About the CQD | News | Conferences | Publications | Books | Research | People | History | Patents | Contact | Channel | |
Page 17 of 27: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 >> Next (672 Items)
1. | Well Resolved Room Temperature Photovoltage Spectra of GaAs-GaInP Quantum Wells and Superlattices Xiaoguang He and Manijeh Razeghi Applied Physics Letters 62 (6)-- February 8, 1993 ...[Visit Journal] We report the first well resolved room‐temperature photovoltage spectra due to the sublevel transitions in the GaInP‐GaAs superlattices and multiquantum wells grown by low pressure metalorganic chemical vapor deposition. Sharp well resolved peaks attributed to exciton absorption of the electron‐to‐light hole and electron‐to‐heavy hole have been observed at room temperature. This indicates that GaAs‐GaInP is a promising material for the application of the modulators, optical switches, and optical bistable divices. Satisfactory agreements between experimental measurements and theoretical results have been obtained. These results demonstrate that photovoltage spectroscopy is a simple, but very powerful tool to study quantum confinement structures. [reprint (PDF)] |
1. | The correlation between x-ray diffraction patterns and strain distribution inside GaInP/GaAs superlattices X.G. He, M. Erdtmann, R. Williams, S. Kim, and M. Razeghi Applied Physics Letters 65 (22)-- November 28, 1994 ...[Visit Journal] Strong correlation between x‐ray diffraction characteristics and strain distribution inside GaInP/GaAs superlattices has been reported. It is found that the symmetry of (002) diffraction patterns can be used to evaluate the interface strain status. A sample with no interfacial strains has a symmetric (002) diffraction pattern and weak (004) diffraction pattern. It is also demonstrated that strain distribution in superlattices can be readily estimated qualitatively by analyzing x-ray diffraction patterns. [reprint (PDF)] |
1. | High Power, Room Temperature, Continuous-Wave Operation of Quantum Cascade Lasers Grown by GasMBE A. Evans, J. David, L. Doris, J.S. Yu, S. Slivken and M. Razeghi SPIE Conference, Jose, CA, Vol. 5359, pp. 188-- January 25, 2004 ...[Visit Journal] Very high power continuous-wave quantum cascade lasers are demonstrated in the mid-infrared (3 - 6 µm) wavelength range. λ~6 µm high-reflectivity coated QCLs are demonstrated producing over 370 mW continuous-wave power at room temperature with continuous-wave operation up to 333 K. Advanced heterostructure geometries, including the use of a thick electroplated gold, epilayer-side heat sink and a buried-ridge heterostructure are demonstrated to improve laser performance significantly when combined with narrow laser ridges. Recent significant improvements in CW operation are presented and include the development if narrow (9 µm-wide) ridges for high temperature CW operation. GasMBE growth of the strain-balanced λ~6 µm QCL heterostructure is discussed. X-ray diffraction measurements are presented and compared to computer simulations that indicate excellent layer and compositional uniformity of the structure. [reprint (PDF)] |
1. | Continuous-wave room-temperature operation of InGaN/GaN multiquantum well lasers grown by low-pressure metalorganic chemical vapor deposition M. Razeghi, A. Saxler, P. Kung, D. Walker, X. Zhang, A. Rybaltowski, Y. Xiao, H.J. Yi and J. Diaz SPIE Conference, San Jose, CA, Vol. 3284, pp. 113-- January 28, 1998 ...[Visit Journal] Continuous-wave (CW) room temperature operation of InGaN/GaN multi-quantum well (MQW) lasers is reported. Far-field beam divergence as narrow as 13 degrees and 20 degrees for parallel and perpendicular directions to epilayer planes were measured, respectively. The MQW lasers showed strong beam polarization anisotropy as consistent with QW laser gain theory. Dependencies of threshold current on cavity-length and temperature are also consistent with conventional laser theory. No significant degradation in laser characteristics was observed during lifetime testing for over 140 hours of CW room temperature operation. [reprint (PDF)] |
1. | Uncooled InAs/GaSb Type-II infrared detectors grown on GaAs substrate for the 8–12 μm atmospheric window H. Mohseni, J. Wojkowski, M. Razeghi, G. Brown, and W. Mitchel IEEE Journal of Quantum Electronics 35 (7)-- July 1, 1999 ...[Visit Journal] The operation of uncooled InAs-GaSb superlattice photodiodes with a cutoff wavelength of λc=8 μm and a peak detectivity of 1.2×108 cm·Hz½/W at zero bias is demonstrated. The detectivity is similar to the best uncooled HgCdTe detectors and microbolometers. However, the R0A product is more than two orders of magnitude higher than HgCdTe and the device is more than four orders of magnitude faster than microbolometers. These features combined with their low 1/f noise and high uniformity make these type-II photodiodes an excellent choice for uncooled high-speed IR imaging arrays [reprint (PDF)] |
1. | Near milliwatt power AlGaN-based ultraviolet light emitting diodes based on lateral epitaxial overgrowth of AlN on Si(111) Y. Zhang, S. Gautier, C. Cho, E. Cicek, Z, Vashaei, R. McClintock, C. Bayram, Y. Bai and M. Razeghi Applied Physics Letters, Vol. 102, No. 1, p. 011106-1-- January 7, 2013 ...[Visit Journal] We report on the growth, fabrication, and device characterization of AlGaN-based thin-film ultraviolet (UV) (λ ∼ 359 nm) light emitting diodes (LEDs). First, AlN/Si(111) template is patterned. Then, a fully coalesced 7-μm-thick lateral epitaxial overgrowth (LEO) of AlN layer is realized on patterned AlN/Si(111) template followed by UV LED epi-regrowth. Metalorganic chemical vapor deposition is employed to optimize LEO AlN and UV LED epitaxy. Back-emission UV LEDs are fabricated and flip-chip bonded to AlN heat sinks followed by Si(111) substrate removal. A peak pulsed power and slope efficiency of ∼0.6 mW and ∼1.3 μW/mA are demonstrated from these thin-film UV LEDs, respectively. For comparison, top-emission UV LEDs are fabricated and back-emission LEDs are shown to extract 50% more light than top-emission ones. [reprint (PDF)] |
1. | High performance bias-selectable dual-band short-/mid-wavelength infrared photodetectors based on type-II InAs/GaSb/AlSb superlattices A.M. Hoang, G. Chen, A. Haddadi and M. Razeghi SPIE Proceedings, Vol. 8631, p. 86311K-1, Photonics West, San Francisco, CA-- February 5, 2013 ...[Visit Journal] Active and passive imaging in a single camera based on the combination of short-wavelength and mid-wavelength infrared detection is highly needed in a number of tracking and reconnaissance missions. Due to its versatility in band-gap engineering, Type-II InAs/GaSb/AlSb superlattice has emerged as a candidate highly suitable for this
multi-spectral detection.
In this paper, we report the demonstration of high performance bias-selectable dual-band short-/mid-wavelength infrared photodetectors based on InAs/GaSb/AlSb type-II superlattice with designed cut-off wavelengths of 2 μm and 4 μm. Taking advantages of the high performance short-wavelength and mid-wavelength single color photodetectors, back-to-back p-i-n-n-i-p photodiode structures were grown on GaSb substrate by molecular beam epitaxy. At 150 K, the short-wave channel exhibited a quantum efficiency of 55%, a dark current density of 1.0x10-9 A/cm² at -50 mV bias voltage, providing an associated shot noise detectivity of 3.0x1013 Jones. The mid-wavelength channel exhibited a quantum efficiency of 33% and a dark current density of 2.6x10-5 A/cm² at 300 mV bias voltage,
resulting in a detectivity of 4.0x1011 Jones. The operations of the two absorber channels are selectable by changing the polarity of applied bias voltage. [reprint (PDF)] |
1. | AlxGa1-xN p-i-n Photodiodes on Sapphire Substrates D. Walker, P. Kung, P. Sandvik, J. Wu, M. Hamilton, I.H. Lee, J. Diaz, and M. Razeghi SPIE Conference, San Jose, CA, -- January 27, 1999 ...[Visit Journal] We report the fabrication and characterization of AlxGa1-xN p-i-n photodiodes (0.05 ≤ to X ≤ 0.30) grown on sapphire by low-pressure metalorganic chemical vapor deposition. The devices present a visible-rejection of about four orders of magnitude with a cutoff wavelength that shifts from 350 nm to 291 nm. They also exhibit a constant responsivity for five decades (30 mW/m² to 1 kW/m²) of optical power density. Using capacitance measurements, the values for the acceptor concentration in the p-AlxGa1-xN region and the unintentional donor concentration in the intrinsic region are found. Photocurrent decays are exponential for high load resistances, with a time constant that corresponds to the RC product of the system. For low load resistances the transient response becomes non-exponential, with a decay time longer than the RC constant. [reprint (PDF)] |
1. | Long-term reliability of Al-free InGaAsP/GaAs λ = 808 nm) lasers at high-power high-temperature operation J. Diaz, H. Yi, M. Razeghi and G.T. Burnham Applied Physics Letters 71 (21)-- November 24, 1997 ...[Visit Journal] We report the long-term reliability measurement on uncoated Al-free InGaAsP/GaAs (λ = 808 nm) lasers at high-power and high-temperature operation. No degradation in laser performance has been observed for over 30 ,000 h of lifetime testing in any of randomly selected several 100 μm-wide uncoated lasers operated at 60 °C with 1 W continuous wave output power. This is the first and the most conclusive evidence ever reported that directly shows the high long-term reliability of uncoated Al-free lasers. [reprint (PDF)] |
1. | Resonant cavity enhanced heterojunction phototransistors based on type-II superlattices Jiakai Li, Arash Dehzangi, Donghai Wu, Ryan McClintock, Manijeh Razeghi Infrared Physics & Technology Available online 27 October 2020, 103552 https://doi.org/10.1016/j.infrared.2020.103552-- October 27, 2020 ...[Visit Journal] Resonant cavity enhanced heterojunction phototransistor based on InAs/GaSb/AlSb type-II superlattice grown by molecular beam epitaxy has been demonstrated. The resonant wavelength was designed to be at near 1.9 μm wavelength range at room temperature. An eleven-pair lattice matched GaSb-AlAsSb quarter-wavelength Bragg reflector was used in the RCE-HPT to enhance the photoresponse. The device showed the wavelength selectivity and a cavity enhancement of the responsivity at 1.9 μm at room temperature. [reprint (PDF)] |
1. | Ultraviolet Detectors for AstroPhysics Present and Future M. Ulmer, M. Razeghi, and E. Bigan Optoelectronic Integrated Circuit Materials, Physics and Devices, SPIE Conference, San Jose, CA; Proceedings, Vol. 239-- February 6, 1995 ...[Visit Journal] Astronomical instruments for the study of UV astronomy have been developed for NASA missions such as the Hubble Space Telescope. The systems that are `blind to the visible' (`solar-blind') yet sensitive to the UV that have been flown in satellites have detective efficiencies of about 10 to 20%, although typically electron bombardment charge coupled devices are higher at 30 - 40% and ordinary CCDs achieve 1 - 5%. Therefore, there is a large payoff still to be gained by further improvements in the performance of solar blind UV detectors. We provide a brief review of some aspects of UV astronomy, UV detector development, and possible technologies for the future. We suggest that a particularly promising future technology is one based on the ability of investigators to produce high quality films made of wide bandgap III-V semiconductors. [reprint (PDF)] |
1. | Structural and compositional characterization of MOVPE GaN thin films transferred from sapphire to glass substrates using chemical lift-off and room temperature direct wafer bonding and GaN wafer scale MOVPE growth on ZnO-buffered sapphire S. Gautier, T. Moudakir, G. Patriarche, D.J. Rogers, V.E. Sandana, F. Hosseini Teherani, P. Bove, Y. El Gmili, K. Pantzas, Suresh Sundaram, D. Troadec, P.L. Voss, M. Razeghi, A. Ougazzaden Journal of Crystal Growth, Volume 370, Pages 63-67 (2013)-- May 1, 2013 ...[Visit Journal] GaN thin films were grown on ZnO/c-Al2O3 with excellent uniformity over 2 in. diameter wafers using a low temperature/pressure MOVPE process with N2 as a carrier and dimethylhydrazine as an N source. 5 mm×5 mm sections of similar GaN layers were direct-fusion-bonded onto soda lime glass substrates after chemical lift-off from the sapphire substrates. X-Ray Diffraction, Scanning Electron Microscopy and Transmission Electron Microscopy confirmed the bonding of crack-free wurtzite GaN films onto a glass substrate with a very good quality of interface, i.e. continuous/uniform adherence and absence of voids or particle inclusions. Using this approach, (In) GaN based devices can be lifted-off expensive single crystal substrates and bonded onto supports with a better cost-performance profile. Moreover, the approach offers the possibility of reclaiming the expensive sapphire substrate so it can be utilized again for growth. [reprint (PDF)] |
1. | High power, continuous wave, quantum cascade ring laser Y. Bai, S. Tsao, N. Bandyopadhyay, S. Slivken, Q.Y. Lu, D. Caffey, M. Pushkarsky, T. Day and M. Razeghi Applied Physics Letters, Vol. 99, No. 26, p. 261104-1-- December 26, 2011 ...[Visit Journal] We demonstrate a quantum cascade ring laser with high power room temperature continuous wave operation. A second order distributed feedback grating buried inside the waveguide provides both in-plane feedback and vertical power outcoupling. Total output power reaches 0.51 W at an emission wavelength around 4.85 μm. Single mode operation persists up to 0.4 W. The far field analysis indicates that the device operates in a high order mode. The magnetic and electric components of the ring-shaped lasing beam are in radial and azimuthal directions, respectively. [reprint (PDF)] |
1. | High-power λ ~ 9.5 µm quantum-cascade lasers operating above room temperature in continuous-wave mode J.S. Yu, S. Slivken, A. Evans, S.R. Darvish, J. Nguyen, and M. Razeghi Applied Physics Letters, 88 (9)-- February 27, 2006 ...[Visit Journal] We report high-power continuous-wave (cw) operation of λ~9.5 μm quantum-cascade lasers to a temperature of 318 K. A high-reflectivity-coated 19-μm-wide and 3-mm-long device exhibits cw output powers as high as 150 mW at 288 K and still 22 mW at 318 K. In cw operation at 298 K, a threshold current density of 1.57 kA/cm2, a slope efficiency of 391 mW/A, and a maximum wall-plug efficiency of 0.71% are obtained. [reprint (PDF)] |
1. | Gas Source Molecular Beam Epitaxy Growth and Characterization of Ga0.51In0.49P/InxGa1-xAs/GaAs Modulation-doped Field-effect Transistor Structures C. Besikci, Y. Civan, S. Ozder, O. Sen, C. Jelen, S. Slivken, and M. Razeghi Semiconductor Science Technology 12-- January 1, 1997 ...[Visit Journal] Lattice-matched Ga0.51In0.49P/GaAs and strained Ga0.51In0.49P/InxGa1−xAs/GaAs (0.1 ≤ x ≤ 0.25) modulation-doped field-effect transistor structures were grown by gas source molecular beam epitaxy by using Si as dopant. Detailed electrical characterization results are presented. The Ga0.5In0.49P/In0.25Ga0.75As/GaAs sample yielded dark two-dimensional electron gas densities of 3.75 x 1012 cm-2 (300 K) and 2.3 x 1012 cm-2 (77 K) which are comparable to the highest sheet electron densities reported in AlGaAs/InGaAs/GaAs and InAlAs/InGaAs/InP modulation-doped heterostructures. Persistent photoconductivity was observed in the strained samples only. A 0.797 eV deep level has been detected in the undoped GaInP layers of the structures. Another level, with DLTS peak height dependent on the filling pulse width, has been detected at the interface of the strained samples. Based on the DLTS and Hall effect measurement results, this level, which seems to be the origin of persistent photoconductivity, can be attributed to the strain relaxation related defects. [reprint (PDF)] |
1. | Investigation of MgZnO/ZnO heterostructures grown on c-sapphire substrates by pulsed laser deposition D. J. Rogers ; F. Hosseini Teherani ; P. Bove ; A. Lusson ; M. Razeghi Proc. SPIE 8626, Oxide-based Materials and Devices IV, 86261X (March 18, 2013)-- March 18, 2013 ...[Visit Journal] MgZnO thin films were grown on c-sapphire and ZnO-coated c-sapphire substrates by pulsed laser deposition from a ZnMgO target with 4 at% Mg. The MgZnO grown on the ZnO underlayer showed significantly better crystal quality than that grown directly on sapphire. AFM studies revealed a significant deterioration in surface morphology for the MgZnO layers compared with the ZnO underlayer. Optical transmission studies indicated a MgZnO bandgap of 3.61eV (compared with 3.34eV for the ZnO), which corresponds to a Mg content of about 16.1 at%. The MgZnO/ZnO heterojunction showed an anomalously low resistivity, which was more than two orders of magnitude less than the MgZnO layer and an order of magnitude lower than that for the ZnO layer. It was suggested that this may be attributable to the presence of a 2D electron gas at the ZnMgO/ZnO heterointerface. [reprint (PDF)] |
1. | Beam Steering in High-Power CW Quantum Cascade Lasers W.W. Bewley, J.R. Lindle, C.S. Kim, I. Vurgaftman, J.R. Meyer, A.J. Evans, J.S. Yu, S. Slivken, and M. Razeghi IEEE Journal of Quantum Electronics, 41 (6)-- June 1, 2005 ...[Visit Journal] We report the light-current (L-I), spectral, and far-field characteristics of quantum cascade lasers (QCLs) with seven different wavelengths in the λ=4.3 to 6.3 μm range. In continuous-wave (CW) mode, the narrow-stripe (≈13 μm) epitaxial- side-up devices operated at temperatures up to 340 K, while at 295 K the CW output power was as high as 640 mW with a wallplug efficiency of 4.5%. All devices with λ≥4.7 μm achieved room-temperature CW operation, and at T=200 K several produced powers exceeding 1 W with ≈10% wallplug efficiency. The data indicated both spectral and spatial instabilities of the optical modes. For example, minor variations of the current often produced nonmonotonic hopping between spectra with envelopes as narrow as 5-10 nm or as broad as 200-250 nm. Bistable beam steering, by far-field angles of up to ±12° from the facet normal, also occurred, although even in extreme cases the beam quality never became worse than twice the diffraction limit. The observed steering is consistent with a theory for interference and beating between the two lowest order lateral modes. We also describe simulations of a wide-stripe photonic-crystal distributed-feedback QCL, which based on the current material quality is projected to emit multiple watts of CW power into a single-mode beam at T=200 K. [reprint (PDF)] |
1. | Dispersion compensated mid-infrared quantum cascade laser frequency comb with high power output Q. Y. Lu, S. Manna, S. Slivken, D. H. Wu, and M. Razeghi AIP Advances 7, 045313 -- April 26, 2017 ...[Visit Journal] Chromatic dispersion control plays an underlying role in optoelectronics and spectroscopy owing to its enhancement to nonlinear interactions by reducing the phase mismatching. This is particularly important to optical frequency combs based on quantum cascade lasers which require negligible dispersions for efficient mode locking of the dispersed modes into equally spaced comb modes. Here, we demonstrated a dispersion compensated mid-IR quantum cascade laser frequency comb with high power output at room temperature. A low-loss dispersive mirror has been engineered to compensate the device’s dispersion residue for frequency comb generation. Narrow intermode beating linewidths of 40 Hz in the comb-working currents were identified with a high power output of 460 mW and a broad spectral coverage of 80 cm-1. This dispersion compensation technique will enable fast spectroscopy and high-resolution metrology based on QCL combs with controlled dispersion and suppressed noise. [reprint (PDF)] |
1. | Generalized k·p perturbation theory for atomic-scale superlattices H. Yi and M. Razeghi Physical Review B 56 (7)-- August 15, 1997 ...[Visit Journal] We present a generalized k⋅p perturbation method that is applicable for atomic-scale superlattices. The present model is in good quantitative agreement with full band theories with local-density approximation, and approaches results of the conventional k⋅p perturbation method (i.e., Kane’s Hamiltonian) with the envelope function approximation for superlattices with large periods. The indirect band gap of AlAs/GaAs superlattices with short periods observed in experiments is explained using this method. [reprint (PDF)] |
1. | Quantum Hall liquid-to-insulator transition in In1-xGaxAs/InP heterostructures W. Pan, D. Shahar, D.C. Tsui, H.P. Wei, and M. Razeghi Physical Review B 55 (23)-- June 15, 1997 ...[Visit Journal] We report a temperature- and current-scaling study of the quantum Hall liquid-to-insulator transition in an In1-xGaxAs/InP heterostructure. When the magnetic field is at the critical field Bc, ρxx=0.86h/e². Furthermore, the transport near Bc scales as |B- Bc|T-κ with κ=0.45±0.05, and as |B- Bc|I-b with b=0.23±0.05. The latter can be due to phonon emission in a dirty piezoelectric medium, or can be the consequence of critical behavior near Bc, within which z=1.0±0.1 and ν=2.1±0.3 are obtained from our data. [reprint (PDF)] |
1. | Terahertz emitters at Center for Quantum Devices: recent advances and future trends Manijeh Razeghi Proc. SPIE 10177, Infrared Technology and Applications XLIII, 1017705-- August 23, 2018 ...[Visit Journal] This paper reviews the recent advances and future trends of terahertz (THz) emitters at CQD/NU, highlights the high-performance THz sources based on intracavity nonlinear frequency generation in mid-infrared quantum cascade lasers. Significant performance improvements of our THz sources in the power, wall plug efficiency are achieved by systematic optimizing the device's active region, waveguide, and chip bonding strategy. High THz power up to 1.9 mW and 0.014 mW for pulsed mode and continuous wave operations at room temperature are demonstrated, respectively. Even higher power and efficiency are envisioned based on enhancements in outcoupling efficiency and mid-IR performance. Our compact THz device with high power and wide tuning range is highly suitable for the imaging, sensing, spectroscopy, medical diagnosis, and many other applications. [reprint (PDF)] |
1. | Persistent photoconductivity in thin undoped GaInP/GaAs quantum wells S. Elhamri, M. Ahoujja, K. Ravindran, D.B. Mast, R.S. Newrock, W.C. Mitchel, G.J. Brown, I. Lo, M. Razeghi and X. He Applied Physics Letters 66 (2)-- January 9, 1995 ...[Visit Journal] Persistent photoconductivity has been observed at low temperatures in thin, unintentionally doped GaInP/GaAs/GaInP quantum wells. The two‐dimensional electron gas was studied by low field Hall and Shubnikov–de Haas effects. After illumination with red light, the electron concentration increased from low 1011 cm−2 to more than 7×1011 cm−2 resulting in an enhancement of both the carrier mobility and the quantum lifetime. The persistent photocarriers cannot be produced by DX-like defects since the shallow dopant concentration in the GaInP layers is too low to produce the observed concentration. We suggest that the persistent carriers are produced by photoionization of deep intrinsic donors in the GaInP barrier layer. We also report observation of a parallel conduction path in GaInP induced by extended illumination. [reprint (PDF)] |
1. | Study of Au coated ZnO nanoarrays for surface enhanced Raman scattering chemical sensing Gre´gory Barbillon, Vinod E. Sandana,Christophe Humbert, Benoit Be´lier, David J. Rogers, Ferechteh H. Teherani, Philippe Bove Ryan McClintock and Manijeh Razeghid J. Mater. Chem. C, 2017, 5, 3528-- March 20, 2017 ...[Visit Journal] At present, the simultaneous attainment of good reproducibility and high enhancement factors (EF) are key challenges in the development of surface enhanced Raman scattering (SERS)substrates for improved chemical and biological sensing. SERS
substrates are generally based on distributions of metallic nanoparticles/structures with different shapes and architectures which are prepared by either thermal dewetting, precipitation
from colloidal suspensions1–4 or advanced (e.g. deep UV or electron beam (EBL)) lithographic techniques.5–9 Although such substrates can exhibit large Raman enhancements, the former
two techniques (colloidal and thermal dewetting) give poor SERS reproducibility while deep UV and EBL are too expensive and/or complex for mass production. |
1. | High-speed, low-noise metal-semiconductor-metal ultraviolet photodetectors based on GaN D. Walker, E. Monroy, P. Kung, J. Wu, M. Hamilton, F.J. Sanchez, J. Diaz, and M. Razeghi Applied Physics Letters 74 (5)-- February 1, 1999 ...[Visit Journal] We present the fabrication and characterization of nonintentionally doped GaN and GaN:Mg Schottky metal–semiconductor–metal (MSM) photodetectors, grown on sapphire by metalorganic chemical vapor deposition. Low-leakage, Schottky contacts were made with Pt/Au. The devices are visible blind, with an ultraviolet/green contrast of about five orders of magnitude. The response times of the MSM devices were <10 ns and about 200 ns for GaN and GaN:Mg, respectively. The noise power spectral density remains below the background level of the system (10−24 A²/Hz) up to 5 V, for the undoped GaN MSM detector. [reprint (PDF)] |
1. | Pulsed metal-organic chemical vapor deposition of high quality AlN/GaN superlattices for near-infrared intersubband transitions C. Bayram, N. Pere-Laperne, R. McClintock, B. Fain and M. Razeghi Applied Physics Letters, Vol. 94, No. 12, p. 121902-1-- March 23, 2009 ...[Visit Journal] A pulsed metal-organic chemical vapor deposition technique is developed for the growth of high-quality AlN/GaN superlattices (SLs) with intersubband (ISB) transitions at optical communications wavelengths. Tunability of the AlN and GaN layers is demonstrated. Indium is shown to improve SL surface and structural quality. Capping thickness is shown to be crucial for ISB transition characteristics. Effects of barrier- and well-doping on the ISB absorption are reported. [reprint (PDF)] |
Page 17 of 27: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 >> Next (672 Items)
|