Page 18 of 23:  Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18  19 20 21 22 23  >> Next  (567 Items)

4.  Characterization of ZnO thin films grown on c-sapphire by pulsed laser deposition as templates for regrowth of zno by metal organic chemical vapor deposition
D. J. Rogers ; F. Hosseini Teherani ; C. Sartel ; V. Sallet ; F. Jomard ; P. Galtier ; M. Razeghi
Proc. SPIE 7217, Zinc Oxide Materials and Devices IV, 72170F (February 17, 2009)-- February 17, 2009 ...[Visit Journal]
The use of ZnO template layers grown Pulsed Laser Deposition (PLD) has been seen to produce dramatic improvements in the surface morphology, crystallographic quality and optical properties of ZnO layers grown on c-sapphire substrates by Metal Organic Chemical Vapor Deposition. This paper provides complementary details on the PLD-grown ZnO template properties. [reprint (PDF)]
 
4.  Advances in APDs for UV astronomy
Melville P. Ulmer; Ryan M. McClintock; Jose L. Pau; Manijeh Razeghi
Proc. SPIE 6686, UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XV, 668605 (September 13, 2007)-- November 13, 2007 ...[Visit Journal]
We report the most recent work of our group of the development of avalanche photo diodes based on (Al)GaN. The goal of this group is to achieve single photon counting. In this paper we first give the scientific motivation for making such a device in the context of UV astronomy and then describe current work and plans for future development. The development includes improving the sensitivity to be able to carry out single photon detection and the fabrication of arrays. [reprint (PDF)]
 
4.  Improved performance of quantum cascade lasers via manufacturable quality epitaxial side down mounting process utilizing aluminum nitride heatsinks
A. Tsekoun, R. Go, M. Pushkarsky, M. Razeghi, C.K.N. Patel
SPIE Conference, San Jose, CA, Vol. 6127, pp. 612702-- January 23, 2006 ...[Visit Journal]
We report substantially improved performance of high power quantum cascade lasers by utilizing epi-side down mounting that provides superior heat dissipation properties. We have obtained CW power output of 450 mW at 20°C from mid-IR QCLs. The improved thermal management achieved with epi-side down mounting has also permitted us to carry out initial lifetime tests on the mid-IR QCLs. No degradation of power output is seen even after over 300 hours of CW operation at 25°C with power output in excess of 300 mW. We believe these improvements should permit incorporation of mid-IR QCLs in reliable instrumentation. [reprint (PDF)]
 
4.  AlGaN-based deep UV light emitting diodes with peak emission below 255 nm
A. Yasan, R. McClintock, K. Mayes, P. Kung, and M. Razeghi
SPIE Conference, Jose, CA, Vol. 5732, pp. 197-- January 22, 2005 ...[Visit Journal]
We report on the growth and fabrication of AlGaN-based deep ultraviolet light-emitting diodes (LEDs) with peak emission of below 255 nm. In order to achieve such short wavelength UV LEDs, the Al mole fractions in the device layers should be greater than ~60%. This introdues serious challenges on the growth and doping of AlxGa1-xN epilayers. However, with the aid of a high-quality AlN template layer and refinement of the growth conditions we have been able to demonstrate UV LEDs emitting below 255 nm. [reprint (PDF)]
 
4.  280 nm UV LEDs Grown on HVPE GaN Substrates
A. Yasan, R. McClintock, K. Mayes, S.R. Darvish, P. Kung, M. Razeghi, and R.J. Molnar
Opto-Electronics Review, 10 (4)-- January 1, 2002 ...[Visit Journal]
We report on the enhancement of optical and electrical properties of 280 nm UV LEDs using low dislocation density HVPE-grown GaN substrate. Compared with the same structure grown on sapphire, these LEDs show ~30% reduction in current-voltage differential resistance, ~15% reduction in turn-on voltage, more than 200% increase in output power slope efficiency and saturation at higher currents. Lower density of defects due to higher material quality and better heat dissipation are believed to be the reason behind these improvements. [reprint (PDF)]
 
4.  High Performance Quantum Cascade Laser Results at the Centre for Quantum Devices
M. Razeghi and S. Slivken
Physica Status Solidi, 195 (1)-- January 1, 2003 ...[Visit Journal]
In this paper, we review some of the history and recent results related to the development of the quantum cascade laser at the Center for Quantum Devices. The fabrication of the quantum cascade laser is described relative to growth, characterization, and processing. State-of-the-art testing results for 5-11 μm lasers will be then be explored, followed by a future outlook for the technology. [reprint (PDF)]
 
4.  High-speed, low-noise metal-semiconductor-metal ultraviolet photodetectors based on GaN
D. Walker, E. Monroy, P. Kung, J. Wu, M. Hamilton, F.J. Sanchez, J. Diaz, and M. Razeghi
Applied Physics Letters 74 (5)-- February 1, 1999 ...[Visit Journal]
We present the fabrication and characterization of nonintentionally doped GaN and GaN:Mg Schottky metal–semiconductor–metal (MSM) photodetectors, grown on sapphire by metalorganic chemical vapor deposition. Low-leakage, Schottky contacts were made with Pt/Au. The devices are visible blind, with an ultraviolet/green contrast of about five orders of magnitude. The response times of the MSM devices were <10 ns and about 200 ns for GaN and GaN:Mg, respectively. The noise power spectral density remains below the background level of the system (10−24  A²/Hz) up to 5 V, for the undoped GaN MSM detector. [reprint (PDF)]
 
4.  Solar blind GaN p-i-n photodiodes
D. Walker, A. Saxler, P. Kung, X. Zhang, M. Hamilton, J. Diaz and M. Razeghi
Applied Physics Letters 72 (25)-- June 22, 1998 ...[Visit Journal]
We present the growth and characterization of GaN p-i-n photodiodes with a very high degree of visible blindness. The thin films were grown by low-pressure metalorganic chemical vapor deposition. The room-temperature spectral response shows a high responsivity of 0.15 A/W up until 365 nm, above which the response decreases by six orders of magnitude. Current/voltage measurements supply us with a zero bias resistance of 1011  Ω. Lastly, the temporal response shows a rise and fall time of 2.5 μs measured at zero bias. This response time is limited by the measurement circuit. [reprint (PDF)]
 
4.  Infrared Imaging Arrays Using Advanced III-V Materials and technology
M. Razeghi, J.D. Kim, C. Jelen, S. Slivken, E. Michel, H. Mohseni, J.J. Lee, J. Wojkowski, K.S. Kim, H.I. Jeon, and J. X
IEEE Proceedings, Advanced Workshop on Frontiers in Electronics (WOFE), Tenerife, Spain;-- January 6, 1997 ...[Visit Journal]
Photodetectors operating in the 3-5 and 8-12 μm atmospheric windows are of great importance for applications in infrared (IR) thermal imaging. HgCdTe has been the dominant material system for these applications. However, it suffers from instability and non-uniformity problems over large areas due to high Hg vapor pressure during the material, growth. There has been a lot of interest in the use of heteroepitaxially grown Sb-based alloys, its strained layer superlattices, and GaAs based quantum wells as alternatives to MCT. This interest has been driven by the advanced material growth and processing technology available for the III-V material system [reprint (PDF)]
 
4.  GaN, GaAlN, and AlN for use in UV Detectors for Astrophysics: An Update
P. Kung, A. Saxler, X. Zhang, D. Walker, M. Razeghi, and M. Ulmer
SPIE Photonics West '96 Photodetectors: Materials and Devices; Proceedings 2685-- January 27, 1996 ...[Visit Journal]
In SPIE Proceeding 2397 we demonstrated that there is a large payoff still to be gained by further improvements in the performance of solar blind UV detectors for astronomical purposes. We suggested that a particularly promising future technology is one based on the ability of investigators to produce high-quality films made of wide bandgap III-IV semiconductors. Here we report on significant progress we have made over the past year to fabricate and test single-pixel devices. The next step will be to measure and improve detective efficiency, measure the solar blindness over a larger dynamic range, and begin developing multiple-pixel designs. [reprint (PDF)]
 
4.  High Quality Aluminum Nitride Epitaxial Layers Grown on Sapphire Substrates
A. Saxler, P. Kung, C.J. Sun, E. Bigan and M. Razeghi
Applied Physics Letters 64 (3)-- January 17, 1994 ...[Visit Journal]
In this letter we report the growth of high quality AlN epitaxial layers on sapphire substrates. The AlN grown on (00·1) sapphire exhibited a better crystalline quality than that grown on (01·2) sapphire. An x-ray rocking curve of AlN on (00·1) Al2O3 yielded a full width at half-maximum of 97.2 arcsec, which is the narrowest value reported to our knowledge. The AlN peak on (01·2) Al2O3 was about 30 times wider. The absorption edge measured by ultraviolet transmission spectroscopy for AlN grown on (00·1) Al2O3 was about 197 nm. [reprint (PDF)]
 
4.  Temperature dependence of threshold current density Jth and differential efficiency of High Power InGaAsP/GaAs ( λ = 0.8 μm) lasers
H. Yi, J. Diaz, I. Eliashevich, M. Stanton, M. Erdtmann, X. He, L. Wang, and M. Razeghi
Applied Physics Letters 66 (3)-- January 16, 1995 ...[Visit Journal]
An experimental and theoretical study on temperature dependence of the threshold current density Jth and differential efficiency ηd for the InGaAsP/GaAs laser diodes emitting at λ=0.8 μm was performed. Threshold current density Jth increases and differential efficiency ηd decreases as temperature is increased mainly because of thermal broadening of the gain spectrum. However, the measured temperature dependence of Jth and ηd could not be explained when only this effect was considered. In this letter, the temperature dependence of momentum relaxation rate ℏ/τ of carriers was investigated by performing the photoluminescence study. At high temperature, increase of the momentum relaxation rate ℏ/τ leads to reduction of the gain and mobility and increase of the optical loss, causing higher Jth and lower ηd as experimentally observed. The resulting theoretical model provides a good explanation for the mechanism of the increase of Jth and decrease of ηd. [reprint (PDF)]
 
4.  Investigation of the factors influencing nanostructure array growth by PLD towards reproducible wafer-scale growth
Vinod E. Sandana; David. J. Rogers; Ferechteh Hosseini Teherani; Philippe Bove; Manijeh Razeghi
physica status solidi (a) Applications and Materials Science. Volume 211, Issue 2, pages 449–454, (February 2014)-- January 14, 2014 ...[Visit Journal]
The growth of catalyst-free ZnO nanostructure arrays on silicon (111) substrates by pulsed laser deposition was investigated. Without an underlayer, randomly oriented, micron-scale structures were obtained. Introduction of a c-axis oriented ZnO underlayer resulted in denser arrays of vertically oriented nanostructures with either tapering, vertical-walled or broadening forms, depending on background Ar pressure. Nanostructure pitch seemed to be determined by underlayer grain size while nanostructure widths could be narrowed from ∼100–500 to ∼10–50 nm by a 50 °C increase in growth temperature. A dimpled underlayer topography correlated with the moth-eye type arrays while a more granular surface was linked to vertically walled nanocolumns. Between-wafer reproducibility was demonstrated for both moth-eye and vertical nanocolumn arrays. Broadening nanostructures proved difficult to replicate, however. Full 2 inch wafer coverage was obtained by rastering the target with the laser beam. [reprint (PDF)]
 
4.  Energy harvesting from millimetric ZnO single wire piezo-generators
Rogers, D. J.; Carroll, C.; Bove, P.; Sandana, V. E.; Goubert, L.; Largeteau, A.; Teherani, F. Hosseini; Demazeau, G.; McClintock, R.; Drouhin, H.-J.; Razeghi, M.
Oxide-based Materials and Devices III. Edited by Teherani, Ferechteh H.; Look, David C.; Rogers, David J. Proceedings of the SPIE, Volume 8263, article id. 82631X, 7 pp. (2012).-- February 9, 2013 ...[Visit Journal]
This work reports on investigations into the possibility of harvesting energy from the piezoelectric response of millimetric ZnO rods to movement. SEM & PL studies of hydrothermally grown ZnO rods revealed sizes ranging from 1 - 3 mm x 100 - 400 microns and suggested that each was a wurtzite monocrystal. Studies of current & voltage responses as a function of time during bending with a probe arm gave responses coherent with those reported elsewhere in the literature for ZnO nanowires or micro-rod single wire generators. The larger scale of these rods provided some advantages over such nano- and microstructures in terms of contacting ease, signal level & robustness. [reprint (PDF)]
 
4.  QEPAS based ppb-level detection of CO and N2O using a high power CW DFB-QCL
Y. Ma, R. Lewicki, M. Razeghi and F. Tittel
Optics Express, Vol. 21, No. 1, p. 1008-- January 14, 2013 ...[Visit Journal]
An ultra-sensitive and selective quartz-enhanced photoacoustic spectroscopy (QEPAS) sensor platform was demonstrated for detection of carbon monoxide (CO) and nitrous oxide (N2O). This sensor used a stateof-the art 4.61 μm high power, continuous wave (CW), distributed feedback quantum cascade laser (DFB-QCL) operating at 10°C as the excitation source. For the R(6) CO absorption line, located at 2169.2 cm−1, a minimum detection limit (MDL) of 1.5 parts per billion by volume (ppbv) at atmospheric pressure was achieved with a 1 sec acquisition time and the addition of 2.6% water vapor concentration in the analyzed gas mixture. For the N2O detection, a MDL of 23 ppbv was obtained at an optimum gas pressure of 100 Torr and with the same water vapor content of 2.6%. In both cases the presence of water vapor increases the detected CO and N2O QEPAS signal levels as a result of enhancing the vibrational-translational relaxation rate of both target gases. Allan deviation analyses were performed to investigate the long term performance of the CO and N2O QEPAS sensor systems. For the optimum data acquisition time of 500 sec a MDL of 340 pptv and 4 ppbv was obtained for CO and N2O detection,respectively. To demonstrate reliable and robust operation of the QEPAS sensor a continuous monitoring of atmospheric CO and N2O concentration levels for a period of 5 hours were performed. [reprint (PDF)]
 
4.  High operability 1024 x 1024 long wavelength Type-II superlattice focal plane array
A. Haddadi, S.R. Darvish, G. Chen, A.M. Hoang, B.M. Nguyen and M. Razeghi
IEEE Journal of Quantum Electronics (JQE), Vol. 48, No. 2, p. 221-228-- February 10, 2012 ...[Visit Journal]
Electrical and radiometric characterization results of a high-operability 1024 x 1024 long wavelength infrared type-II superlattice focal plane array are described. It demonstrates excellent quantum efficiency operability of 95.8% and 97.4% at operating temperatures of 81 K and 68 K, respectively. The external quantum efficiency is 81% without any antireflective coating. The dynamic range is 37 dB at 81 K and increases to 39 dB at 68 K operating temperature. The focal plane array has noise equivalent temperature difference as low as 27 mK and 19 mK at operating temperatures of 81 K and 68 K, respectively, using f/2 optics and an integration time of 0.13 ms. [reprint (PDF)]
 
4.  Room temperature single-mode terahertz sources based on intracavity difference-frequency generation in quantum cascade lasers
Q.Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai and M. Razeghi
Applied Physics Letters, Vol. 99, Issue 13, p. 131106-1-- September 26, 2011 ...[Visit Journal]
We demonstrate room temperature single-mode THz emission at 4 THz based on intracavity difference-frequency generation from mid-infrared dual-wavelength quantum cascade lasers. An integrated dual-period distributed feedback grating is defined on the cap layer to purify both mid-infrared pumping wavelengths and in turn the THz spectra. Single mode operation of the pumping wavelengths results in a single-mode THz operation with a narrow linewidth of 6.6 GHz. A maximum THz power of 8.5 μW with a power conversion efficiency of 10 μW/W² is obtained at room temperature. [reprint (PDF)]
 
4.  High-performance InP-based midinfrared quantum cascade lasers at Northwestern University
M. Razeghi, Y. Bai, S. Slivken, and S.R. Darvish
SPIE Optical Engineering, Vol. 49, No. 11, November 2010, p. 111103-1-- November 15, 2010 ...[Visit Journal]
We present recent performance highlights of midinfrared quantum cascade lasers (QCLs) based on an InP material system. At a representative wavelength around 4.7 µm, a number of breakthroughs have been achieved with concentrated effort. These breakthroughs include watt-level continuous wave operation at room temperature, greater than 50% peak wall plug efficiency at low temperatures, 100-W-level pulsed mode operation at room temperature, and 10-W-level pulsed mode operation of photonic crystal distributed feedback quantum cascade lasers at room temperature. Since the QCL technology is wavelength adaptive in nature, these demonstrations promise significant room for improvement across a wide range of mid-IR wavelengths. [reprint (PDF)]
 
4.  ZnO Thin Films & Nanostructures for Emerging Optoelectronic Applications
D.J. Rogers, F. Hosseini Teherani, V.E. Sandana, and M. Razeghi
SPIE Proceedings, San Francisco, CA (January 22-28, 2010), Vol. 7605, p. 76050K-1-- January 27, 2010 ...[Visit Journal]
ZnO-based thin films and nanostructures grown by PLD for various emerging optoelectronic applications. AZO thin films are currently displacing ITO for many TCO applications due to recent improvements in attainable AZO conductivity combined with processing, cost and toxicity advantages. Advances in the channel mobilities and Id on/off ratios in ZnO-based TTFTs have opened up the potential for use as a replacement for a-Si in AM-OLED and AM-LCD screens. Angular-dependent specular reflection measurements of self-forming, moth-eye-like, nanostructure arrays grown by PLD were seen to have <0.5% reflectivity over the whole visible spectrum for angles of incidence between 10 and 60 degrees. Such nanostructures may be useful for applications such as AR coatings on solar cells. Compliant ZnO layers on mismatched/amorphous substrates were shown to have potential for MOVPE regrowth of GaN. This approach could be used as a means to facilitate lift-off of GaN-based LEDs from insulating sapphire substrates and could allow the growth of InGaN-based solar cells on cheap substrates. The green gap in InGaN-based LEDs was combated by substituting low Ts PLD n-ZnO for MOCVD n-GaN in inverted hybrid heterojunctions. This approach maintained the integrity of the InGaN MQWs and gave LEDs with green emission at just over 510 nm. Hybrid n-ZnO/p-GaN heterojunctions were also seen to have the potential for UV (375 nm) EL, characteristic of ZnO NBE emission. This suggests that there was significant hole injection into the ZnO and that such LEDs could profit from the relatively high exciton binding energy of ZnO. [reprint (PDF)]
 
4.  State-of-the-art Type II Antimonide-based superlattice photodiodes for infrared detection and imaging
M. Razeghi, B.M. Nguyen, P.Y. Delaunay, E.K. Huang, S. Abdollahi Pour, P. Manurkar, and S. Bogdanov
SPIE Proceedings, Nanophotonics and Macrophotonics for Space Environments II, San Diego, CA, Vol. 7467, p. 74670T-1-- August 5, 2009 ...[Visit Journal]
Type-II InAs/GaSb Superlattice (SL), a system of multi interacting quantum wells was first introduced by Nobel Laureate L. Esaki in the 1970s. Since then, this low dimensional system has drawn a lot of attention for its attractive quantum mechanics properties and its grand potential for the emergence into the application world, especially in infrared detection. In recent years, Type-II InAs/GaSb superlattice photo-detectors have experienced significant improvements in material quality, structural designs and imaging applications which elevated the performances of Type-II InAs/GaSb superlattice photodetectors to a comparable level to the state-of-the-art Mercury Cadmium Telluride. We will present in this talk the current status of the state-of-the-art Type II superlattice photodetectors and focal plane arrays, and the future outlook for this material system. [reprint (PDF)]
 
4.  Fabrication of nanostructured heterojunction LEDs using self-forming Moth-Eye Arrays of n-ZnO Nanocones Grown on p-Si (111) by PLD
D.J. Rogers; V.E. Sandana; F. Hosseini Teherani; M. Razeghi; H.-J. Drouhin
Proc. SPIE 7217, Zinc Oxide Materials and Devices IV, 721708 (February 17, 2009)-- February 17, 2009 ...[Visit Journal]
ZnO nanostructures were grown on Si (111) substrates using Pulsed Laser Deposition. The impact of growth temperature (Ts) and Ar pressure (PAr) on the morphology, crystal structure and photoluminescence was investigated. Various types of ZnO nanostructures were obtained. Self-forming arrays of vertically-aligned nanorods and nanocones with strong c-axis crystallographic orientation and good optical response were obtained at higher Ts. The nanocone, or "moth-eye" type structures were selected for LED development because of their graded effective refractive index, which could facilitate improved light extraction at the LED/air interface. Such moth-eye arrays were grown on p-type Si (111) substrates to form heteroj unction LEDs with the n-type ZnO nanocones acting as an active component of the device. These nanostructured LEDs gave rectifying I/V characteristics with a threshold voltage of about 6V and a blueish-white electroluminescence, which was clearly visible to the naked eye. [reprint (PDF)]
 
4.  Dark current suppression in Type-II InAs/GaSb superlattice long wavelength infrared photodiodes with M-structure barrier
B.M. Nguyen, D. Hoffman, P.Y. Delaunay, and M. Razeghi
Applied Physics Letters, Vol. 91, No. 16, p. 163511-1-- October 15, 2007 ...[Visit Journal]
We presented an alternative design of Type-II superlattice photodiodes with the insertion of a mid-wavelength infrared M-structure AlSb/GaSb/InAs/GaSb/AlSb superlattice for the reduction of dark current. The M-structure superlattice has a larger carrier effective mass and a greater band discontinuity as compared to the standard Type-II superlattices at the valence band. It acts as an effective medium that weakens the diffusion and tunneling transport at the depletion region. As a result, a 10.5 µm cutoff Type-II superlattice with 500 nm M-superlattice barrier exhibited a R0A of 200 cm2 at 77 K, approximately one order of magnitude higher than the design without the barrier. The quantum efficiency of such structures does not show dependence on either barrier thickness or applied bias. [reprint (PDF)]
 
4.  Comparison of type-II superlattice and HgCdTe infrared detector technologies
Jagmohan Bajaj; Gerry Sullivan; Don Lee; Ed Aifer; Manijeh Razeghi
Proc. SPIE 6542, Infrared Technology and Applications XXXIII, 65420B (May 14, 2007)-- May 14, 2007 ...[Visit Journal]
Performance of HgCdTe detector technology surpasses all others in the mid-wave and long-wave infrared spectrum. This technology is relatively mature with current effort focused on improving uniformity, and demonstrating increased focal plane array (FPA) functionality. Type-II superlattice (InAs-GaSb and related alloys) detector technology has seen rapid progress over the past few years. The merits of the superlattice material system rest on predictions of even higher performance than HgCdTe and of engineering advantages. While no one has demonstrated Type-II superlattice detectors with performance superior to HgCdTe detectors, the difference in performance between these two technologies is decreasing. In this paper, we review the status and highlight relative merits of both HgCdTe and Type-II superlattice based detector technologies. [reprint (PDF)]
 
4.  Reliability of strain-balanced Ga0.331In0.669As/Al0.659In0.341As/InP quantum-cascade lasers under continuous-wave room-temperature operation
A. Evans and M. Razeghi
Applied Physics Letters, 88 (26)-- June 26, 2006 ...[Visit Journal]
Constant current aging is reported for two randomly selected high-reflectivity-coated QCLs with an output power over 100 mW. QCLs are tested under continuous-wave operation at a heat sink temperature of 298 K(25 °C) corresponding to an internal temperature of 378 K (105 °C). Over 4000 h of continuous testing is reported without any decrease in output power. [reprint (PDF)]
 
4.  Fabrication of GaN Nanotubular Material using MOCVD with an Aluminium Oxide Membrane
W.G. Jung, S.H. Jung, P. Kung, and M. Razeghi
Nanotechnology 17-- January 1, 2006 ...[Visit Journal]
GaN nanotubular material is fabricated with an aluminium oxide membrane in MOCVD. SEM, XRD, TEM and PL are employed to characterize the fabricated GaN nanotubular material. An aluminium oxide membrane with ordered nanoholes is used as a template. Gallium nitride is deposited at the inner wall of the nanoholes in the aluminium oxide template, and the nanotubular material with high aspect ratio is synthesized using the precursors of TMG and ammonia gas. Optimal synthesis conditions in MOCVD are obtained successfully for the gallium nitride nanotubular material in this research. The diameter of the GaN nanotube fabricated is approximately 200–250 nm and the wall thickness is about 40–50 nm. [reprint (PDF)]
 

Page 18 of 23:  Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18  19 20 21 22 23  >> Next  (567 Items)