Page 23 of 28:  Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23  24 25 26 27 28  >> Next  (677 Items)

1.  Dark current suppression in Type-II InAs/GaSb superlattice long wavelength infrared photodiodes with M-structure barrier
B.M. Nguyen, D. Hoffman, P.Y. Delaunay, and M. Razeghi
Applied Physics Letters, Vol. 91, No. 16, p. 163511-1-- October 15, 2007 ...[Visit Journal]
We presented an alternative design of Type-II superlattice photodiodes with the insertion of a mid-wavelength infrared M-structure AlSb/GaSb/InAs/GaSb/AlSb superlattice for the reduction of dark current. The M-structure superlattice has a larger carrier effective mass and a greater band discontinuity as compared to the standard Type-II superlattices at the valence band. It acts as an effective medium that weakens the diffusion and tunneling transport at the depletion region. As a result, a 10.5 µm cutoff Type-II superlattice with 500 nm M-superlattice barrier exhibited a R0A of 200 cm2 at 77 K, approximately one order of magnitude higher than the design without the barrier. The quantum efficiency of such structures does not show dependence on either barrier thickness or applied bias. [reprint (PDF)]
 
1.  High differential resistance type-II InAs/GaSb superlattice photodiodes for the long-wavelength infrared
A. Hood, D. Hoffman, B.M. Nguyen, P.Y. Delaunay, E. Michel and M. Razeghi
Applied Physics Letters, 89 (9)-- August 28, 2006 ...[Visit Journal]
Type-II InAs/GaSb superlattice photodiodes with a 50% cutoff wavelength ranging from 11 to 13 μm are presented. Optimization of diffusion limited photodiodes provided superlattice structures for improved injection efficiency in direct injection hybrid focal plane array applications. [reprint (PDF)]
 
1.  Positive and negative luminescence in binary Type-II InAs/GaSb superlattice photodiodes
D. Hoffman and M. Razeghi
SPIE Conference, San Jose, CA, Vol. 6127, pp. 61271H-- January 23, 2006 ...[Visit Journal]
In the present work, we show measurements of both positive and negative luminescence of binary Type-II InAs/GaSb superlattice photodiodes in the 3 to 13 μm spectral range. Through a radiometric calibration technique, we demonstrate temperature independent negative luminescence efficiencies of 45 % in the midwavelength (MWIR) sample from 220 K to 320 K without anti-reflective coating and values reaching 35 % in the long wavelength infrared (LWIR) spectrum sample. [reprint (PDF)]
 
1.  Passivation of Type-II InAs/GaSb Superlattice Photodiodes
A. Gin, Y. Wei, J. Bae, A. Hood, J. Nah, and M. Razeghi
International Conference on Metallurgical Coatings and Thin Films (ICMCTF), San Diego, CA; Thin Solid Films 447-448-- January 30, 2004 ...[Visit Journal]
Recently, excellent infrared detectors have been demonstrated using Type-II InAs/GaSb superlattice materials sensitive at wavelengths from 3 μm to greater than 32 μm. These results indicate that Type-II superlattice devices may challenge the preponderance of HgCdTe and other state-of-the-art infrared material systems. As such, surface passivation is becoming an increasingly important issue as progress is made towards the commercialization of Type-II devices and focal plane array applications. This work focuses on initial attempts at surface passivation of Type-II InAs/GaSb superlattice photodiodes using PECVD-grown thin layers of SiO2. Our results indicate that silicon dioxide coatings deposited at various temperatures improve photodetector resistivity by several times. Furthermore, reverse-bias dark current has been reduced significantly in passivated devices. [reprint (PDF)]
 
1.  Very High Average Power Quantum Cascade Lasers by GasMBE
S. Slivken and M. Razeghi
SPIE Conference, San Jose, CA, Vol. 4999, pp. 59-- January 27, 2003 ...[Visit Journal]
Very high average power QCLs are demonstrated within the 5.8 - 9 µm wavelength range. At longer wavelengths, scaling of the power is demonstrated by increasing the number of emitting regions in the waveguide core. At λ = 9 µm, over 3.5 W of peak power per facet has been demonstrated at room temperature for a single 25 µm by 3 mm diode, with an average power of 150 mW at 6% duty cycle. At shorter wavelengths, highly strain-balanced heterostructures are used to create a high coduction band offset and minimize leakage current. At λ = 6 µm, utilizing a high reflective coating and epilayer-down mounting of the laser, we demonstrate 225 mW of average power from a single facet at room temperature. Increasing the conduction band offset further and optimizing the doping in the injector region has led to demonstration of > 250 mW average power (λ = 5.8 µm) at > 50% duty cycle for a 20 µm by 2 mm HR coated diode bonded epilayer-down to a copper heatsink. Also at room temperature, use of Au electroplating and wider ridges has allowed us to further demonstrate without epilayer-down bonding, 0.67 W average power at 17% duty cycle from a single 40 µm by 2 mm HR coated laser. [reprint (PDF)]
 
1.  280 nm UV LEDs Grown on HVPE GaN Substrates
A. Yasan, R. McClintock, K. Mayes, S.R. Darvish, P. Kung, M. Razeghi, and R.J. Molnar
Opto-Electronics Review, 10 (4)-- January 1, 2002 ...[Visit Journal]
We report on the enhancement of optical and electrical properties of 280 nm UV LEDs using low dislocation density HVPE-grown GaN substrate. Compared with the same structure grown on sapphire, these LEDs show ~30% reduction in current-voltage differential resistance, ~15% reduction in turn-on voltage, more than 200% increase in output power slope efficiency and saturation at higher currents. Lower density of defects due to higher material quality and better heat dissipation are believed to be the reason behind these improvements. [reprint (PDF)]
 
1.  Growth and Characterization of Very Long Wavelength Type-II Infrared Detectors
H. Mohseni, A. Tahraoui, J. Wojkowski, M. Razeghi, W. Mitchel, and A. Saxler
SPIE Conference, San Jose, CA, -- January 26, 2000 ...[Visit Journal]
We report on the growth and characterization of type-II IR detectors with a InAs/GaSb superlattice active layer in the 15-19 μm wavelength range. The material was grown by molecular beam epitaxy on semi-insulating GaAs substrates. The material was processed into photoconductive detectors using standard photolithography, dry etching, and metalization. The 50 percent cut-off wavelength of the detectors is about 15.5 μm with a responsivity of 90 mA/W at 80 K. The 90 percent-10 percent cut-off energy width of the responsivity is only 17 meV which is an indication of the uniformity of the superlattices. These are the best reported values for type-II superlattices grown on GaAs substrates. [reprint (PDF)]
 
1.  8.5 μm Room Temperature Quantum Cascade Lasers Grown by Gas-Source Molecular Beam Epitaxy
S. Slivken and M. Razeghi
SPIE Conference, San Jose, CA, -- January 28, 1998 ...[Visit Journal]
We report room-temperature pulsed-mode operation of 8.5 μm quantum cascade lasers grown by gas-source molecular beam epitaxy. The theory necessary to understand the operation of the laser is presented and current problems are analyzed. Very good agreement is shown to exist between theoretical and experimental emission wavelengths. The high- temperature operation is achieved with 1 μs pulses at a repetition rate of 200 Hz. Peak output power in these conditions is in excess of 700 mW per 2 facets at 79 K and 25 mW at 300 K. Threshold current as a function of temperature shows an exponential dependence with T0 equals 188 K for a 1.5 mm cavity. [reprint (PDF)]
 
1.  Photoluminescence study of InAsSb/InAsSbP heterostructures grown by low-pressure metalorganic chemical vapor deposition
S. Kim, M. Erdtmann, D. Wu, E. Kaas, H. Yi, J. Diaz, and M. Razeghi
Applied Physics Letters 69 (11)-- September 9, 1996 ...[Visit Journal]
Photoluminescence has been measured for double‐ and separate‐confinement InAsSb/InAsSbP heterostructures grown by low‐pressure metalorganic vapor deposition. A measurement of the integrated luminescence intensity at the temperature range of 77–300 K shows that over a wide range of excitation level (1–5×10² W/cm²) the radiative transitions are the dominant. mechanism below T∼170 K. Auger recombination coefficient C=C0 exp(−Ea/kT) with C0≊5×10−27 cm6/s and Ea≊40 meV has been estimated. [reprint (PDF)]
 
1.  Well Resolved Room Temperature Photovoltage Spectra of GaAs-GaInP Quantum Wells and Superlattices
Xiaoguang He and Manijeh Razeghi
Applied Physics Letters 62 (6)-- February 8, 1993 ...[Visit Journal]
We report the first well resolved room‐temperature photovoltage spectra due to the sublevel transitions in the GaInP‐GaAs superlattices and multiquantum wells grown by low pressure metalorganic chemical vapor deposition. Sharp well resolved peaks attributed to exciton absorption of the electron‐to‐light hole and electron‐to‐heavy hole have been observed at room temperature. This indicates that GaAs‐GaInP is a promising material for the application of the modulators, optical switches, and optical bistable divices. Satisfactory agreements between experimental measurements and theoretical results have been obtained. These results demonstrate that photovoltage spectroscopy is a simple, but very powerful tool to study quantum confinement structures.   [reprint (PDF)]
 
1.  Room Temperature Operation of InTlSb Infrared Photodetectors on GaAs
J.D. Kim, E. Michel, S. Park, J. Xu, S. Javadpour and M. Razeghi
Applied Physics Letters 69 (3)-- August 15, 1996 ...[Visit Journal]
Long-wavelength InTlSb photodetectors operating at room temperature are reported. The photo- detectors were grown on (100) semi-insulating GaAs substrates by low-pressure metalorganic chemical vapor deposition. Photoresponse of InTlSb photodetectors is observed up to 11 µm at room temperature. The maximum responsivity of an In0.96Tl0.04Sb photodetector is about 6.64 V/W at 77 K, corresponding to a detectivity of about 7.64 × 108 cm·Hz½/W. The carrier lifetime in InTlSb photodetectors derived from the stationary photoconductivity is 10–50 ns at 77 K. [reprint (PDF)]
 
1.  Widely tuned room temperature terahertz quantum cascade laser sources based on difference-frequency generation
Q.Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai and M. Razeghi
Applied Physics Letters, Vol. 101, No. 25, p. 251121-1-- December 17, 2012 ...[Visit Journal]
We demonstrate room temperature THz quantum cascade laser sources with a broad spectral coverage based on intracavity difference-frequency generation. Two mid-infrared active cores based on the single-phonon resonance scheme are designed with a THz nonlinearity specially optimized at the high operating fields that correspond to the highest mid-infrared output powers. A Čerenkov phase-matching scheme along with integrated dual-period distributed feedback gratings are used for efficient THz extraction and spectral purification. Single mode emissions from 1.0 to 4.6 THz with a side-mode suppression ratio and output power up to 40 dB and 32 μW are obtained, respectively. [reprint (PDF)]
 
1.  Advances in UV sensitive visible blind GaN-based APDs
M. Ulmer, R. McClintock and M. Razeghi
SPIE Proceedings, San Francisco, CA (January 22-27, 2011), Vol. 7945, p. 79451G-- January 23, 2011 ...[Visit Journal]
In this paper, we describe our current state-of-the-art process of making visible-blind APDs based on GaN. We have grown our material on both conventional sapphire and low dislocation density free-standing c- and m-plane GaN substrates. Leakage current, gain, and single photon detection efficiency (SPDE) of these APDs are compared. The spectral response and Geiger-mode photon counting performance of UV APDs are studied under low photon fluxes. Single photon detection capabilities with over 30% are demonstrated. We show how with pulse height discrimination the Geiger-mode operation conditions can be optimized for enhanced SPDE versus dark counts. [reprint (PDF)]
 
1.  High performance quantum dot-quantum well infrared focal plane arrays
S. Tsao, A. Myzaferi, and M. Razeghi
SPIE Proceedings, San Francisco, CA (January 22-28, 2010), Vol. 7605, p. 76050J-1-- January 27, 2010 ...[Visit Journal]
Quantum dot (QD) devices are a promising technology for high operating temperature detectors. We have studied InAs QDs embedded in an InGaAs/InAlAs quantum well structure on InP substrate for middle wavelength infrared detectors and focal plane arrays (FPAs). This combined dot-well structure has weak dot confinement of carriers, and as a result, the device behavior differs significantly from that in more common dot systems with stronger confinement. We report on our studies of the energy levels in the QDWIP devices and on QD-based detectors operating at high temperature with D* over 1010 cm·Hz½/W at 150 K operating temperature and high quantum efficiency over 50%. FPAs have been demonstrated operating at up to 200 K. We also studied two methods of adapting the QDWIP device to better accommodate FPA readout circuit limitations. [reprint (PDF)]
 
1.  The importance of band alignment in VLWIR type-II InAs/GaSb heterodiodes containing the M-structure barrier
D. Hoffman, B.M. Nguyen, E.K. Huang, P.Y. Delaunay, S. Bogdanov, P. Manukar, M. Razeghi, and V. Nathan
SPIE Proceedings, San Jose, CA Volume 7222-15-- January 26, 2009 ...[Visit Journal]
The Type-II InAs/GaSb superlattice photon detector is an attractive alternative to HgCdTe photodiodes and QWIPS. The use of p+ - pi - M - N+ heterodiode allows for greater flexibility in enhancing the device performance. The utilization of the Empirical Tight Binding method gives the band structure of the InAs/GaSb superlattice and the new M- structure (InAs/GaSb/AlSb/GaSb) superlattice allowing for the band alignment between the binary superlattice and the M- superlattice to be determined and see how it affects the optical performance. Then by modifying the doping level of the M- superlattice an optimal level can be determined to achieve high detectivity, by simultaneously improving both photo-response and reducing dark current for devices with cutoffs greater than 14.5 µm. [reprint (PDF)]
 
1.  Beryllium compensation doping of InAs/GaSb infrared superlattice photodiodes
D. Hoffman, B.M. Nguyen, P.Y. Delaunay, A. Hood, M. Razeghi and J. Pellegrino
Applied Physics Letters, Vol. 91, No. 14, p. 143507-1-- October 1, 2007 ...[Visit Journal]
Capacitance-voltage measurements in conjunction with dark current measurements on InAs/GaSb long wavelength infrared superlattice photodiodes grown by molecular-beam epitaxy on GaSb substrates are reported. By varying the beryllium concentration in the InAs layer of the active region, the residually n-type superlattice is compensated to become slightly p-type. By adjusting the doping, the dominant dark current mechanism can be varied from diffusion to Zener tunneling. Minimization of the dark current leads to an increase of the zero-bias differential resistance from less than 4 to 32 cm2 for a 100% cutoff of 12.05 µm [reprint (PDF)]
 
1.  High-power, continuous-operation intersubband laser for wavelengths greater than 10 micron
S. Slivken, A. Evans, W. Zhang and M. Razeghi
Applied Physics Letters, Vol. 90, No. 15, p. 151115-1-- April 9, 2007 ...[Visit Journal]
In this letter, high-power continuous-wave emission (>100 mW) and high temperature operation (358 K) at a wavelength of 10.6 µm is demonstrated using an individual diode laser. This wavelength is advantageous for many medium-power applications previously reserved for the carbon dioxide laser. Improved performance was accomplished using industry-standard InP-based materials and by careful attention to design, growth, and fabrication limitations specific to long-wave infrared semiconductor lasers. The main problem areas are explored with regard to laser performance, and general steps are outlined to minimize their impact. [reprint (PDF)]
 
1.  Performance characteristics of high-purity mid-wave and long-wave infrared type-II InAs/GaSb superlattice infrared photodiodes
A. Hood, M. Razeghi, V. Nathan and M.Z. Tidrow
SPIE Conference, San Jose, CA, Vol. 6127, pp. 61270U-- January 23, 2006 ...[Visit Journal]
The authors report on recent advances in the development of mid-, long-, and very long-wavelength infrared (MWIR, LWIR, and VLWIR) Type-II InAs/GaSb superlattice infrared photodiodes. The residual carrier background of binary Type-II InAs/GaSb superlattice photodiodes of cut-off wavelengths around 5 µm has been studied in the temperature range between 10 and 200 K. A four-point, capacitance-voltage technique on mid-wavelength and long-wavelength Type-II InAs/GaSb superlattice infrared photodiodes reveal residual background concentrations around 5×1014 cm-3. Additionally, recent progress towards LWIR photodiodes for focal plane array imaging applications is presented. [reprint (PDF)]
 
1.  High Quantum Efficiency Solar-Blind Photodetectors
R. McClintock, A. Yasan, K. Mayes, D. Shiell, S. Darvish, P. Kung and M. Razeghi
SPIE Conference, Jose, CA, Vol. 5359, pp. 434-- January 25, 2004 ...[Visit Journal]
We report AlGaN-based back-illuminated solar-blind p-i-n photodetectors with a record peak responsivity of 150 mA/W at 280 nm, corresponding to a high external quantum efficiency of 68%, increasing to 74% under 5 volts reverse bias. Through optimization of the p-AlGaN layer, we were able to remove the out-of-band negative photoresponse originating from the Schottky-like p-type metal contact, and hence significantly improve the degree of solar-blindness [reprint (PDF)]
 
1.  Electrical Characterization of AlxGa1-xN for UV Photodetector Applications
A. Saxler, M. Ahoujja, W.C. Mitchel, P. Kung, D. Walker, and M. Razeghi
SPIE Conference, San Jose, CA, -- January 27, 1999 ...[Visit Journal]
Ultraviolet photodetectors have many military and commercial applications. However, for many of these applications, the photodetectors must be solar blind. This means that the photodetectors must have a cutoff wavelength of less than about 270 nm. Semiconductor based devices would then need energy gaps of over 4.6 eV. In the AlxGa1-xN system, the aluminum mole fraction, x, required is over 40%. As the energy gap is increased, doping becomes much more difficult, especially p-type doping. This report is a study of the electrical properties of AlxGa1-xN to enable better control of the doping. Magnesium doped p-type AlxGa1-xN has been studied using high-temperature Hall effect measurements. The acceptor ionization energy has been found to increase substantially with the aluminum content. Short-period superlattices consisting of alternating layers of GaN:Mg and AlGaN:Mg were also grown by low-pressure organometallic vapor phase epitaxy. The electrical properties of these superlattices were measured as a function of temperature and compared to conventional AlGaN:Mg layers. It is shown that the optical absorption edge can be shifted to shorter wavelengths while lowering the acceptor ionization energy by using short- period superlattice structures instead of bulk-like AlGaN:Mg. Silicon doped n-type films have also been studied. [reprint (PDF)]
 
1.  GaN p-i-n photodiodes with high visible-to-ultraviolet rejection ratio
P. Kung, X. Zhang, D. Walker, A. Saxler, and M. Razeghi
SPIE Conference, San Jose, CA, -- January 28, 1998 ...[Visit Journal]
UV photodetectors are critical components in many applications, including UV astronomy, flame sensors, early missile threat warning and space-to-space communications. Because of the presence of strong IR radiation in these situations, the photodetectors have to be solar blind, i.e. able to detect UV radiation while not being sensitive to IR. AlxGa1-xN is a promising material system for such devices. AlxGa1-xN materials are wide bandgap semiconductors, with a direct bandgap whose corresponding wavelength can be continuously tuned from 200 to 365 nm. AlxGa1-xN materials are thus insensitive to visible and IR radiation whose wavelengths are higher than 365 nm. We have already reported the fabrication and characterization of AlxGa1-xN-based photoconductors with a cut-off wavelength tunable from 200 to 365 nm by adjusting the ternary alloy composition. Here, we present the growth and characterization of GaN p-i- n photodiodes which exhibit a visible-to-UV rejection ratio of 6 orders or magnitude. The thin films were grown by low pressure metalorganic chemical vapor deposition. Square mesa structures were fabricated using dry etching, followed by contact metallization. The spectral response, rejection ratio and transient response of these photodiodes is reported. [reprint (PDF)]
 
1.  The Molecular Beam Epitaxial Growth of InSb on (111) GaAs
E. Michel, J. Kim, J. Xu, S. Javadpour, I. Ferguson, and M. Razeghi
Applied Physics Letters 69 (2)-- July 8, 1996 ...[Visit Journal]
The molecular beam epitaxial growth of InSb on (111)B GaAs has been investigated. It was found that for a given Sb/In ratio, a higher growth temperature was required for the growth of InSb on (111)B GaAs compared to that on (001) GaAs. This difference has been attributed to the bonding characteristics of the (111)B and (001) surface. Once growth had been optimized, it was found that the material characteristics of (111)B InSb were almost identical to that of (001) InSb, i.e., independent of orientation. For example, the x-ray full width at half-maximum and 300 K mobility had the same absolute values for (111) InSb and (001)InSb and followed the same dependence with the sample thickness. Te was found to be a well-behaved n-type dopant for (111)B InSb. [reprint (PDF)]
 
1.  

-- November 30, 1999
 
1.  High power, room temperature, Terahertz sources and frequency comb based on Difference frequency generation at CQD
Manijeh Razeghi
Proc. of SPIE 12230, 1223006, September 2022 ...[Visit Journal]
Quantum cascade laser (QCL) is becoming the leading laser source in the mid-infrared and terahertz range due to its rapid development in power, efficiency, and spectral covering range. Owing to its unique intersubband transition and fast carrier lifetime, QCL possesses strong nonlinear susceptibilities that makes it the ideal platform for a variety of nonlinear optical generations. Among this, terahertz (THz) source based on difference-frequency generation (DFG)and frequency comb based on four wave mixing effect are the most exciting phenomena which could potentially revolutionize spectroscopy in mid-infrared (mid-IR) and THz spectral range. In this paper, we will briefly discuss the recent progress of our research. This includes high power high efficiency QCLs, high power room temperature THz sources based on DFG-QCL, room temperature THz frequency comb, and injection locking of high-power QCL frequency combs. The developed QCLs are great candidates as next generation mid-infrared source for spectroscopy and sensing. [reprint (PDF)]
 
1.  Status of III-V semiconductor thin films and their applications to future OEICs
Manijeh Razeghi
Proc. SPIE 10267, Integrated Optics and Optoelectronics, 102670T -- June 26, 2017 ...[Visit Journal]
In the last decade, semiconductor technology has been advanced to a great extent in terms of electronic and photonic discrete devices. One of the main reasons for such a progress, is the result of advancement in the epitaxial growth techniques such as molecular beam epitaxy (MBE) and metalorganic chemical vapor deposition (MOCVD), where device quality films can be grown with great control over composition, uniformity and thickness. MOCVD has proven to be one of the best growth methods for many IH-V semiconductor thin films 1. Its flexibility and potential to yield a broad range of growth rates resulted in the layers featuring the thicknesses from tens of microns down to several nanometers. Planar structures containing quantum wells with atomically flat interfaces, superlattices, strained or graded-index layers were successfully grown by MOCVD. Furthermore, MOCVD proved its efficiency in producing a laser devices by overgrowth and epitaxy on patterned substrates. The importance of MOCVD is strongly enhanced by the possibility of large-scale production by simultaneous growth on several substrates in one process. Several III-V semiconductor films with bandgaps ranging from infrared to ultraviolet (15 to 0.2 μm) have been successfully grown by MOCVD. [reprint (PDF)]
 

Page 23 of 28:  Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23  24 25 26 27 28  >> Next  (677 Items)