectively, at 77 K in back-side illumination configuration and exhibits quantum efficiencies of 37% and 29%, respectively. This results in specific detectivity values of 2.5 × 1011 cm·Hz½/W and 1.3 × 1011 cm·Hz½/W at 77 K. [reprint (PDF)]
 
1.  Growth and characterization of InAs/GaSb photoconductors for long wavelength infrared range
H. Mohseni, E. Michel, J. Sandven, M. Razeghi, W. Mitchel, and G. Brown
Applied Physics Letters 71 (10)-- September 8, 1997 ...[Visit Journal]
In this letter we report the molecular beam epitaxial growth and characterization of InAs/GaSb superlattices grown on semi-insulating GaAs substrates for long wavelength infrared detectors. Photoconductive detectors fabricated from the superlattices showed photoresponse up to 12 µm and peak responsivity of 5.5 V/W with Johnson noise limited detectivity of 1.33 × 109 cm·Hz½/W at 10.3 µm at 78 K. [reprint (PDF)]
 
1.  Resonant cavity enhanced heterojunction phototransistors based on type-II superlattices
Jiakai Li, Arash Dehzangi, Donghai Wu, Ryan McClintock, Manijeh Razeghi
Infrared Physics & Technology Available online 27 October 2020, 103552 https://doi.org/10.1016/j.infrared.2020.103552-- October 27, 2020 ...[Visit Journal]
Resonant cavity enhanced heterojunction phototransistor based on InAs/GaSb/AlSb type-II superlattice grown by molecular beam epitaxy has been demonstrated. The resonant wavelength was designed to be at near 1.9 μm wavelength range at room temperature. An eleven-pair lattice matched GaSb-AlAsSb quarter-wavelength Bragg reflector was used in the RCE-HPT to enhance the photoresponse. The device showed the wavelength selectivity and a cavity enhancement of the responsivity at 1.9 μm at room temperature. [reprint (PDF)]
 
1.  Photonic crystal distributed feedback quantum cascade lasers with 12 W output power
Y. Bai, B. Gokden, S.R. Darvish, S. Slivken, and M. Razeghi
Applied Physics Letters, Vol. 95, No. 3-- July 20, 2009 ...[Visit Journal]
We demonstrate room temperature, high power, and diffraction limited operation of photonic crystal distributed feedback (PCDFB) quantum cascade lasers emitting around 4.7 µm. PCDFB gratings with three distinctive periods are fabricated on the same wafer. Peak output power up to 12 W is demonstrated. Lasers with different periods show expected wavelength shifts according to the design. Dual mode spectra are attributed to a purer index coupling by putting the grating layer 100 nm away from the laser core. Single lobed diffraction limited far field profiles are observed. [reprint (PDF)]
 
1.  Bias–selectable nBn dual–band long–/very long–wavelength infrared photodetectors based on InAs/InAsSb/AlAsSb type–II superlattices
Abbas Haddadi, Arash Dehzangi, Romain Chevallier, Sourav Adhikary, & Manijeh Razeghi
Nature Scientific Reports 7, Article number: 3379-- June 13, 2017 ...[Visit Journal]
Type–II superlattices (T2SLs) are a class of artificial semiconductors that have demonstrated themselves as a viable candidate to compete with the state–of–the–art mercury–cadmium–telluride material system in the field of infrared detection and imaging. Within type–II superlattices, InAs/InAs1−xSbx T2SLs have been shown to have a significantly longer minority carrier lifetime. However, demonstration of high–performance dual–band photodetectors based on InAs/InAs1−xSbx T2SLs in the long and very long wavelength infrared (LWIR & VLWIR) regimes remains challenging. We report the demonstration of high–performance bias–selectable dual–band long–wavelength infrared photodetectors based on new InAs/InAsSb/AlAsSb type–II superlattice design. Our design uses two different bandgap absorption regions separated by an electron barrier that blocks the transport of majority carriers to reduce the dark current density of the device. As the applied bias is varied, the device exhibits well–defined cut–off wavelengths of either ∼8.7 or ∼12.5 μm at 77 K. This bias–selectable dual–band photodetector is compact, with no moving parts, and will open new opportunities for multi–spectral LWIR and VLWIR imaging and detection. [reprint (PDF)]
 
1.  Generation-recombination and trap-assisted tunneling in long wavelength infrared minority electron unipolar photodetectors based on InAs/GaSb superlattice
F. Callewaert, A.M. Hoang, and M. Razeghi
Applied Physics Letters, 104, 053508 (2014)-- February 6, 2014 ...[Visit Journal]
A long wavelength infrared minority electron unipolar photodetector based on InAs/GaSb type-II superlattices is demonstrated. At 77 K, a dark current of 3 × 10−5 A/cm² and a differential resistance-area of 3 700 Ω·cm² are achieved at the turn-on bias, with a 50%-cutoff of 10.0 μm and a specific detectivity of 6.2 × 1011 Jones. The dark current is fitted as a function of bias and temperature using a model combining generation-recombination and trap-assisted tunneling. Good agreement was observed between the theory and the experimental dark current. [reprint (PDF)]
 
1.  Recent Advances in InAs/GaSb Superlattices for Very Long Wavelength Infrared Detection
G.J. Brown, F. Szmulowicz, K. Mahalingam, S. Houston, Y. Wei, A. Gin and M. Razeghi
SPIE Conference, San Jose, CA, Vol. 4999, pp. 457-- January 27, 2003 ...[Visit Journal]
New infrared (IR) detector materials with high sensitivity, multi-spectral capability, improved uniformity and lower manufacturing costs are required for numerous long and very long wavelength infrared imaging applications. One materials system has shown great theoretical and, more recently, experimental promise for these applications: InAs/InxGa1-xSb type-II superlattices. In the past few years, excellent results have been obtained on photoconductive and photodiode samples designed for infrared detection beyond 15 microns. The infrared properties of various compositions and designs of these type-II superlattices have been studied. The infrared photoresponse spectra are combined with quantum mechanical modeling of predicted absorption spectra to provide insight into the underlying physics behind the quantum sensing in these materials. Results for superlattice photodiodes with cut-off wavelengths as long as 25 microns are presented. [reprint (PDF)]
 
1.  2.4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers
Q.Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken and M. Razeghi
Applied Physics Letters, Vol. 98, No. 18, p. 181106-1-- May 4, 2011 ...[Visit Journal]
We demonstrate high power continuous-wave room-temperature operation surface-grating distributed feedback quantum cascade lasers at 4.8 μm. High power single mode operation benefits from a combination of high-reflection and antireflection coatings. Maximum single-facet continuous-wave output power of 2.4 W and peak wall plug efficiency of 10% from one facet is obtained at 298 K. Single mode operation with a side mode suppression ratio of 30 dB and single-lobed far field without beam steering is observed. [reprint (PDF)]
 
1.  Type-II InAs/GaSb/AlSb superlatticebased heterojunction phototransistors: back to the future
Abbas Haddadi, Arash Dehzangi, Romain Chevallier, Thomas Yang, Manijeh Razeghi
Proc. SPIE 10540, Quantum Sensing and Nano Electronics and Photonics XV- Page-1054004-1-- January 26, 2018 ...[Visit Journal]
Most of reported HPTs in literatures are based on InGaAs compounds that cover NIR spectral region. However, InGaAs compounds provide limited cut-off wavelength tunability. In contrast, type-II superlattices (T2SLs) are a developing new material system with intrinsic advantages such as great flexibility in bandgap engineering, low growth and manufacturing cost, high-uniformity, auger recombination suppression, and high carrier effective mass that are becoming an attractive candidate for infrared detection and imaging from short-wavelength infrared to very long wavelength infrared regime. We present the recent advancements in T2SL-based heterojunction phototransistors in e– SWIR, MWIR and LWIR spectral ranges. A mid-wavelength infrared heterojunction phototransistor based on type-II InAs/AlSb/GaSb superlattices on GaSb substrate has been demonstrated. Then, we present the effect of vertical scaling on the optical and electrical performance of heterojunction phototransistors, where the performance of devices with different base width was compared as the base was scaled from 60 down to 40 nm. [reprint (PDF)]
 
1.  Continuous-wave operation of λ ~ 4.8 µm quantum-cascade lasers at room temperature
A. Evans, J.S. Yu, S. Slivken, and M. Razeghi
Applied Physics Letters, 85 (12)-- September 20, 2004 ...[Visit Journal]
Continuous-wave (cw) operation of quantum-cascade lasers emitting at λ~4.8 µm is reported up to a temperature of 323 K. Accurate control of layer thickness and strain-balanced material composition is demonstrated using x-ray diffraction. cw output power is reported to be in excess of 370 mW per facet at 293 K, and 38 mW per facet at 323 K. Room-temperature average power measurements are demonstrated with over 600 mW per facet at 50% duty cycle with over 300 mW still observed at 100% (cw) duty cycle. [reprint (PDF)]
 
1.  Extended electrical tuning of quantum cascade lasers with digital concatenated gratings
S. Slivken, N. Bandyopadhyay, Y. Bai, Q. Y. Lu, and M. Razeghi
Appl. Phys. Lett. 103, 231110 (2013)-- December 6, 2013 ...[Visit Journal]
In this report, the sampled grating distributed feedback laser architecture is modified with digital concatenated gratings to partially compensate for the wavelength dependence of optical gain in a standard high efficiency quantum cascade laser core. This allows equalization of laser threshold over a wide wavelength range and demonstration of wide electrical tuning. With only two control currents, a full tuning range of 500 nm (236 cm−1) has been demonstrated. Emission is single mode, with a side mode suppression of >20 dB. [reprint (PDF)]
 
1.  High Quality Type-II InAs/GaSb Superlattices with Cutoff Wavelength ~3.7 µm Using Interface Engineering
Y. Wei, J. Bae, A. Gin, A. Hood, M. Razeghi, G.J. Brown, and M. Tidrow
Journal of Applied Physics, 94 (7)-- October 1, 2003 ...[Visit Journal]
We report the most recent advance in the area of Type-II InAs/GaSb superlattices that have cutoff wavelength of ~3.7 µm. With GaxIn1–x type interface engineering techniques, the mismatch between the superlattices and the GaSb (001) substrate has been reduced to <0.1%. There is no evidence of dislocations using the best examination tools of x-ray, atomic force microscopy, and transmission electron microscopy. The full width half maximum of the photoluminescence peak at 11 K was ~4.5 meV using an Ar+ ion laser (514 nm) at fluent power of 140 mW. The integrated photoluminescence intensity was linearly dependent on the fluent laser power from 2.2 to 140 mW at 11 K. The temperature-dependent photoluminescence measurement revealed a characteristic temperature of one T1 = 245 K at sample temperatures below 160 K with fluent power of 70 mW, and T1 = 203 K for sample temperatures above 180 K with fluent power of 70 and 420 mW. [reprint (PDF)]
 
1.  Room temperature quantum cascade lasers with 27% wall plug efficiency
Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken and M. Razeghi
Applied Physics Letters, Vol. 98, No. 18, p. 181102-1-- May 3, 2011 ...[Visit Journal]
Using the recently proposed shallow-well design, we demonstrate InP based quantum cascade lasers (QCLs) emitting around 4.9 μm with 27% and 21% wall plug efficiencies in room temperature (298 K) pulsed and continuous wave (CW) operations, respectively. The laser core consists of 40 QCL-stages. The highest cw efficiency is obtained from a buried-ridge device with a ridge width of 8 μm and a cavity length of 5 mm. The front and back facets are antireflection and high-reflection coated, respectively. The maximum single facet cw power at room temperature amounts to 5.1 W. [reprint (PDF)]
 
1.  Impact of scaling base thickness on the performance of heterojunction phototransistors
Arash Dehzangi, Abbas Haddadi, Sourav Adhikary, and Manijeh Razeghi
Nanotechnology 28, 10LT01-- February 2, 2017 ...[Visit Journal]
In this letter we report the effect of vertical scaling on the optical and electrical performance of mid-wavelength infrared heterojunction phototransistors based on type-II InAs/GaSb/AlSb superlattices. The performance of devices with different base thickness was compared as the base was scaled from 60 down to 40 nm. The overall optical performance shows enhancement in responsively, optical gain, and specific detectivity upon scaling the base width. The saturated responsivity for devices with 40 nm bases reaches 8,845 and 9,528 A/W at 77 and 150 K, respectively, which is almost five times greater than devices with 60 nm bases. The saturated optical gain for devices with 40 nm bases is measured as 2,760 at 77 K and 3,081 at 150 K. The devices with 40 nm bases also exhibit remarkable enhancement in saturated current gain, with 17,690 at 77 K, and 19,050 at 150 K. [reprint (PDF)]
 
1.  Cubic Phase GaN on Nano-grooved Si (100) via Maskless Selective Area Epitaxy
Bayram, C., Ott, J. A., Shiu, K.-T., Cheng, C.-W., Zhu, Y., Kim, J., Razeghi, M. and Sadana, D. K.
Adv. Funct. Mater. 2014-- April 1, 2014 ...[Visit Journal]
A method of forming cubic phase (zinc blende) GaN (referred as c-GaN) on a CMOS-compatible on-axis Si (100) substrate is reported. Conventional GaN materials are hexagonal phase (wurtzite) (referred as h-GaN) and possess very high polarization fields (∼MV/cm) along the common growth direction of <0001>. Such large polarization fields lead to undesired shifts (e.g., wavelength and current) in the performance of photonic and vertical transport electronic devices. The cubic phase of GaN materials is polarization-free along the common growth direction of <001>, however, this phase is thermodynamically unstable, requiring low-temperature deposition conditions and unconventional substrates (e.g., GaAs). Here, novel nano-groove patterning and maskless selective area epitaxy processes are employed to integrate thermodynamically stable, stress-free, and low-defectivity c-GaN on CMOS-compatible on-axis Si. These results suggest that epitaxial growth conditions and nano-groove pattern parameters are critical to obtain such high quality c-GaN. InGaN/GaN multi-quantum-well structures grown on c-GaN/Si (100) show strong room temperature luminescence in the visible spectrum, promising visible emitter applications for this technology. [reprint (PDF)]
 
1.  Highly temperature insensitive quantum cascade lasers
Y. Bai, N. Bandyopadhyay, S. Tsao, E. Selcuk, S. Slivken and M. Razeghi
Applied Physics Letters, Vol. 97, No. 25-- December 20, 2010 ...[Visit Journal]
An InP based quantum cascade laser (QCL) heterostructure emitting around 5 μm is grown with gas-source molecular beam epitaxy. The QCL core design takes a shallow-well approach to maximize the characteristic temperatures, T(0) and T(1), for operations above room temperature. A T(0) value of 383 K and a T(1) value of 645 K are obtained within a temperature range of 298–373 K. In room temperature continuous wave operation, this design gives a single facet output power of 3 W and a wall plug efficiency of 16% from a device with a cavity length of 5 mm and a ridge width of 8 μm. [reprint (PDF)]
 
1.  High Performance Solar-Blind Ultraviolet Focal Plane Arrays Based on AlGaN
Erdem Cicek, Ryan McClintock, Abbas Haddadi, William A. Gaviria Rojas, and Manijeh Razeghi
IEEE Journal of Quantum Electronics, Vol. 50, Issue 8, p 591-595-- August 1, 2014 ...[Visit Journal]
We report on solar-blind ultraviolet, AlxGa1-x N- based,p-i-n,focal plane array (FPA) with 92% operability. At the peak detection wavelength of 278 nm, 320×256-FP A-pixel showed unbiased peak external quantum efficiency (EQE) and responsivity of 49% and 109 mA/W, respectively, increasing to 66% under 5 volts of reverse bias. Electrical measurements yielded a low-dark current density: <7×10-9A/cm², at FPA operating voltage of 2 volts of reverse bias. [reprint (PDF)]
 
1.  III-Nitride Avalanche Photodiodes
P. Kung, R. McClintock, J. Pau Vizcaino, K. Minder, C. Bayram and M. Razeghi
SPIE Conference, January 25-29, 2007, San Jose, CA Proceedings – Quantum Sensing and Nanophotonic Devices IV, Vol. 6479, p. 64791J-1-12-- January 29, 2007 ...[Visit Journal]
Wide bandgap III-Nitride semiconductors are a promising material system for the development of ultraviolet avalanche photodiodes (APDs) that could be a viable alternative to photomultiplier tubes. In this paper, we report the epitaxial growth and physical properties of device quality GaN layers on high quality AlN templates for the first backilluminated GaN p-i-n APD structures on transparent sapphire substrates. Under low bias and linear mode avalanche operation where they exhibited gains near 1500 after undergoing avalanche breakdown. The breakdown electric field in GaN was determined to be 2.73 MV/cm. The hole impact ionization coefficients were shown to be greater than those of electrons. [reprint (PDF)]
 
1.  High performance photodiodes based on InAs/InAsSb type-II superlattices for very long wavelength infrared detection
A. M. Hoang, G. Chen, R. Chevallier, A. Haddadi, and M. Razeghi
Appl. Phys. Lett. 104, 251105 (2014)-- June 23, 2014 ...[Visit Journal]
Very long wavelength infrared photodetectors based on InAs/InAsSb Type-II superlattices are demonstrated on GaSb substrate. A heterostructure photodiode was grown with 50% cut-off wavelength of 14.6 μm. At 77 K, the photodiode exhibited a peak responsivity of 4.8 A/W, corresponding to a quantum efficiency of 46% at −300 mV bias voltage from front side illumination without antireflective coating. With the dark current density of 0.7 A/cm², it provided a specific detectivity of 1.4 × 1010 Jones. The device performance was investigated as a function of operating temperature, revealing a very stable optical response and a background limited performance below 50 K. [reprint (PDF)]
 
1.  Evaluating the size-dependent quantum efficiency loss in a SiO2-Y2O3 hybrid gated type-II InAs/GaSb long-infrared photodetector array
G. Chen , A. M. Hoang , and M. Razeghi
Applied Physics Letters 104 , 103509 (2014)-- March 14, 2014 ...[Visit Journal]
Growing Y2O3 on 20 nm SiO2 to passivate a 11 μm 50% cut-off wavelength long-wavelength infrared type-II superlattice gated photodetector array reduces its saturated gate bias (VGsat ) to −7 V. Size-dependent quantum efficiency (QE) losses are evaluated from 400 μm to 57 μm size gated photodiode. Evolution of QE of the 57 μm gated photodiode with gate bias and diode operation bias reveals different surface recombination mechanisms. At 77 K and VG,sat , the 57 μm gated photodiode exhibits QE enhancement from 53% to 63%, and it has 1.2 × 10−5 A/cm² dark current density at −200 mV, and a specific detectivity of 2.3 × 1012 Jones. [reprint (PDF)]
 

Page 3 of 5:  Prev << 1 2 3  4 5  >> Next  (124 Items)