About the CQD | News | Conferences | Publications | Books | Research | People | History | Patents | Contact | Channel | |
Page 3 of 28: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 >> Next (676 Items)
5. | Investigation of Enhanced Heteroepitaxy and Electrical Properties in k-Ga2O3 due to Interfacing with β-Ga2O3 Template Layers Junhee Lee, Lakshay Gautam, Ferechteh H. Teherani, Eric V. Sandana, P. Bove, David J. Rogers and Manijeh Razeghi J. Lee, M. Razeghi, Physica Status Solidi A 2023,220, 2200559, https://doi.org/10.1002/pssa.202200559 ...[Visit Journal] Heteroepitaxial k-Ga2O3 films grown by metal-organic chemical vapor deposition (MOCVD) were found to have superior materials and electrical properties thanks to the interfacing with a b-Ga2O3 template layer. k-Ga2O3grown on sapphire has not been able to demonstrate its full potential due to materials imperfections created by strain induced by the lattice mismatch at the interface between the epilayer and the substrate. By adopting a b-Ga2O3 template on a c-sapphire substrate, higher quality k-Ga2O3thin films were obtained, as evidenced by a smoother surface morphology, narrower XRD peaks, and superior electrical performance. The implications of this phenomenon, caused by b-Ga2O3 buffer layer, are already very encouraging for both boosting current device performance and opening up the perspective of novel applications for Ga2O3. [reprint (PDF)] |
5. | Nickel oxide growth on Si (111), c-Al2O3 and FTO/glass by pulsed laser deposition V. E. Sandana ; D. J. Rogers ; F. Hosseini Teherani ; P. Bove ; R. McClintock ; M. Razeghi 03/07/2014-- March 7, 2014 ...[Visit Journal] NiO was grown on Si (111), c-Al2O3 and FTO/glass substrates by pulsed laser deposition (PLD). X-Ray Diffraction (XRD) and scanning electron microscope (SEM) studies revealed that layers grown on c-Al2O3 were fcc NiO with a dense morphology of cubic grains that were strongly (111) oriented along the growth direction. The relatively low ω rocking curve linewidth, of 0.12°suggests that there may have been epitaxial growth on the c-Al2O3 substrate. XRD and SEM indicated that films grown on Si (111) were also fcc NiO, with cubic grains, but that the grain orientation was random. This is consistent with the presence of an amorphous SiO2 layer at the surface of the Si substrate, which precluded epitaxial growth. NiO grown at lower temperature (200°C) on temperature-sensitive FTO/glass substrates showed no evidence of crystallinity in XRD and SEM studies. After flash annealing in air, however, peaks characteristic of randomly oriented fcc NiO appeared in the XRD scans and the surface morphology became more granular in appearance. Such layers appear promising for the development of future dye-sensitised solar cell devices based on NiO grown by PLD. [reprint (PDF)] |
4. | Mid-wavelength infrared high operating temperature pBn photodetectors based on type-II InAs/InAsSb superlattice Donghai Wu, Jiakai Li, Arash Dehzangi, and Manijeh Razeghi AIP Advances 10, 025018-- February 11, 2020 ...[Visit Journal] A high operating temperature mid-wavelength infrared pBn photodetector based on the type-II InAs/InAsSb superlattice on a GaSb substrate has been demonstrated. At 150 K, the photodetector exhibits a peak responsivity of 1.48 A/W, corresponding to a quantum efficiency of 47% at −50 mV applied bias under front-side illumination, with a 50% cutoff wavelength of 4.4 μm. With an R×A of 12,783 Ω·cm² and a dark current density of 1.16×10−5A/cm² under −50 mV applied bias, the photodetector exhibits a specific detectivity of 7.1×1011 cm·Hz½/W. At 300 K, the photodetector exhibits a dark current density of 0.44 A/cm²and a quantum efficiency of 39%, resultingin a specific detectivity of 2.5×109 cm·Hz½/W. [reprint (PDF)] |
4. | Fabrication and characterization of novel hybrid green light emitting didoes based on substituting n-type ZnO for n-type GaN in an inverted p-n junction C. Bayram, D. Rogers, F. H. Teherani, and M. Razeghi Journal of Vacuum Science and Technology B, Vol. 27, No. 3, May/June, p. 1784-1788-- May 29, 2009 ...[Visit Journal] Details of the fabrication and characterization of hybrid green light emitting diodes, composed of
n-ZnO/(InGaN/GaN) multi-quantum-wells/p-GaN on AlN/sapphire, are reported. Scanning electron
microscope, atomic force microscopy, high resolution x-ray diffraction, and photoluminescence
were used to study the hybrid device. The effects of solvents, annealing, and etching on n-ZnO are
discussed. Successful hybridization of ZnO and (In)GaN into a green light emitting diode was
realized. [reprint (PDF)] |
4. | Evaluating the size-dependent quantum efficiency loss in a SiO2-Y2O3 hybrid gated type-II InAs/GaSb long-infrared photodetector array G. Chen , A. M. Hoang , and M. Razeghi Applied Physics Letters 104 , 103509 (2014)-- March 14, 2014 ...[Visit Journal] Growing Y2O3 on 20 nm SiO2 to passivate a 11 μm 50% cut-off wavelength long-wavelength infrared type-II superlattice gated photodetector array reduces its saturated gate bias (VGsat ) to −7 V. Size-dependent quantum efficiency (QE) losses are evaluated from 400 μm to 57 μm size gated photodiode. Evolution of QE of the 57 μm gated photodiode with gate bias and diode operation bias reveals different surface recombination mechanisms. At 77 K and VG,sat , the 57 μm gated photodiode exhibits QE enhancement from 53% to 63%, and it has 1.2 × 10−5 A/cm² dark current density at −200 mV, and a specific detectivity of 2.3 × 1012 Jones. [reprint (PDF)] |
4. | Demonstration of InAsSb/AlInSb Double Heterostructure Detectors for Room Temperature Operation in the 5–8 μm Wavelength Range J.S. Wojkowski, H. Mohseni, J.D. Kim, and M. Razeghi SPIE Conference, San Jose, CA, -- January 27, 1999 ...[Visit Journal] We report the first demonstration of InAsSb/AlInSb double heterostructure detectors for room temperature operation. The structures were grown in a solid source molecular beam epitaxy reactor on semi-insulating GaAs substrate. The material was processed to 400x400 micrometer mesas using standard photolithography, etching, and metallization techniques. No optical immersion or surface passivation was used. The photovoltaic detectors showed a cutoff wavelength at 8 micrometer at 300 K. The devices showed a high quantum efficiency of 40% at 7 μm at room temperature. A responsivity of 300 mA/W was measured at 7 μm under a reverse bias of 0.25 V at 300 K resulting in a Johnson noise limited detectivity of 2x108 cm·Hz½/W. [reprint (PDF)] |
4. | Suppressing Spectral Crosstalk in Dual-Band LongWavelength Infrared Photodetectors With Monolithically Integrated Air-Gapped Distributed Bragg Reflectors Yiyun Zhang, Abbas Haddadi, Arash Dehzangi , Romain Chevallier, Manijeh Razeghi IEEE Journal of Quantum Electronics Volume: 55, Issue:1-- November 22, 2018 ...[Visit Journal] Antimonide-based type-II superlattices (T2SLs) have made possible the development of high-performance infrared cameras for use in a wide variety of thermal imaging applications, many of which could benefit from dual-band imaging. The performance of this material system has not reached its limits. One of the key issues in dual-band infrared photodetection is spectral crosstalk. In this paper, air-gapped distributed Bragg reflectors (DBRs) have been monolithically integrated between the two channels in long-/very long-wavelength dualband InAs/InAs1−xSbx/AlAs1−xSbx-based T2SLs photodetectors to suppress the spectral crosstalk. This air-gapped DBR has achieved a significant spectral suppression in the 4.5–7.5-µm photonic stopband while transmitting the optical wavelengths beyond 7.5 µm, which is confirmed by theoretical calculations, numerical simulation, and experimental results. [reprint (PDF)] |
4. | A study into the impact of sapphire substrate orientation on the properties of nominally-undoped β-Ga2O3 thin films grown by pulsed laser deposition F. H. Teherani; D. J. Rogers; V. E. Sandana; P. Bove; C. Ton-That; L. L. C. Lem; E. Chikoidze; M. Neumann-Spallart; Y. Dumont; T. Huynh; M. R. Phillips; P. Chapon; R. McClintock; M. Razeghi Proceedings Volume 10105, Oxide-based Materials and Devices VIII; 101051R-- March 23, 2017 ...[Visit Journal] Nominally-undoped Ga2O3 layers were deposited on a-, c- and r-plane sapphire substrates using pulsed laser deposition. Conventional x-ray diffraction analysis for films grown on a- and c-plane sapphire showed the layers to be in the β-Ga2O3 phase with preferential orientation of the (-201) axis along the growth direction. Pole figures revealed the film grown on r-plane sapphire to also be in theβ-Ga2O3 phase but with epitaxial offsets of 29.5°, 38.5° and 64° from the growth direction for the (-201) axis. Optical transmission spectroscopy indicated that the bandgap was ~5.2eV, for all the layers and that the transparency was > 80% in the visible wavelength range. Four point collinear resistivity and Van der Pauw based Hall measurements revealed the β-Ga2O3 layer on r-plane sapphire to be 4 orders of magnitude more conducting than layers grown on a- and c-plane sapphire under similar conditions. The absolute values of conductivity, carrier mobility and carrier concentration for the β-Ga2O3 layer on r-sapphire (at 20Ω-1.cm-1, 6 cm2/Vs and 1.7 x 1019 cm-3, respectively) all exceeded values found in the literature for nominally-undoped β-Ga2O3 thin films by at least an order of magnitude. Gas discharge optical emission spectroscopy compositional depth profiling for common shallow donor impurities (Cl, F, Si and Sn) did not indicate any discernable increase in their concentrations compared to background levels in the sapphire substrate. It is proposed that the fundamentally anisotropic conductivity in β-Ga2O3 combined with the epitaxial offset of the (-201) axis observed for the layer grown on r-plane sapphire may explain the much larger carrier concentration, electrical conductivity and mobility compared with layers having the (-201) axis aligned along the growth direction. [reprint (PDF)] |
4. | Quantum Dot Infrared Photodetectors: Comparison Experiment and Theory H. Lim, W. Zhang, S. Tsao, T. Sills, J. Szafraniec, K. Mi, B. Movaghar, and M. Razeghi Virtual Journal of Nanoscale Science and Technology 12 (9)-- August 29, 2005 ...[Visit Journal][reprint (PDF)] |
4. | World's first demonstration of type-II superlattice dual band 640 x 512 LWIR focal plane array E.K. Huang and M. Razeghi SPIE Proceedings, Vol. 8268, p. 82680Z-- January 22, 2012 ...[Visit Journal] High resolution multi-band infrared detection of terrestrial objects is useful in applications such as long range and high altitude surveillance. In this paper, we present a 640 x 512 type-II superlattice focal plane array (FPA) in the long-wave infrared (LWIR) suitable for such purposes, featuring 100% cutoff wavelengths at 9.5 μm (blue channel) and 13 μm (red). The dual band camera is single-bump hybridized to an Indigo 30 μm pitch ISC0905 read-out integrated circuit. Test pixels revealed background limited behavior with specific detectivities as high as ~5x1011 Jones at 7.9 μm (blue) and ~1x1011 Jones at 10.2 μm (red) at 77K. [reprint (PDF)] |
4. | High-power, room-temperature and continuous-wave operation of distributed-feedback quantum-cascade lasers at λ = 4.8 µm J.S. Yu, S. Slivken, S.R. Darvish, A. Evans, B. Gokden and M. Razeghi Virtual Journal of Nanoscale Science and Technology 12 (5)-- August 1, 2005 ...[Visit Journal][reprint (PDF)] |
4. | Thin-Film Antimonide-Based Photodetectors Integrated on Si Yiyun Zhang , Member, IEEE, Abbas Haddadi, Member, IEEE, Romain Chevallier, Arash Dehzangi, Member, IEEE, and Manijeh Razeghi , Life Fellow, IEEE IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 54, NO. 2-- April 1, 2018 ...[Visit Journal] Monolithic integration of antimonide (Sb)-based
compound semiconductors on Si is in high demand to enrich silicon photonics by extending the detection range to longer infrared wavelengths. In this paper, we have demonstrated the damage-free transfer of large-area (1×1 cm² ) narrow-bandgap Sb-based type-II superlattice (T2SL)-based thin-film materials onto a Si substrate using a combination of wafer-bonding and chemical epilayer release techniques. An array of Sb-based T2SL-based long-wavelength infrared (LWIR) photodetectors with diameters from 100 to 400 μm has been successfully fabricated using standard "top–down" processing technique. The transferred LWIR photodetectors exhibit a cut-off wavelength of λ 8.6 μm at 77 K. The dark current density of the transferred photodetectors under 200 mV applied bias at 77 K is as low as
5.7×10−4 A/cm² and the R×A reaches 66.3 Ω·cm², exhibiting no electrical degradation compared with reference samples on GaSb native substrate. The quantum efficiency and peak responsivity at 6.75 μm (@77 K, 200 mV) are 46.2% and 2.44 A/W, respectively. The specific detectivity (D*) at 6.75 μm reaches as
high as 1.6×1011 cm·Hz1/2/W under 200 mV bias at 77 K. Our method opens a reliable pathway to realize high performance
and practical Sb-based optoelectronic devices on a Si platform.
[reprint (PDF)] |
4. | p-Type thin film field effect transistors based on lithium-doped nickel oxide channels grown by pulsed laser deposition V. E. Sandana; D. J. Rogers; F. H. Teherani; P. Bove; R. McClintock; M. Razeghi SPIE Proceedings Volume 10919, Oxide-based Materials and Devices X; 109191H -- March 12, 2019 ...[Visit Journal] Staggered back-gated Field Effect Transistor (FET) structures were made by growing Li-doped NiO on Si3N4/SiO2/Si (111) using room temperature pulsed laser deposition. Optical studies showed over 80% transmission for the NiO:Li channel at wavelengths > 500nm. The MISFET revealed rectifying transfer characteristics, with a VON close to zero, a channel mobility of ~ 1 cm²/V·s, a gate leakage current (at +5V) of 0.8 mA and an ION/IOFF ratio (at a Vgs of −15V) of ~ 103. The transistors showed enhancement-mode output characteristics indicative of a p-type channel with sharp pinchoff, hard saturation, a comparatively high (milliampere range) Id and a relatively low on-resistance of ~11 kΩ. Hence the adoption of Li doping in NiO channels would appear to be a promising approach to obtain p-type TFTs with superior transparency, speed and energy efficiency. [reprint (PDF)] |
4. | Room temperature continuous wave operation of quantum cascade lasers with watt-level optical power Y. Bai, S.R. Darvish, S. Slivken, W. Zhang, A. Evans, J. Nguyen and M. Razeghi Applied Physics Letters, Vol. 92, No. 10, p. 101105-1-- March 10, 2008 ...[Visit Journal] We demonstrate quantum cascade lasers at an emitting wavelength of 4.6 µm, which are capable of room temperature, high power continuous wave (cw) operation. Buried ridge geometry with a width of 9.8 µm was utilized. A device with a 3 mm cavity length that was epilayer-down bonded on a diamond submount exhibited a maximum output power of 1.3 W at room temperature in cw operation. The maximum output power at 80 K was measured to be 4 W, with a wall plug efficiency of 27%. [reprint (PDF)] |
4. | Type-II superlattice-based extended short-wavelength infrared focal plane array with an AlAsSb/GaSb superlattice etch-stop layer to allow near-visible light detection Romain Chevallier, Arash Dehzangi, Abbas Haddadi, and Manijeh Razeghi Optics Letters Vol. 42, Iss. 21, pp. 4299-4302-- October 17, 2017 ...[Visit Journal] A versatile infrared imager capable of imaging the near-visible to the extended short-wavelength infrared (e-SWIR) is demonstrated using e-SWIR InAs/GaSb/AlSb type-II superlattice-based photodiodes. A bi-layer etch-stop scheme consisting of bulk InAs0.91Sb0.09 and AlAs0.1Sb0.9/GaSb superlattice layers is introduced for substrate removal from the hybridized back-side illuminated photodetectors. The implementation of this new technique on an e-SWIR focal plane array results in a significant enhancement in the external quantum efficiency (QE) in the 1.8–0.8μm spectral region, while maintaining a high QE at wavelengths longer than 1.8μm. Test pixels exhibit 100% cutoff wavelengths of ∼2.1 and ∼2.25μm at 150 and 300K, respectively. They achieve saturated QE values of 56% and 68% at 150 and 300K, respectively, under back-side illumination and without any anti-reflection coating. At 150K, the photodetectors (27μm×27μm area) exhibit a dark current density of 4.7×10−7 A/cm2 under a −50 mV applied bias providing a specific detectivity of 1.77×1012 cm·Hz1/2/W. At 300K, the dark current density reaches 6.6×10−2 A/cm2 under −50 mV bias, providing a specific detectivity of 5.17×109 cm·Hz1/2/W. [reprint (PDF)] |
4. | Study of Au coated ZnO nanoarrays for surface enhanced Raman scattering chemical sensing Gre´gory Barbillon, Vinod E. Sandana,Christophe Humbert, Benoit Be´lier, David J. Rogers, Ferechteh H. Teherani, Philippe Bove Ryan McClintock and Manijeh Razeghid J. Mater. Chem. C, 2017, 5, 3528-- March 20, 2017 ...[Visit Journal] At present, the simultaneous attainment of good reproducibility and high enhancement factors (EF) are key challenges in the development of surface enhanced Raman scattering (SERS)substrates for improved chemical and biological sensing. SERS
substrates are generally based on distributions of metallic nanoparticles/structures with different shapes and architectures which are prepared by either thermal dewetting, precipitation
from colloidal suspensions1–4 or advanced (e.g. deep UV or electron beam (EBL)) lithographic techniques.5–9 Although such substrates can exhibit large Raman enhancements, the former
two techniques (colloidal and thermal dewetting) give poor SERS reproducibility while deep UV and EBL are too expensive and/or complex for mass production. |
4. | Planar nBn type-II superlattice mid-wavelength infrared photodetectors using zinc ion-implantation Arash Dehzangi, Donghai Wu, Ryan McClintock, Jiakai Li, and Manijeh Razeghi Appl. Phys. Lett. 116, 221103 https://doi.org/10.1063/5.0010273-- June 2, 2020 ...[Visit Journal] In this Letter, we report the demonstration of zinc ion-implantation to realize planar mid-wavelength infrared photodetectors based on type-II InAs/InAs1−xSbx superlattices. At 77 K, the photodetectors exhibit a peak responsivity of 0.68 A/W at 3.35 μm, corresponding to a quantum efficiency of 23.5% under Vb = −80 mV, without anti-reflection coating; these photodetectors have a 100% cutoff wavelength of 4.28 μm. With an R0 × A value of 1.53 × 104 Ω cm2 and a dark current density of 1.23 × 10−6 A/cm2 under an applied bias of −80 mV at 77 K, the photodetectors exhibit a specific detectivity of 9.12 × 1011 cm·Hz1/2/W. [reprint (PDF)] |
4. | Solar-Blind Deep UV Avalanche Photodetectors Using Reduced Area Epitaxy Lakshay Gautam , Junhee Lee, Michael Richards, and Manijeh Razeghi , Lakshay Gautam, Manijeh Razeghi, IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 59, NO. 6, 10.1109/JQE.2023.3325254 ...[Visit Journal] We report high gain avalanche photodetectors operating in the deep UV wavelength regime. The high gain was
leveraged through reduced area epitaxy by patterning AlN on
Sapphire substrate. This helps in a substantial reduction of crack
formation due to overgrowth on individually isolated AlN mesas.
Reproducible gain on the order of 105 was reported for multiple
diodes in different areas of 320 × 256 focal plane array. [reprint (PDF)] |
4. | Anomalous Hall Effect in InSb Layers Grown by MOCVD on GaAs Substrates C. Besikci, Y.H. Choi, R. Sudharsanan, and M. Razeghi Journal of Applied Physics 73 (10)-- May 15, 1993 ...[Visit Journal] InSb epitaxial layers have been grown on GaAs substrates by low‐pressure metalorganic chemical vapor deposition. A 3.15 μm thick film yielded an x‐ray full width at half maximum of 171 arcsec. A Hall mobility of 76 200 cm²/V· s at 240 K and a full width at half maximum of 174 arcsec have been measured for a 4.85 μm thick epilayer. Measured Hall data have shown anomalous behavior. A decrease in Hall mobility with decreasing temperature has been observed and room‐temperature Hall mobility has increased with thickness. In order to explain the anomalous Hall data, and the thickness dependence of the measured parameters, the Hall coefficient and Hall mobility have been simulated using a three‐layer model including a surface layer, a bulklike layer, and an interface layer with a high density of defects. Theoretical analysis has shown that anomalous behavior can be attributed to donor-like defects caused by the large lattice mismatch and to a surface layer which dominates the transport in the material at low temperatures. [reprint (PDF)] |
4. | High Quantum Efficiency AlGaN Solar-Blind Photodetectors R. McClintock, A. Yasan, K. Mayes, D. Shiell, S.R. Darvish, P. Kung and M. Razeghi Applied Physics Letters, 84 (8)-- February 23, 2004 ...[Visit Journal] We report AlGaN-based back-illuminated solar-blind ultraviolet p-i-n photodetectors with a peak responsivity of 136 mA/W at 282 nm without bias. This corresponds to a high external quantum efficiency of 60%, which improves to a value as high as 72% under 5 V reverse bias. We attribute the high performance of these devices to the use of a very-high quality AlN and Al0.87Ga0.13N/AlN superlattice material and a highly conductive Si–In co-doped Al0.5Ga0.5N layer [reprint (PDF)] |
4. | Recent advances in high performance antimonide-based superlattice FPAs E.K. Huang, B.M. Nguyen, S.R. Darvish, S. Abdollahi Pour, G. Chen, A. Haddadi, and M.A. Hoang SPIE Proceedings, Infrared technology and Applications XXXVII, Orlando, FL, Vol. 8012, p. 80120T-1-- April 25, 2011 ...[Visit Journal] Infrared detection technologies entering the third generation demand performances for higher detectivity, higher operating temperature, higher resolution and multi-color detection, all accomplished with better yield and lower manufacturing/operating costs. Type-II antimonide based superlattices (T2SL) are making firm steps toward the new era of focal plane array imaging as witnessed in the unique advantages and significant progress achieved in recent years. In this talk, we will present the four research themes towards third generation imagers based on T2SL at the Center for Quantum Devices. High performance LWIR megapixel focal plane arrays (FPAs) are demonstrated at 80K with an NEDT of 23.6 mK using f/2 optics, an integration time of 0.13 ms and a 300 K background. MWIR and LWIR FPAs on non-native GaAs substrates are demonstrated as a proof of concept for the cost reduction and mass production of this technology. In the MWIR regime, progress has been made to elevate the operating temperature of the device, in order to avoid the burden of liquid nitrogen cooling. We have demonstrated a quantum efficiency above 50%, and a specific detectivity of 1.05x1012 cm·Hz1/2/W at 150 K for 4.2 μm cut-off single element devices. Progress on LWIR/LWIR dual color FPAs as well as novel approaches for FPA fabrication will also be discussed. [reprint (PDF)] |
4. | Sb-based infrared materials and photodetectors for the 3-5 and 8-12 μm range E. Michel, J.D. Kim, S. Park, J. Xu, I. Ferguson, and M. Razeghi SPIE Photonics West '96 'Photodetectors: Materials and Devices'; Proceedings 2685-- January 27, 1996 ...[Visit Journal] In this paper, we report on the growth of InSb on (100) Si and (111)B GaAs substrates and the growth of InAsSb alloys for longer wavelength applications. The fabrication and characterization of photodetectors based on these materials are also reported. Both photoconductive and photovoltaic devices are investigated. The photodiodes are InSb p-i-n structures and InSb/InAs1-xSbx/InSb double heterostructures grown on (100) and (111)B semi-insulating GaAs and Si substrates by low pressure metalorganic chemical vapor deposition and solid source molecular beam epitaxy. The material parameters for device structures have been optimized through theoretical calculations based on fundamental mechanisms. InSb p-i-n photodiodes with peak responsivities approximately 103 V/W were grown on Si and (111) GaAs substrates. An InAsSb photovoltaic detector with a composition of x equals 0.85 showed photoresponse up to 13 micrometers at 300 K with a peak responsivity of 9.13 X 10-2 V/W at 8 micrometers . The R0A product of InAsSb detectors has been theoretically and experimentally analyzed. [reprint (PDF)] |
4. | High power, low divergent, substrate emitting quantum cascade ring laser in continuous wave operation D. H. Wu and M. Razeghi APL Materials 5, 035505-- March 21, 2017 ...[Visit Journal] We demonstrate a surface grating coupled substrate emitting quantum cascade ring laser with high power room temperature continuous wave operation at 4.64
μm
μm
. A second order surface metal/semiconductor distributed-feedback grating is used for in-plane feedback and vertical out-coupling. A device with 400
μm
μm
radius ring cavity exhibits an output power of 202 mW in room temperature continuous wave operation. Single mode operation with a side mode suppression ratio of 25 dB is obtained along with a good linear tuning with temperature. The far field measurement exhibits a low divergent concentric ring beam pattern with a lobe separation of ∼0.34°, which indicates that the device operates in fundamental mode (n = 1). [reprint (PDF)] |
4. | Background Limited Performance in p-doped GaAs/Ga[0.71]In[0.29]As[0.39]P[0.61] Quantum Well Infrared Photodetectors J. Hoff, S. Kim, M. Erdtmann, R. Williams, J. Piotrowski, E. Bigan, M. Razeghi and G. Brown Applied Physics Letters 67 (1)-- July 3, 1995 ...[Visit Journal] Background limited infrared photodetection has been achieved up to 100 K at normal incidence with p-type GaAs/Ga0.71In0.29As0.39P0.61 quantum well intersubband photodetectors grown by low-pressure metalorganic chemical vapor deposition. Photoresponse covers the wavelength range from 2.5 μm up to 7 μm. The device shows photovoltaic response, the cutoff wavelength increases slightly with bias, and the responsivity increases nonlinearly with bias. These effects are attributed to an asymmetric quantum well profile. [reprint (PDF)] |
4. | Recent advances in antimonide-based gap-engineered Type-II superlattices material system for 2 and 3 colors infrared imagers Manijeh. Razeghi, Abbas Haddadi, Arash Dehzangi, Romain Chevallier, and Thomas Yang Proceedings of SPIE 10177, Infrared Technology and Applications XLIII, 1017705-- May 9, 2017 ...[Visit Journal] InAs/InAs1-xSbx/AlAs1-xSbx type-II superlattices (T2SLs) is a system of multi-interacting quantum wells. Since its introduction, this material system has drawn a lot of attention especially for infrared detection. In recent years, InAs/InAs1-
xSbx/AlAs1-xSbx T2SL material system has experienced incredible improvements in material quality, device structure designs and device fabrication process which elevated the performances of T2SL-based photodetectors to a comparable
level to the state-of-the-art material systems for infrared detection such as Mercury Cadmium Telluride (MCT). In this paper, we will present the current status of InAs/InAs1-xSbx/AlAs1-xSbx T2SL-based photodetectors for detection in
different infrared regions, from short-wavelength (SWIR) to long-wavelength (LWIR) infrared, and the future outlook of this material system. [reprint (PDF)] |
Page 3 of 28: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 >> Next (676 Items)
|