Page 18 of 21:  Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18  19 20 21  >> Next  (512 Items)

1.  Electrically pumped photonic crystal distributed feedback quantum cascade lasers
Y. Bai, S.R. Darvish, S. Slivken, P. Sung, J. Nguyen, A. Evans, W. Zhang, and M. Razeghi
Applied Physics Letters, Vol. 91, No. 14, p. 141123-1-- October 1, 2007 ...[Visit Journal]
We demonstrate electrically pumped, room temperature, single mode operation of photonic crystal distributed feedback (PCDFB) quantum cascade lasers emitting at ~4.75 µm. Ridge waveguides of 100 µm width were fabricated with both PCDFB and Fabry-Pérot feedback mechanisms. The Fabry-Pérot device has a broad emitting spectrum and a double lobed far-field character. The PCDFB device, as expected, has primarily a single spectral mode and a diffraction limited far field characteristic with a full angular width at half maximum of 2.4°. This accomplishment represents the first step in power scaling of single mode, midinfrared laser diodes operating at room temperature. [reprint (PDF)]
 
1.  Comparison of chemical and laser lift-off for the transfer of InGaN-based p-i-n junctions from sapphire to glass substrates
D. J. Rogers ; P. Bove ; F. Hosseini Teherani ; K. Pantzas ; T. Moudakir ; G. Orsal ; G. Patriarche ; S. Gautier ; A. Ougazzaden ; V. E. Sandana ; R. McClintock ; M. Razeghi
Proc. SPIE 8626, Oxide-based Materials and Devices IV, 862611 (March 18, 2013)-- March 18, 2013 ...[Visit Journal]
InGaN-based p-i-n structures were transferred from sapphire to soda-lime glass substrates using two approaches: (1) laser-lift-off (LLO) and thermo-metallic bonding and (2) chemical lift-off (LLO) by means sacrificial ZnO templates and direct wafer bonding. Both processes were found to function at RT and allow reclaim of the expensive single crystal substrate. Both approaches have also already been demonstrated to work for the wafer-scale transfer of III/V semiconductors. Compared with the industry-standard LLO, the CLO offers the added advantages of a lattice match to InGaN with higher indium contents, no need for an interfacial adhesive layer (which facilitates electrical, optical and thermal coupling), no damaged/contaminated GaN surface layer, simplified sapphire reclaim (GaN residue after LLO may complicate reclaim) and cost savings linked to elimination of the expensive LLO process. [reprint (PDF)]
 
1.  Surface plasmon enhanced light emission from AlGaN-based ultraviolet light-emitting diodes grown on Si (111)
Chu-Young Cho, Yinjun Zhang, Erdem Cicek, Benjamin Rahnema, Yanbo Bai, Ryan McClintock, and Manijeh Razeghi
Appl. Phys. Lett. 102, 211110 (2013)-- May 31, 2013 ...[Visit Journal]
We report on the development of surface plasmon (SP) enhanced AlGaN-based multiple quantum wells (MQWs) ultraviolet (UV) light-emitting diodes (LEDs) grown on silicon (111) substrates. In order to generate SP-coupling with the radiating dipoles in MQWs, an aluminum layer is selectively deposited in holes etched in the top p-AlGaN to p-GaN layers. After flip-chip bonding and substrate removal, an optical output power of ∼1.2 mW is achieved at an emission wavelength of 346 nm; the output power of these UV LEDs with Al layer is increased by 45% compared to that of conventional UV LEDs without Al layer. This enhancement can be attributed to an increase in the spontaneous emission rate and improved internal quantum efficiency via resonance coupling between excitons in MQWs and SPs in the aluminum layer. [reprint (PDF)]
 
1.  Quantum cascade lasers that emit more light than heat
Y. Bai, S. Slivken, S. Kuboya, S.R. Darvish and M. Razeghi
Nature Photonics, February 2010, Vol. 4, p. 99-102-- February 1, 2010 ...[Visit Journal]
For any semiconductor lasers, the wall plug efficiency, that is, the portion of the injected electrical energy that can be converted into output optical energy, is one of the most important figures of merit. A device with a higher wall plug efficiency has a lower power demand and prolonged device lifetime due to its reduced self-heating. Since its invention, the power performance of the quantum cascade laser has improved tremendously. However, although the internal quantum efficiency can be engineered to be greater than 80% at low temperatures, the wall plug efficiency of a quantum cascade laser has never been demonstrated above 50% at any temperature. The best wall plug efficiency reported to date is 36% at 120 K. Here, we overcome the limiting factors using a single-well injector design and demonstrate 53% wall plug efficiency at 40 K with an emitting wavelength of 5 µm. In other words, we demonstrate a quantum cascade laser that produces more light than heat. [reprint (PDF)]
 
1.  Gain and recombination dynamics in photodetectors made with quantum nanostructures: The quantum dot in a well and the quantum well
B. Movaghar, S. Tsao, S. Abdollahi Pour, T. Yamanaka, and M. Razeghi
Physical Review B, Vol. 78, No. 11-- September 15, 2008 ...[Visit Journal]
We consider the problem of charge transport and recombination in semiconductor quantum well infrared photodetectors and quantum-dot-in-a-well infrared detectors. The photoexcited carrier relaxation is calculated using rigorous random-walk and diffusion methods, which take into account the finiteness of recombination cross sections, and if necessary the memory of the carrier generation point. In the present application, bias fields are high and it is sufficient to consider the drift limited regime. The photoconductive gain is discussed in a quantum-mechanical language, making it more transparent, especially with regard to understanding the bias and temperature dependence. Comparing experiment and theory, we can estimate the respective recombination times. The method developed here applies equally well to nanopillar structures, provided account is taken of changes in mobility and trapping. Finally, we also derive formulas for the photocurrent time decays, which in a clean system at high bias are sums of two exponentials. [reprint (PDF)]
 
1.  Resonant cavity enhanced heterojunction phototransistors based on type-II superlattices
Jiakai Li, Arash Dehzangi, Donghai Wu, Ryan McClintock, Manijeh Razeghi
Infrared Physics & Technology Available online 27 October 2020, 103552 https://doi.org/10.1016/j.infrared.2020.103552-- October 27, 2020 ...[Visit Journal]
Resonant cavity enhanced heterojunction phototransistor based on InAs/GaSb/AlSb type-II superlattice grown by molecular beam epitaxy has been demonstrated. The resonant wavelength was designed to be at near 1.9 μm wavelength range at room temperature. An eleven-pair lattice matched GaSb-AlAsSb quarter-wavelength Bragg reflector was used in the RCE-HPT to enhance the photoresponse. The device showed the wavelength selectivity and a cavity enhancement of the responsivity at 1.9 μm at room temperature. [reprint (PDF)]
 
1.  Gain-length scaling in quantum dot/quantum well infrared photodetectors
T. Yamanaka, B. Movaghar, S. Tsao, S. Kuboya, A. Myzaferi and M. Razeghi
Virtual Journal of Nanoscale Science & Technology-- September 14, 2009 ...[Visit Journal][reprint (PDF)]
 
1.  Generalized k·p perturbation theory for atomic-scale superlattices
H. Yi and M. Razeghi
Physical Review B 56 (7)-- August 15, 1997 ...[Visit Journal]
We present a generalized k⋅p perturbation method that is applicable for atomic-scale superlattices. The present model is in good quantitative agreement with full band theories with local-density approximation, and approaches results of the conventional k⋅p perturbation method (i.e., Kane’s Hamiltonian) with the envelope function approximation for superlattices with large periods. The indirect band gap of AlAs/GaAs superlattices with short periods observed in experiments is explained using this method. [reprint (PDF)]
 
1.  Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature
S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q.Y. Lu and M. Razeghi
Applied Physics Letters, Vol. 100, No. 26, p. 261112-1-- June 25, 2012 ...[Visit Journal]
A dual-section, single-mode quantum cascade laser is demonstrated in continuous wave at room temperature with up to 114 nm (50 cm−1) of tuning near a wavelength of 4.8 μm. Power above 100 mW is demonstrated, with a mean side mode suppression ratio of 24 dB. By changing the grating period, 270 nm (120 cm−1) of gap-free electrical tuning for a single gain medium has been realized. [reprint (PDF)]
 
1.  Electron-spin resonance of the two-dimensional electron gas in Ga0.47In0.53As-InP heterostructures
M. Dobers, J. P. Vieren,, Y. Guldner P. Bove, F. Omnes, and M. Razeghi
Phys. Rev. B 40, 8075(R) – Published 15 October, 1989-- October 15, 1989 ...[Visit Journal]
The microwave-induced change of the magnetoresistivity of Ga0.47In0.53As-InP heterostructures reveals resonant structure which is attributed to electron-spin resonance of the two-dimensional conduction electrons. With microwave frequencies up to 480 GHz and in magnetic fields up to 12 T, we studied the spin splitting of the two lowest Landau levels in different samples. The spin splitting of these Landau levels is a quadratic function of the magnetic field and its extrapolation to zero magnetic field leads to vanishing spin splitting. The g factors depend on the magnetic field B and the Landau level N as follows: g(B,N)=𝑔0-c(N+1/2)B, where 𝑔0 and c are sample-dependent parameters, which are of the order of 𝑔0≊4.1 and c≊0.08 T−1, in the studied heterostructures. [reprint (PDF)]
 
1.  Intrinsic AlGaN photodetectors for the entire compositional range
D. Walker, X. Zhang, A. Saxler, P. Kung, J. Xu, and M. Razeghi
SPIE Conference, San Jose, CA, -- February 12, 1997 ...[Visit Journal]
AlxGa1-xN ultraviolet photoconductors with cut- off wavelengths from 365 nm to 200 nm have been fabricated and characterized. Various characteristics of the devices, such as photoresponse, voltage-dependent responsivity, frequency-dependent responsivity and noise spectral density, were measured and cross-referenced with optical, electrical and structural characteristics of the material to provide information about the mechanisms taking place during detection. The maximum detectivity reached 5.5 X 108 cm·Hz½/W at a modulating frequency of 14 Hz. The effective majority carrier lifetime in AlxGa1-xN materials, derived from frequency-dependent photoconductivity measurements, has been estimated to be from 6 to 35 msec. The frequency-dependent noise-spectrum shows that it is dominated by Johnson-noise at high frequencies for low Al-composition samples. [reprint (PDF)]
 
1.  Ultraviolet avalanche photodiodes
Ryan McClintock ; Manijeh Razeghi
Proc. SPIE 9555, Optical Sensing, Imaging, and Photon Counting: Nanostructured Devices and Applications, 95550B -- August 28, 2015 ...[Visit Journal]
The III-Nitride material system is rapidly maturing; having proved itself as a material for LEDs and laser, and now finding use in the area of UV photodetectors. However, many UV applications are still dominated by the use of photomultiplier tubes (PMT). PMTs are capable of obtaining very high sensitivity using internal electron multiplication gain (typically ~106). It is highly desirable to develop a compact semiconductor-based photodetector capable of realizing this level of sensitivity. In principle, this can be obtained in III-Nitrides by taking advantage of avalanche multiplication under high electric fields – typically 2.7 MV/cm, which with proper design can correspond to an external reverse bias of less than 100 volts. In this talk, we review the current state-of-the-art in III-Nitride solar- and visible-blind APDs, and present our latest results on GaN APDs grown on both conventional sapphire and low dislocation density free-standing c- and m-plane GaN substrates. Leakage current, gain, and single photon detection efficiency (SPDE) of these APDs were compared. The spectral response and Geiger-mode photon counting performance of UV APDs are studied under low photon fluxes, with single photon detection capabilities as much as 30% being demonstrated in smaller devices. Geiger-mode operation conditions are optimized for enhanced SPDE. [reprint (PDF)]
 
1.  Metalorganic chemical vapor deposition of monocrystalline GaN thin films on β-LiGaO2substrates
P. Kung, A. Saxler, X. Zhang, D. Walker, R. Lavado, and M. Razeghi
Applied Physics Letters 69 (14)-- September 30, 1996 ...[Visit Journal]
We report the metalorganic chemical vapor deposition growth and characterization of monocrystalline GaN thin films on β-LiGaO2 substrates. The influence of the growth temperature on the crystal quality was studied. The structural, electrical, and optical properties of the films were assessed through scanning electron microscopy, x-ray diffraction, Hall measurements, optical transmission, photoluminescence. [reprint (PDF)]
 
1.  Fabrication of Indium Bumps for Hybrid Infrared Focal Plane Array Applications
J. Jiang, S. Tsao, T. O'Sullivan, M. Razeghi, and G.J. Brown
Infrared Physics and Technology, 45 (2)-- March 1, 2004 ...[Visit Journal]
Hybrid infrared focal plane arrays (FPAs) have found many applications. In hybrid IR FPAs, FPA and Si read out integrated circuits (ROICs) are bonded together with indium bumps by flip-chip bonding. Taller and higher uniformity indium bumps are always being pursued in FPA fabrication. In this paper, two indium bump fabrication processes based on evaporation and electroplating techniques are developed. Issues related to each fabrication technique are addressed in detail. The evaporation technique is based on a unique positive lithography process. The electroplating method achieves taller indium bumps with a high aspect ratio by a unique “multi-stack” technique. This technique could potentially benefit the fabrication of multi-color FPAs. Finally, a proposed low-cost indium bump fabrication technique, the “bump transfer”, is given as a future technology for hybrid IR FPA fabrication. [reprint (PDF)]
 
1.  Gain-length scaling in quantum dot/quantum well infrared photodetectors
T. Yamanaka, B. Movaghar, S. Tsao, S. Kuboya, A. Myzaferi and M. Razeghi
Applied Physics Letters, Vol. 95, No. 9-- August 31, 2009 ...[Visit Journal]
The gain in quantum dot/quantum well infrared photodetectors is investigated. The scaling of the gain with device length has been analyzed, and the behavior agrees with the previously proposed model. We conclude that we understand the gain in the low bias region, but in the high field region, discrepancies remain. An extension of the gain model is presented to cover the very high electric field region. The high field data are compared to the extended model and discussed. [reprint (PDF)]
 
1.  Room-temperature continuous wave operation of distributed feedback quantum cascade lasers with watt-level power output
Q.Y. Lu, Y. Bai, N. Bandyopadhyay, Sl Slivken, and M. Razeghi
Applied Physics Letters, Vol. 97, No. 23, p. 231119-1-- December 6, 2010 ...[Visit Journal]
We demonstrate surface-grating distributed feedback quantum cascade lasers (QCLs) with a watt-level power output at 4.75 μm. A device with a 5 mm cavity length exhibits an output power of 1.1 W in room-temperature cw operation. Single-mode operation with a side mode suppression ratio of 30 dB is obtained in the working temperature of 15–105 °C. A double-lobed far field with negligible beam steering is observed. The significance of this demonstration lies in its simplicity and readiness to be applied to standard QCL wafers with the promise of high-power performances. [reprint (PDF)]
 
1.  Recent advances in high performance antimonide-based superlattice FPAs
E.K. Huang, B.M. Nguyen, S.R. Darvish, S. Abdollahi Pour, G. Chen, A. Haddadi, and M.A. Hoang
SPIE Proceedings, Infrared technology and Applications XXXVII, Orlando, FL, Vol. 8012, p. 80120T-1-- April 25, 2011 ...[Visit Journal]
Infrared detection technologies entering the third generation demand performances for higher detectivity, higher operating temperature, higher resolution and multi-color detection, all accomplished with better yield and lower manufacturing/operating costs. Type-II antimonide based superlattices (T2SL) are making firm steps toward the new era of focal plane array imaging as witnessed in the unique advantages and significant progress achieved in recent years. In this talk, we will present the four research themes towards third generation imagers based on T2SL at the Center for Quantum Devices. High performance LWIR megapixel focal plane arrays (FPAs) are demonstrated at 80K with an NEDT of 23.6 mK using f/2 optics, an integration time of 0.13 ms and a 300 K background. MWIR and LWIR FPAs on non-native GaAs substrates are demonstrated as a proof of concept for the cost reduction and mass production of this technology. In the MWIR regime, progress has been made to elevate the operating temperature of the device, in order to avoid the burden of liquid nitrogen cooling. We have demonstrated a quantum efficiency above 50%, and a specific detectivity of 1.05x1012 cm·Hz1/2/W at 150 K for 4.2 μm cut-off single element devices. Progress on LWIR/LWIR dual color FPAs as well as novel approaches for FPA fabrication will also be discussed. [reprint (PDF)]
 
1.  Background limited performance of long wavelength infrared focal plane arrays fabricated from M-structure InAs-GaSb superlattices
P.Y. Delaunay, B.M. Nguyen, D. Hoffman, E.K. Huang, and M. Razeghi
IEEE Journal of Quantum Electronics, Vol. 45, No. 2, p. 157-162.-- February 1, 2009 ...[Visit Journal]
The recent introduction of a M-structure design improved both the dark current and R0A performances of Type-II InAs-GaSb photodiodes. A focal plane array fabricated with this design was characterized at 81 K. The dark current of individual pixels was measured between 1.1 and 1.6 nA, 7 times lower than previous superlattice FPAs. This led to a higher dynamic range and longer integration times. The quantum efficiency of detectors without antireflective coating was 74%. The noise equivalent temperature difference reached 23 mK, limited only by the performance of the testing system and the read out integrated circuit. Background limited performances were demonstrated at 81 K for a 300 K background. [reprint (PDF)]
 
1.  Quantum dot in a well infrared photodetectors for high operating temperature focal plane arrays
S. Tsao, T. Yamanaka, S. Abdollahi Pour, I-K Park, B. Movaghar and M. Razeghi
SPIE Proceedings, San Jose, CA Volume 7234-0V-- January 25, 2009 ...[Visit Journal]
InAs quantum dots embedded in InGaAs quantum wells with InAlAs barriers on InP substrate grown by metalorganic chemical vapor deposition are utilized for high operating temperature detectors and focal plane arrays in the middle wavelength infrared. This dot-well combination is unique because the small band offset between the InAs dots and the InGaAs well leads to weak dot confinement of carriers. As a result, the device behavior differs significantly from that in the more common dot systems that have stronger confinement. Here, we present energy level modeling of our QD-QW system and apply these results to interpret the detector behavior. Detectors showed high performance with D* over 1010 cm·Hz1/2W-1 at 150 K operating temperature and with high quantum efficiency over 50%. Focal plane arrays have been demonstrated operating at high temperature due to the low dark current observed in these devices. [reprint (PDF)]
 
1.  Deep Fe and intrinsic defect levels in Ga0.47In0.53As/InP
K.‐H. Goetz; D. Bimberg; K.‐A. Brauchle; H. Jürgensen; J. Selders; M. Razeghi; E. Kuphal
K.‐H. Goetz, D. Bimberg, K.‐A. Brauchle, H. Jürgensen, J. Selders, M. Razeghi, E. Kuphal; Deep Fe and intrinsic defect levels in Ga0.47In0.53As/InP. Appl. Phys. Lett. 1 February 1985; 46-- February 1, 1985 ...[Visit Journal]
Two deep traps in Ga0.47In0.53As/InP:Fe at a depth of 110 meV and 150 meV, respectively, are observed for the first time using low‐temperature photoluminescence and deep level transient spectroscopy. The dependence of luminescence intensity on the growth process itself (liquid phase epitaxy, vapor phase epitaxy, and metalorganic chemical vapor deposition) and its parameters (growth temperature, layer thickness) and the substrate doping is reported and leads to the unambigous identification of the 150‐meV acceptorlike trap as being caused by Fe impurities. Fe diffuses from the substrate to the epitaxial layer during the growth process. This outdiffusion is less pronounced for layers grown at lower temperature. The level at 110 meV which is also observed in layers grown on InP:S substrate is tentatively assigned to an intrinsic defect of Ga0.47In0.53As. [reprint (PDF)]
 
1.  High-performance InP-based midinfrared quantum cascade lasers at Northwestern University
M. Razeghi, Y. Bai, S. Slivken, and S.R. Darvish
SPIE Optical Engineering, Vol. 49, No. 11, November 2010, p. 111103-1-- November 15, 2010 ...[Visit Journal]
We present recent performance highlights of midinfrared quantum cascade lasers (QCLs) based on an InP material system. At a representative wavelength around 4.7 µm, a number of breakthroughs have been achieved with concentrated effort. These breakthroughs include watt-level continuous wave operation at room temperature, greater than 50% peak wall plug efficiency at low temperatures, 100-W-level pulsed mode operation at room temperature, and 10-W-level pulsed mode operation of photonic crystal distributed feedback quantum cascade lasers at room temperature. Since the QCL technology is wavelength adaptive in nature, these demonstrations promise significant room for improvement across a wide range of mid-IR wavelengths. [reprint (PDF)]
 
1.  Growth and characterization of InSbBi for long wavelength infrared photodetectors
J.J. Lee, J.D. Kim, and M. Razeghi
Applied Physics Letters 70 (24)-- June 16, 1997 ...[Visit Journal]
The epitaxial growth of InSbBi ternary alloys by low-pressure metalorganic chemical vapor deposition is reported on. X-ray diffraction spectra showed well resolved peaks of InSbBi and InSb films. Bi incorporation was confirmed by energy dispersive x-ray analysis. Photoresponse spectrum up to 9.3 μm which corresponds to 0.13 eV energy band gap has been measured in a sample with Bi composition of 5.8 at.% at 77 K. Electron mobility at room temperature ranges from 44 100 to 4910 cm²/V·s as Bi composition increases. [reprint (PDF)]
 
1.  Room temperature terahertz quantum cascade laser sources with 215 μW output power through epilayer-down mounting
Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi
Appl. Phys. Lett. 103, 011101 (2013)-- July 1, 2013 ...[Visit Journal]
We report room temperature terahertz (THz) quantum cascade laser sources with high power based on difference frequency generation. The device is Čerenkov phase matched and spectrally purified with an integrated dual-period distributed-feedback grating. Symmetric current injection and epilayer-down mounting of the device onto a patterned submount are used to improve the electrical uniformity and heat removal, respectively. The epilayer-down mounting also allows for THz anti-reflective coating to enhance the THz outcoupling efficiency. Single mode emission at 3.5 THz with a side-mode suppression ratio and output power up to 30 dB and 215  μW are obtained, respectively. [reprint (PDF)]
 
1.  High quality AlN and GaN epilayers grown on (00*1) sapphire, (100) and (111) silicon substrates
P. Kung, A. Saxler, X. Zhang, D. Walker, T.C. Wang, I. Ferguson, and M. Razeghi
Applied Physics Letters 66 (22)-- May 29, 1995 ...[Visit Journal]
The growth of high quality AlN and GaN thin films on basal plane sapphire, (100), and (111) silicon substrates is reported using low pressure metalorganic chemical vapor deposition. X-ray rocking curve linewidths of about 100 and 30 arcsec were obtained for AlN and GaN on sapphire, respectively. Room‐temperature optical transmission and photoluminescence (of GaN) measurements confirmed the high quality of the films. The luminescence at 300 and 77 K of the GaN films grown on basal plane sapphire, (100), and (111) silicon was compared. [reprint (PDF)]
 
1.  Band gap tunability of Type-II Antimonide-based superlattices
M. Razeghi and B.M. Nguyen
Physics Procedia, Vol. 3, Issue 2, p. 1207-1212 (14th International Conference on Narrow Gap Semiconductors and Systems NGSS-14, Sendai, Japan, July 13-17, 2009)-- January 31, 2010 ...[Visit Journal]
Current state-of-the art infrared photon detectors based on bulk semiconductors such as InSb or HgCdTe are now relatively mature and have almost attained the theoretical limit of performance. It means, however, that the technology can not be expected to demonstrate revolutionary improvements, in terms of device performances. In contrasts, low dimensional quantum systems such as superlattices, quantum wells, quantum dots, are still the development stage, yet have shown comparable performance to the bulk detector family. Especially for the Type-II Antimony-based superlattices, recent years have seen significant improvements in material quality, structural design as well as fabrication techniques which lift the performance of Type-II superlattice photodetectors to a new level. In this talk, we will discuss the advantages of Type-II-superlattices, from the physical nature of the material to the practical realisms. We will demonstrate the flexibility in controlling the energy gap and their overall band alignment for the suppression of Auger recombination, as well as to create sophisticated hetero-designs. [reprint (PDF)]
 

Page 18 of 21:  Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18  19 20 21  >> Next  (512 Items)