Page 19 of 28:  Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19  20 21 22 23 24 25 26 27 28  >> Next  (676 Items)

2.  Optical Absorption and Photoresponse in fully Quaternary p-type Quantum Well Detectors
J. Hoff, C. Jelen, S. Slivken, G.J. Brown, and M. Razeghi
SPIE Photonics West '96 Photodetectors: Materials and Devices; Proceedings 2685-- January 27, 1996 ...[Visit Journal]
Acceptor doped, non-strained aluminum-free Quantum Well Intersubband Photodetectors lattice matched to GaAs with Ga0.79In0.21As0.59P0.41 wells and Ga0.62In0.38As0.22P0.78 barriers have been demonstrated on semi-insulating GaAs substrates. These devices which operate at normal incidence demonstrate a unique spectral response which extends from approximately 2 μm up to 10 μm. To explain such a broad spectral shape, a detailed theoretical analysis based on the 8 x 8 Kane Hamiltonian was necessary to probe all aspect of optical absorption. The results of this analysis revealed that spectral shape results from the influence of the Spin Split-off band on the band structure and the optical matrix. [reprint (PDF)]
 
2.  The correlation between x-ray diffraction patterns and strain distribution inside GaInP/GaAs superlattices
X.G. He, M. Erdtmann, R. Williams, S. Kim, and M. Razeghi
Applied Physics Letters 65 (22)-- November 28, 1994 ...[Visit Journal]
Strong correlation between x‐ray diffraction characteristics and strain distribution inside GaInP/GaAs superlattices has been reported. It is found that the symmetry of (002) diffraction patterns can be used to evaluate the interface strain status. A sample with no interfacial strains has a symmetric (002) diffraction pattern and weak (004) diffraction pattern. It is also demonstrated that strain distribution in superlattices can be readily estimated qualitatively by analyzing x-ray diffraction patterns. [reprint (PDF)]
 
2.  Investigations on the substrate dependence of the properties in nominally-undoped β-Ga2O3 thin films grown by PLD
F. H. Teherani ; D. J. Rogers ; V. E. Sandana ; P. Bove ; C. Ton-That ; L. L. C. Lem ; E. Chikoidze ; M. Neumann-Spallart ; Y. Dumont ; T. Huynh ; M. R. Phillips ; P. Chapon ; R. McClintock ; M. Razeghi
Proc. SPIE 10105, Oxide-based Materials and Devices VIII, 101051R-OLD-- March 23, 2017 ...[Visit Journal]
Nominally-undoped Ga2O3 layers were deposited on a-, c- and r-plane sapphire substrates using pulsed laser deposition. Conventional x-ray diffraction analysis for films grown on a- and c-plane sapphire showed the layers to be in the β-Ga2O3 phase with preferential orientation of the (-201) axis along the growth direction. Pole figures revealed the film grown on r-plane sapphire to also be in the β-Ga2O3 phase but with epitaxial offsets of 29.5°, 38.5° and 64° from the growth direction for the (-201) axis. Optical transmission spectroscopy indicated that the bandgap was ~5.2eV, for all the layers and that the transparency was > 80% in the visible wavelength range. Four point collinear resistivity and Van der Pauw based Hall measurements revealed the β-Ga2O3 layer on r-plane sapphire to be 4 orders of magnitude more conducting than layers grown on a- and c-plane sapphire under similar conditions. The absolute values of conductivity, carrier mobility and carrier concentration for the β-Ga2O3 layer on r-sapphire (at 20Ω-1.cm-1, 6 cm²/Vs and 1.7 x 1019 cm-3, respectively) all exceeded values found in the literature for nominally-undoped β-Ga2O3 thin films by at least an order of magnitude. Gas discharge optical emission spectroscopy compositional depth profiling for common shallow donor impurities (Cl, F, Si and Sn) did not indicate any discernable increase in their concentrations compared to background levels in the sapphire substrate. It is proposed that the fundamentally anisotropic conductivity in β-Ga2O3 combined with the epitaxial offset of the (-201) axis observed for the layer grown on r-plane sapphire may explain the much larger carrier concentration, electrical conductivity and mobility compared with layers having the (-201) axis aligned along the growth direction. [reprint (PDF)]
 
2.  Low irradiance background limited type-II superlattice MWIR M-barrier imager
E.K. Huang, S. Abdollahi Pour, M.A. Hoang, A. Haddadi, M. Razeghi and M.Z. Tidrow
OSA Optics Letters (OL), Vol. 37, No. 11, p. 2025-2027-- June 1, 2012 ...[Visit Journal]
We report a type-II superlattice mid-wave infrared 320 × 256 imager at 81 K with the M-barrier design that achieved background limited performance (BLIP) and ∼99%operability. The 280 K blackbody’s photon irradiance was limited by an aperture and a band-pass filter from 3.6 μm to 3.8 μm resulting in a total flux of ∼5 × 1012 ph·cm−2·s−1. Under these low-light conditions, and consequently the use of a 13.5 ms integration time, the imager was observed to be BLIP thanks to a ∼5 pA dark current from the 27 μm wide pixels. The total noise was dominated by the photon flux and read-out circuit which gave the imager a noise equivalent input of ∼5 × 1010 ph·cm−2·s−1 and temperature sensitivity of 9 mK with F∕2.3 optics. Excellent imagery obtained using a 1-point correction alludes to the array’s uniform responsivity. [reprint (PDF)]
 
2.  Novel process for direct bonding of GaN onto glass substrates using sacrificial ZnO template layers to chemically lift-off GaN from c-sapphire
Rogers, D. J.; Ougazzaden, A.; Sandana, V. E.; Moudakir, T.; Ahaitouf, A.; Teherani, F. Hosseini; Gautier, S.; Goubert, L.; Davidson, I. A.; Prior, K. A.; McClintock, R. P.; Bove, P.; Drouhin, H.-J.; Razeghi, M.
Proc. SPIE 8263, Oxide-based Materials and Devices III, 82630R (February 9, 2012)-- February 9, 2012 ...[Visit Journal]
GaN was grown on ZnO-buffered c-sapphire (c-Al2O3) substrates by Metal Organic Vapor Phase Epitaxy. The ZnO then served as a sacrificial release layer, allowing chemical lift-off of the GaN from the c-Al2O3 substrate via selective wet etching of the ZnO. The GaN was subsequently direct-wafer-bonded onto a glass substrate. X-Ray Diffraction, Scanning Electron Microscopy, Energy Dispersive X-ray microanalysis, Room Temperature Photoluminescence & optical microscopy confirmed bonding of several mm2 of crack-free wurtzite GaN films onto a soda lime glass microscope slide with no obvious deterioration of the GaN morphology. Using such an approach, InGaN based devices can be lifted-off expensive single crystal substrates and bonded onto supports with a better cost-performance profile. Moreover, the approach offers the possibility of reclaiming and reusing the substrate. [reprint (PDF)]
 
2.  Demonstration of a 256x256 Middle-Wavelength Infrared Focal Plane Array based on InGaAs/InGaP Quantum Dot Infrared Photodetectors (QDIPs)
J. Jiang, K. Mi, S. Tsao, W. Zhang, H. Lim, T.O'Sullivan, T. Sills, M. Razeghi, G.J. Brown, and M.Z. Tidrow
Virtual Journal of Nanoscale Science and Technology 9 (13)-- April 5, 2004 ...[Visit Journal][reprint (PDF)]
 
2.  Microstructural compositional, and optical characterization of GaN grown by metal organic vapor phase epitaxy on ZnO epilayers
D.J. Rogers, F. Hosseini Teherani, T. Moudakir, S. Gautier, F. Jomard, M. Molinari, M. Troyon, D. McGrouther, J.N. Chapman, M. Razeghi and A. Ougazzaden
Journal of Vacuum Science and Technology B, Vol. 27, No. 3, May/June, p. 1655-1657-- May 29, 2009 ...[Visit Journal]
This article presents the results of microstructural, compositional, and optical characterization of GaN films grown on ZnO buffered c-sapphire substrates. Transmission electron microscopy showed epitaxy between the GaN and the ZnO, no degradation of the ZnO buffer layer, and no evidence of any interfacial compounds. Secondary ion mass spectroscopy revealed negligible Zn signal in the GaN layer away from the GaN/ZnO interface. After chemical removal of the ZnO, room temperature (RT) cathodoluminescence spectra had a single main peak centered at ~ 368 nm (~3.37 eV), which was indexed as near-band-edge (NBE) emission from the GaN layer. There was no evidence of the ZnO NBE peak, centered at ~379 nm (~3.28 eV), which had been observed in RT photoluminescence spectra prior to removal of the ZnO. [reprint (PDF)]
 
2.  High-power continuous-wave operation of distributed-feedback quantum-cascade lasers at λ ~ 7.8 µm
S.R. Darvish, W. Zhang, A. Evans, J.S. Yu, S. Slivken, and M. Razeghi
Applied Physics Letters, 89 (25)-- December 18, 2006 ...[Visit Journal]
The authors present high-power continuous-wave (cw) operation of distributed-feedback quantum-cascade lasers. Continuous-wave output powers of 56 mW at 25 °C and 15 mW at 40 °C are obtained. Single-mode emission near 7.8 μm with a side-mode suppression ratio of >=30 dB and a tuning range of 2.83 cm−1 was obtained between 15 and 40 °C. The device exhibits no beam steering with a full width at half maximum of 27.4° at 25 °C in cw mode. [reprint (PDF)]
 
2.  III-nitride based avalanche photo detectors
R. McClintock, E. Cicek, Z. Vashaei, C. Bayram, M. Razeghi and M. Ulmer
Proceedings, Vol. 7780, p. 77801B, SPIE Optics and Photonics Symposium, Conference on Detectors and Imaging Devices: Infrared, Focal Plane and Single Photon, San Diego, CA -- August 4, 2010 ...[Visit Journal]
Research into III-Nitride based avalanche photodiodes (APDs) is motivated by the need for high sensitivity ultraviolet (UV) detectors in numerous civilian and military applications. By designing III-Nitride photodetectors that utilize low-noise impact ionization high internal gain can be realized-GaN APDs operating in Geiger mode can achieve gains exceeding 1×107. Thus with careful design, it becomes possible to count photons at the single photon level. In this paper we review the current state of the art in III-Nitride visible-blind APDs and discuss the critical design choices necessary to achieve high performance Geiger mode devices. Other major technical issues associated with the realization of visible-blind Geiger mode APDs are also discussed in detail and future prospects for improving upon the performance of these devices are outlined. The photon detection efficiency, dark count rate, and spectral response of or most recent Geiger-mode GaN APDs on free-standing GaN substrates are studied under low photon fluxes, with single photon detection capabilities being demonstrated. We also present our latest results regarding linear mode gain uniformity: the study of gain uniformity helps reveal the spatial origins of gain so that we can better understand the role of defects. [reprint (PDF)]
 
2.  Sharp/Tuneable UVC Selectivity and Extreme Solar Blindness in Nominally Undoped Ga2O3 MSM Photodetectors Grown by Pulsed Laser Deposition
D. J. Rogers, A. Courtois, F. H. Teherani, V. E. Sandana, P. Bove, X. Arrateig, L. Damé, P. Maso, M. Meftah, W. El Huni, Y. Sama, H. Bouhnane, S. Gautier, A. Ougazzaden, M. Razeghi
Proc. SPIE 11687, Oxide-based Materials and Devices XII, 116872D (24 March 2021); doi: 10.1117/12.2596194 ...[Visit Journal]
Ga2O3 layers were grown on c-sapphire substrates by pulsed laser deposition. Optical transmission spectra were coherent with a bandgap engineering from 4.9 to 6.2 eV controlled via the growth conditions. X-ray diffraction revealed that the films were mainly β-Ga2O3 (monoclinic) with strong (-201) orientation. Metal-Semiconductor-Metal photodetectors based on gold/nickel Inter- Digitated-Transducer structures were fabricated by single-step negative photolithography. 240 nm peak response sensors gave over 2 orders-of-magnitude of separation between dark and light signal with state-of-the-art solar and visible rejection ratios ((I240 : I290) of > 3 x 105 and (I240 : I400) of > 2 x 106) and dark signals of <50 pA (at a bias of -5V). Spectral responsivities showed an exceptionally narrow linewidth (16.5 nm) and peak values exhibited a slightly superlinear increase with applied bias up to a value of 6.5 A/W (i.e. a quantum efficiency of > 3000%) at 20V bias. [reprint (PDF)]
 
2.  Bias-selectable three-color short-, extended-short-, and mid-wavelength infrared photodetectors based on type-II InAs/GaSb/AlSb superlattices
Abbas Haddadi, and Manijeh Razeghi
Optics Letters Vol. 42, Iss. 21, pp. 4275-4278-- October 16, 2017 ...[Visit Journal]
A bias-selectable, high operating temperature, three-color short-, extended-short-, and mid-wavelength infrared photodetector based on InAs/GaSb/AlSb type-II superlattices on GaSb substrate has been demonstrated. The short-, extended-short-, and mid-wavelength channels’ 50% cutoff wavelengths were 2.3, 2.9, and 4.4μm, respectively, at 150K. The mid-wavelength channel exhibited a saturated quantum efficiency of 34% at 4μm under +200 mV bias voltage in a front-side illumination configuration and without any antireflection coating. At 200mV, the device exhibited a dark current density of 8.7×10−5  A/cm2 providing a specific detectivity of ∼2×1011  cm·Hz1/2/W at 150K. The short-wavelength channel achieved a saturated quantum efficiency of 20% at 1.8μm. At −10  mV, the device’s dark current density was 5.5×10−8  A/cm2. At zero bias, its specific detectivity was 1×1011  cm·Hz1/2/W at 150K. The extended short-wavelength channel achieved a saturated quantum efficiency of 22% at 2.75 μm. Under −2  V bias voltage, the device exhibited a dark current density of 1.8×10−6  A/cm2 providing a specific detectivity of 6.3×1011  cm·Hz1/2/W at 150K. [reprint (PDF)]
 
2.  Overview of Quantum Cascade Laser Research at the Center for Quantum Devices
S. Slivken, A. Evans, J. Nguyen, Y. Bai, P. Sung, S.R. Darvish, W. Zhang and M. Razeghi
SPIE Conference, January 20-25, 2008, San Jose, CA Proceedings – Quantum Sensing and Nanophotonic Devices V, Vol. 6900, p. 69000B-1-8.-- February 1, 2008 ...[Visit Journal]
Over the past several years, our group has endeavored to develop high power quantum cascade lasers for a variety of remote and high sensitivity infrared applications. The systematic optimization of laser performance has allowed for demonstration of high power, continuous-wave quantum cascade lasers operating above room temperature. In the past year alone, the efficiency and power of our short wavelength lasers (~4.8 µm) has doubled. In continuous wave at room temperature, we have now separately demonstrated ~10% wallplug efficiency and ~700 mW of output power. Up to now, we have been able to show that room temperature continuous wave operation with > 100 mW output power in the 3.8 < λ < 11.5 µm wavelength range is possible. [reprint (PDF)]
 
2.  High performance focal plane array based on type-II InAs/GaSb superlattice heterostructures
P.Y. Delaunay and M. Razeghi
SPIE Conference, January 20-25, 2008, San Jose, CA Proceedings – Quantum Sensing and Nanophotonic Devices V, Vol. 6900, p. 69000M-1-10.-- February 1, 2008 ...[Visit Journal]
Recent progress in growth techniques, structure design and processing has lifted the performances of Type-II InAs/GaSb superlattice photodetectors. A double heterostructure design, based on a low band gap (11 µm) active region and high band gap (5 µm) superlattice contacts, reduced the sensitivity of the superlattice to surface effects. The heterodiodes with an 11 µm cutoff, passivated with SiO2, presented similar performances to unpassivated devices and a one order of magnitude increase of the resistivity of the sidewalls, even after flip-chip bonding and underfill. Thanks to this new design and to the inversion of the polarity of the devices, a high performance focal plane array with an 11 µm cutoff was demonstrated. The noise equivalent temperature difference was measured as 26 mK and 19 mK for operating temperatures of 81 K and 67 K. At an integration time of 0.08 ms, the FPA presented a quantum efficiency superior to 50%. [reprint (PDF)]
 
2.  High performance long wavelength infrared mega-pixel focal plane array based on type-II superlattices
P. Manurkar, S.R. Darvish, B.M. Nguyen, M. Razeghi and J. Hubbs
Applied Physics Letters, Vol. 97, No 19, p. 193505-1-- November 8, 2010 ...[Visit Journal]
A large format 1k × 1k focal plane array (FPA) is realized using type-II superlattice photodiodes for long wavelength infrared detection. Material growth on a 3 in. GaSb substrate exhibits a 50% cutoff wavelength of 11 μm across the entire wafer. The FPA shows excellent imaging. Noise equivalent temperature differences of 23.6 mK at 81 K and 22.5 mK at 68 K are achieved with an integration time of 0.13 ms, a 300 K background and f/4 optics. We report a dark current density of 3.3×10−4 A·cm−2 and differential resistance-area product at zero bias R0A of 166 Ω·cm² at 81 K, and 5.1×10−5 A·cm−2 and 1286 Ω·cm², respectively, at 68 K. The quantum efficiency obtained is 78%. [reprint (PDF)]
 
2.  Ultraviolet Detector Materials and Devices Studied by Femtosecond Nonlinear Optical Techniques
M. Wraback, H. Shen, P. Kung, M. Razeghi, J.C. Carrano, T. Li, and J.C. Campbell
SPIE Conference, San Jose, CA, -- January 26, 2000 ...[Visit Journal]
Femtosecond nonlinear optical techniques have been employed in the study of carrier dynamics and transport in UV detector materials. Visible femtosecond pulses derived from the signal beam of a 250 kHz regenerative amplifier-pumped optical parametric amplifier were frequency doubled to obtain pulses tunable from 250 nm to 375 nm. Time-resolved reflectivity experiments indicate that the room-temperature carrier lifetime in GaN grown by double lateral epitaxial overgrowth is about 3 times longer than that of GaN grown on sapphire without benefit of this technique. The electron velocity-field characteristics and saturation velocity in GaN have been obtained form time-resolved studies of electroabsorption in a GaN p-i-n diode. The peak steady- state velocity of 1.9x107 cm/s in this device occurs at 225 kV/cm. Time-resolved transmission measurements have been used to monitor ultrafast carrier relaxation phenomena in a thin AlGaN layer with bandgap in the solar blind region of the spectrum. Excitation intensity and wavelength dependent studies of the photoinduced bleaching decays suggest that they are primarily governed by trapping in a high density of sub-bandgap defect levels. [reprint (PDF)]
 
2.  Reliable High-Power Uncoated Al-free InGaAsP/GaAs Lasers for Cost-Sensitive Optical Communication and Processing Applications
M. Razeghi
SPIE Conference, Dallas, TX, -- November 4, 1997 ...[Visit Journal]
Unlike InP-based systems for long-distance communication applications, GaAs-based optoelectronic systems mostly for local-area network, optical interconnection or optical computing are very cost-sensitive because often these optoelectronic devices constitute most of the cost for these applications and fewer users share the cost. Thus besides technical issues, the processing cost should be addressed in the selection of materials and fabrication methods. We discuss a number of major advantages of Al-free InGaAsP/GaAs lasers for these applications, such as not coating- requirement, low cost, high long-term reliability, high performance. We discuss recent preliminary results of Al- free lasers as a first step toward these optoelectronic applications. [reprint (PDF)]
 
2.  GaN, GaAlN, and AlN for use in UV Detectors for Astrophysics: An Update
P. Kung, A. Saxler, X. Zhang, D. Walker, M. Razeghi, and M. Ulmer
SPIE Photonics West '96 Photodetectors: Materials and Devices; Proceedings 2685-- January 27, 1996 ...[Visit Journal]
In SPIE Proceeding 2397 we demonstrated that there is a large payoff still to be gained by further improvements in the performance of solar blind UV detectors for astronomical purposes. We suggested that a particularly promising future technology is one based on the ability of investigators to produce high-quality films made of wide bandgap III-IV semiconductors. Here we report on significant progress we have made over the past year to fabricate and test single-pixel devices. The next step will be to measure and improve detective efficiency, measure the solar blindness over a larger dynamic range, and begin developing multiple-pixel designs. [reprint (PDF)]
 
1.  Recent progress of quantum cascade laser research from 3 to 12 μm at the Center for Quantum Devices
MANIJEH RAZEGHI,* WENJIA ZHOU,STEVEN SLIVKEN,QUAN-YONG LU,DONGHAI WU, AND RYAN MCCLINTOC
Applied Optics Vol. 56, No. 31 -- October 10, 2017 ...[Visit Journal]
The quantum cascade laser (QCL) is becoming the leading laser source in the mid-infrared (mid-IR) range, which contains two atmospheric transmission windows and many molecular fingerprint absorption features. Since its first demonstration in 1994, the QCL has undergone tremendous development in terms of the output power, wall plug efficiency, wavelength coverage, tunability and beam quality. At the Center for Quantum Devices, we have demonstrated high-power continuous wave operation of QCLs covering a wide wavelength range from 3 to 12 μm, with power output up to 5.1 W at room temperature. Recent research has resulted in power scaling in pulsed mode with up to 203 W output, electrically tunable QCLs based on monolithic sampled grating design, heterogeneous QCLs with a broad spectral gain, broadly tunable on-chip beam-combined QCLs, QCL-based mid-IR frequency combs, and fundamental mode surface emitting quantum cascade ring lasers. The developed QCLs will be the basis for a number of next-generation spectroscopy and sensing systems. [reprint (PDF)]
 
1.  Thermal analysis of buried heterostructure quantum cascade lasers for long-wavelength infrared emission using 2D anisotropic heat-dissipation model
H.K. Lee, K.S. Chung, J.S. Yu and M. Razeghi
Physica Status Solidi (a), Vol. 206, p. 356-362-- February 1, 2009 ...[Visit Journal]
We have theoretically investigated and compared the thermal characteristics of 10.6 μm InGaAs/InAlAs/InP buried heterostructure (BH) quantum cascade lasers (QCLs) with different heat-sinking configurations by a steady-state heat-transfer analysis. The heat-source densities were obtained from laser threshold power densities measured experimentally under room-temperature continuous-wave mode. The two-dimensional anisotropic heat-dissipation model was used to calculate the temperature distribution, heat flux, and thermal conductance (Gth) inside the device. For good thermal characteristics, the QCLs in the long-wavelength infrared region require the relatively narrow BH structure in combination with epilayer-down bonding due to thick active core/cladding layers and high insulator losses. The single-ridge BH structure results in slightly higher thermal conductance by 2-4% than the double-channel (DC) ridge BH structure. For W = 12 m with 5 μm thick electroplated Au, the single-ridge BH laser with epilayer-down bonding exhibited the highest Gth value of 201.9 W/K cm2, i.e. increased by nearly 36% with respect to the epilayer-up bonded DC ridge waveguide laser. This value is improved by 50% and 62% with respect to the single-ridge BH laser and DC ridge waveguide laser with W = 20 μm in the epilayer-up bonding scheme, respectively. [reprint (PDF)]
 
1.  Recent advances of terahertz quantum cascade lasers
Manijeh Razeghi
Proc. SPIE 8119, Terahertz Emitters, Receivers, and Applications II, 81190D (September 07, 2011)-- November 7, 2011 ...[Visit Journal]
In the past decade, tremendous development has been made in GaAs/AlGaAs based THz quantum cascade laser (QCLs), however, the maximum operating temperature is still limited below 200 K (without magnetic field). THz QCL based on difference frequency generation (DFG) represents a viable technology for room temperature operation. Recently, we have demonstrated room temperature THz emission (∼ 4 THz) up to 8.5 μW with a power conversion efficiency of 10 μW/W². A dual-period distributed feedback grating is used to filter the mid-infrared spectra in favor of an extremely narrow THz linewidth of 6.6 GHz. [reprint (PDF)]
 
1.  Reliability in room-temperature negative differential resistance characteristics of low-aluminum contact AlGaN/GaN double-barrier resonant tunneling diodes
C. Bayram, Z. Vashaei, and M. Razeghi
Applied Physics Letters, Vol. 97, No. 18, p. 181109-1-- November 1, 2010 ...[Visit Journal]
AlGaN/GaN resonant tunneling diodes (RTDs), consisting of 20% (10%) aluminum-content in double-barrier (DB) active layer, were grown by metal-organic chemical vapor deposition on freestanding polar (c-plane) and nonpolar (m-plane) GaN substrates. RTDs were fabricated into 35-μm-diameter devices for electrical characterization. Lower aluminum content in the DB active layer and minimization of dislocations and polarization fields increased the reliability and reproducibility of room-temperature negative differential resistance (NDR). Polar RTDs showed decaying NDR behavior, whereas nonpolar ones did not significantly. Averaging over 50 measurements, nonpolar RTDs demonstrated a NDR of 67 Ω, a current-peak-to-valley ratio of 1.08, and an average oscillator output power of 0.52 mW. [reprint (PDF)]
 
1.  Gain-length scaling in quantum dot/quantum well infrared photodetectors
T. Yamanaka, B. Movaghar, S. Tsao, S. Kuboya, A. Myzaferi and M. Razeghi
Virtual Journal of Nanoscale Science & Technology-- September 14, 2009 ...[Visit Journal][reprint (PDF)]
 
1.  Back-illuminated separate absorption and multiplication GaN avalanche photodiodes
J.L. Pau, C. Bayram, R. McClintock, M. Razeghi and D. Silversmith
Applied Physics Letters, Vol. 92, No. 10, p. 101120-1-- March 10, 2008 ...[Visit Journal]
The performance of back-illuminated avalanche photodiodes with separate absorption and multiplication regions is presented. Devices with an active area of 225 µm2 show a maximum multiplication gain of 41,200. The calculation of the noise equivalent power yields a minimum value of 3.3×10−14 W·Hz−1/2 at a gain of 3000, increasing to 2.0×10−13 W·Hz−1/2 at a gain of 41,200. The broadening of the response edge has been analyzed as a function of bias. [reprint (PDF)]
 
1.  III-Nitride Avalanche Photodiodes
P. Kung, R. McClintock, J. Pau Vizcaino, K. Minder, C. Bayram and M. Razeghi
SPIE Conference, January 25-29, 2007, San Jose, CA Proceedings – Quantum Sensing and Nanophotonic Devices IV, Vol. 6479, p. 64791J-1-12-- January 29, 2007 ...[Visit Journal]
Wide bandgap III-Nitride semiconductors are a promising material system for the development of ultraviolet avalanche photodiodes (APDs) that could be a viable alternative to photomultiplier tubes. In this paper, we report the epitaxial growth and physical properties of device quality GaN layers on high quality AlN templates for the first backilluminated GaN p-i-n APD structures on transparent sapphire substrates. Under low bias and linear mode avalanche operation where they exhibited gains near 1500 after undergoing avalanche breakdown. The breakdown electric field in GaN was determined to be 2.73 MV/cm. The hole impact ionization coefficients were shown to be greater than those of electrons. [reprint (PDF)]
 
1.  Focal plane arrays based on quantum dot infrared photodetectors
Manijeh Razeghi; Wei Zhang; Ho-Chul Lim; Stanley Tsao; John Szafraniec; Maho Taguchi; Bijan Movaghar
Proc. SPIE 5838, Nanotechnology II, 125 (June 28, 2005);-- June 28, 2005 ...[Visit Journal]
Here we report the first demonstrations of infrared focal plane array (FPA) based on GaAs and InP based quantum dot infrared photodetectors (QDIPs). QDIPs are extension of quantum well infrared photodetectors (QWIPs) and are predicted to outperform QWIPs due to their potential advantages including normally incident absorption, higher responsivity and high temperature operation. Two material systems have been studied: InGaAs/InGaP QDIPs on GaAs substrates and InAs QDIP on InP substrates. An InGaAs/InGaP QDIP has been grown on GaAs substrate by LP-MOCVD. Photoresponse was observed at temperatures up to 200 K with a peak wavelength of 4.7 μm and cutoff wavelength of 5.2 μm. A detectivity of 1.2x1011 cm·Hz1/2/W was obtained at T=77 K and bias of -0.9 V, which is the highest for QDIPs grown by MOCVD. An InAs QDIP structure has also been grown on InP substrate by LP-MOCVD. Photoresponse of normal incidence was observed at temperature up to 160K with a peak wavelength of 6.4 μm and cutoff wavelength of 6.6 μm. A detectivity of 1.0x1010 cm·Hz1/2/W was obtained at 77K at biases of -1.1 V, which is the first and highest detectivity reported for QDIP on InP substrate. 256×256 detector arrays were fabricated first time in the world for both the GaAs and InP based QDIPs. Dry etching and indium bump bonding were used to hybridize the arrays to a Litton readout integrated circuit. For the InGaAs/InGaP QDIP FPA, thermal imaging was achieved at temperatures up to 120 K. At T=77K, the noise equivalent temperature difference (NEDT) was measured as 0.509K with a 300K background and f/2.3 optics. For the InP based QDIPs, thermal imaging was achieved at 77 K. [reprint (PDF)]
 

Page 19 of 28:  Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19  20 21 22 23 24 25 26 27 28  >> Next  (676 Items)