Page 16 of 20:  Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16  17 18 19 20  >> Next  (484 Items)

1.  Geiger-mode operation of back-illuminated GaN avalanche photodiodes
J. L. Pau, R. McClintock, K. Minder, C. Bayram, P. Kung, M. Razeghi, E. Muñoz, and D. Silversmith
Applied Physics Letters, Vol. 91, No. 04, p. 041104 -1-- July 23, 2007 ...[Visit Journal]
We report the Geiger-mode operation of back-illuminated GaN avalanche photodiodes fabricated on transparent AlN templates specifically for back illumination in order to enhance hole-initiated multiplication. The spectral response in Geiger-mode operation was analyzed under low photon fluxes. Single photon detection capabilities were demonstrated in devices with areas ranging from 225 to 14,063 µm2. Single photon detection efficiency of 20% and dark count rate < 10 kHz were achieved in the smallest devices. [reprint (PDF)]
 
1.  High performance bias-selectable dual-band short-/mid-wavelength infrared photodetectors based on type-II InAs/GaSb/AlSb superlattices
A.M. Hoang, G. Chen, A. Haddadi and M. Razeghi
SPIE Proceedings, Vol. 8631, p. 86311K-1, Photonics West, San Francisco, CA-- February 5, 2013 ...[Visit Journal]
Active and passive imaging in a single camera based on the combination of short-wavelength and mid-wavelength infrared detection is highly needed in a number of tracking and reconnaissance missions. Due to its versatility in band-gap engineering, Type-II InAs/GaSb/AlSb superlattice has emerged as a candidate highly suitable for this multi-spectral detection. In this paper, we report the demonstration of high performance bias-selectable dual-band short-/mid-wavelength infrared photodetectors based on InAs/GaSb/AlSb type-II superlattice with designed cut-off wavelengths of 2 μm and 4 μm. Taking advantages of the high performance short-wavelength and mid-wavelength single color photodetectors, back-to-back p-i-n-n-i-p photodiode structures were grown on GaSb substrate by molecular beam epitaxy. At 150 K, the short-wave channel exhibited a quantum efficiency of 55%, a dark current density of 1.0x10-9 A/cm² at -50 mV bias voltage, providing an associated shot noise detectivity of 3.0x1013 Jones. The mid-wavelength channel exhibited a quantum efficiency of 33% and a dark current density of 2.6x10-5 A/cm² at 300 mV bias voltage, resulting in a detectivity of 4.0x1011 Jones. The operations of the two absorber channels are selectable by changing the polarity of applied bias voltage. [reprint (PDF)]
 
1.  Demonstration of high performance bias-selectable dual-band short-/mid-wavelength infrared photodetectors based on type-II InAs/GaSb/AlSb superlattices
A.M. Hoang, G. Chen, A. Haddadi and M. Razeghi
Applied Physics Letters, Vol. 102, No. 1, p. 011108-1-- January 7, 2013 ...[Visit Journal]
High performance bias-selectable dual-band short-/mid-wavelength infrared photodetector based on InAs/GaSb/AlSb type-II superlattice with designed cut-off wavelengths of 2 μm and 4 μm was demonstrated. At 150 K, the short-wave channel exhibited a quantum efficiency of 55%, a dark current density of 1.0 × 10−9 A/cm² at −50 mV bias voltage, providing an associated shot noise detectivity of 3.0 × 1013 Jones. The mid-wavelength channel exhibited a quantum efficiency of 33% and a dark current density of 2.6 × 10−5 A/cm² at 300 mV bias voltage, resulting in a detectivity of 4.0 × 1011 Jones. The spectral cross-talk between the two channels was also discussed for further optimization. [reprint (PDF)]
 
1.  Bias-selectable dual-band mid-/long-wavelength infrared photodetectors based on InAs/InAs1−xSbx type-II superlattices
A. Haddadi, R. Chevallier, G. Chen, A. M. Hoang, and M. Razeghi
Applied Physics Letters 106 , 011104-- January 8, 2015 ...[Visit Journal]
A high performance bias-selectable mid-/long-wavelength infrared photodetector based on InAs/InAs1−xSbx type-II superlattices on GaSb substrate has been demonstrated. The mid- and long-wavelength channels' 50% cut-off wavelengths were ∼5.1 and ∼9.5 μm at 77 K. The mid-wavelength channel exhibited a quantum efficiency of 45% at 100 mV bias voltage under front-side illumination and without any anti-reflection coating. With a dark current density of 1 × 10−7 A/cm² under 100 mV applied bias, the mid-wavelength channel exhibited a specific detectivity of 8.2 × 1012 cm·Hz½·W-1 at 77 K. The long-wavelength channel exhibited a quantum efficiency of 40%, a dark current density of 5.7 × 10−4 A/cm² under −150 mV applied bias at 77 K, providing a specific detectivity value of 1.64 × 1011 cm·Hz½·W-1. [reprint (PDF)]
 
1.  Avalanche Photodetector Based on InAs/InSb Superlattice
Arash Dehzangi, Jiakai Li, Lakshay Gautam and Manijeh Razeghi
Quantum rep. 2020, 2(4), 591-599; https://doi.org/10.3390/quantum2040041 (registering DOI)-- December 4, 2020 ...[Visit Journal]
This work demonstrates a mid-wavelength infrared InAs/InSb superlattice avalanche photodiode (APD). The superlattice APD structure was grown by molecular beam epitaxy on GaSb substrate. The device exhibits a 100 % cut-off wavelength of 4.6 µm at 150 K and 4.30 µm at 77 K. At 150 and 77 K, the device responsivity reaches peak values of 2.49 and 2.32 A/W at 3.75 µm under −1.0 V applied bias, respectively. The device reveals an electron dominated avalanching mechanism with a gain value of 6 at 150 K and 7.4 at 77 K which was observed under −6.5 V bias voltage. The gain value was measured at different temperatures and different diode sizes. The electron and hole impact ionization coefficients were calculated and compared to give a better prospect of the performance of the device. [reprint (PDF)]
 
1.  Type-II InAs/GaSb/AlSb superlatticebased heterojunction phototransistors: back to the future
Abbas Haddadi, Arash Dehzangi, Romain Chevallier, Thomas Yang, Manijeh Razeghi
Proc. SPIE 10540, Quantum Sensing and Nano Electronics and Photonics XV- Page-1054004-1-- January 26, 2018 ...[Visit Journal]
Most of reported HPTs in literatures are based on InGaAs compounds that cover NIR spectral region. However, InGaAs compounds provide limited cut-off wavelength tunability. In contrast, type-II superlattices (T2SLs) are a developing new material system with intrinsic advantages such as great flexibility in bandgap engineering, low growth and manufacturing cost, high-uniformity, auger recombination suppression, and high carrier effective mass that are becoming an attractive candidate for infrared detection and imaging from short-wavelength infrared to very long wavelength infrared regime. We present the recent advancements in T2SL-based heterojunction phototransistors in e– SWIR, MWIR and LWIR spectral ranges. A mid-wavelength infrared heterojunction phototransistor based on type-II InAs/AlSb/GaSb superlattices on GaSb substrate has been demonstrated. Then, we present the effect of vertical scaling on the optical and electrical performance of heterojunction phototransistors, where the performance of devices with different base width was compared as the base was scaled from 60 down to 40 nm. [reprint (PDF)]
 
1.  Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ ∼ 3.76 μm
N. Bandyopadhyay, Y. Bai, B. Gokden, A. Myzaferi, S. Tsao, S. Slivken and M. Razeghi
Applied Physics Letters, Vol. 97, No. 13-- September 27, 2010 ...[Visit Journal]
An InP-based quantum cascade laser heterostructure emitting at 3.76 μm is grown with gas-source molecular beam epitaxy. The laser core is composed of strain balanced In0.76Ga0.24As/In0.26Al0.74As. Pulsed testing at room temperature exhibits a low threshold current density (1.5 kA/cm²) and high wall plug efficiency (10%). Room temperature continuous wave operation gives 6% wall plug efficiency with a maximum output power of 1.1 W. Continuous wave operation persists up to 95 °C. [reprint (PDF)]
 
1.  High Detectivity InGaAs/InGaP Quantum-Dot Infrared Photodetectors Grown by Low Pressure Metalorganic Chemical Vapor Deposition
J. Jiang, S. Tsao, T. O'Sullivan, W. Zhang, H. Lim, T. Sills, K. Mi, M. Razeghi, G.J. Brown, and M.Z. Tidrow
Applied Physics Letters, 84 (12)-- April 22, 2004 ...[Visit Journal]
We report a high detectivity middle-wavelength infrared quantum dot infrared photodetector (QDIP). The InGaAs quantum dots were grown by self-assembly on an InGaP matrix via low pressure metalorganic chemical vapor deposition. Photoresponse was observed at temperatures above 200 K with a peak wavelength of 4.7 µm and cutoff wavelength of 5.2 µm. The background limited performance temperature was 140 K, and this was attributed to the super low dark current observed in this QDIP. A detectivity of 3.6×1010 cm·Hz½/W, which is comparable to the state-of-the-art quantum well infrared photodetectors in a similar wavelength range, was obtained for this InGaAs/InGaP QDIP at both T = 77 K and T = 95 K at biases of –1.6 and –1.4 V, [reprint (PDF)]
 
1.  Recent advances in high performance antimonide-based superlattice FPAs
E.K. Huang, B.M. Nguyen, S.R. Darvish, S. Abdollahi Pour, G. Chen, A. Haddadi, and M.A. Hoang
SPIE Proceedings, Infrared technology and Applications XXXVII, Orlando, FL, Vol. 8012, p. 80120T-1-- April 25, 2011 ...[Visit Journal]
Infrared detection technologies entering the third generation demand performances for higher detectivity, higher operating temperature, higher resolution and multi-color detection, all accomplished with better yield and lower manufacturing/operating costs. Type-II antimonide based superlattices (T2SL) are making firm steps toward the new era of focal plane array imaging as witnessed in the unique advantages and significant progress achieved in recent years. In this talk, we will present the four research themes towards third generation imagers based on T2SL at the Center for Quantum Devices. High performance LWIR megapixel focal plane arrays (FPAs) are demonstrated at 80K with an NEDT of 23.6 mK using f/2 optics, an integration time of 0.13 ms and a 300 K background. MWIR and LWIR FPAs on non-native GaAs substrates are demonstrated as a proof of concept for the cost reduction and mass production of this technology. In the MWIR regime, progress has been made to elevate the operating temperature of the device, in order to avoid the burden of liquid nitrogen cooling. We have demonstrated a quantum efficiency above 50%, and a specific detectivity of 1.05x1012 cm·Hz1/2/W at 150 K for 4.2 μm cut-off single element devices. Progress on LWIR/LWIR dual color FPAs as well as novel approaches for FPA fabrication will also be discussed. [reprint (PDF)]
 
1.  Characteristics of high quality p-type AlxGa1-xN/GaN superlattices
A. Yasan, R. McClintock, S.R. Darvish, Z. Lin, K. Mi, P. Kung, and M. Razeghi
Applied Physics Letters 80 (12)-- March 18, 2002 ...[Visit Journal]
Very-high-quality p-type AlxGa1–xN/GaN superlattices have been grown by low-pressure metalorganic vapor-phase epitaxy through optimization of Mg flow and the period of the superlattice. For the superlattice with x = 26%, the hole concentration reaches a high value of 4.2×1018 cm–3 with a resistivity as low as 0.19 Ω · cm by Hall measurement. Measurements confirm that superlattices with a larger period and higher Al composition have higher hole concentration and lower resistivity, as predicted by theory. [reprint (PDF)]
 
1.  Recent advances in MOCVD growth of InxGa1-xAsyP1-y alloys
M. Razeghi, J.P. Duchemin
M. Razeghi, J.P. Duchemin, Recent advances in MOCVD growth of InxGa1-xAsyP1-y alloys, Journal of Crystal Growth, Volume 70, Issues 1–2, 1984, Pages 145-149,-- December 1, 1984 ...[Visit Journal]
The low pressure metalorganic chemical vapour deposition (LPMOCVD) growth of GaxIn1-xAsyP1-y-InP lattice matched system, with high mobilities, sharp interfaces, low background doping densities, and the formation of a two-dimensional electron gas (2DEG) at the interfaces, has recently made spectacular advances, as in evidenced by the availability of high quality DH lasers, PIN photodiodes, and Gunn diodes. We present here some new results obtained on the above-mentioned material and devices. [reprint (PDF)]
 
1.  Growth of GaInAs‐InP multiquantum wells on garnet (GGG=Gd3Ga5O12) substrate by metalorganic chemical vapor deposition
M. Razeghi; P‐L. Meunier; P. Maurel
M. Razeghi, P‐L. Meunier, P. Maurel; Growth of GaInAs‐InP multiquantum wells on garnet (GGG=Gd3Ga5O12) substrate by metalorganic chemical vapor deposition. J. Appl. Phys. 15 March 1986; 59 (6): 2261–2263-- March 15, 1986 ...[Visit Journal]
Ga0.47In0.53As‐InP multiquantum wells grown by low‐pressure metalorganic chemical vapor deposition on garnet (GGG=Gd3Ga5O12 with a=12.383 Å) substrates are presented for the first time. The x‐ray diffraction pattern shows that the orientation of the epitaxial layer is (111) while the underlying substrate orientation is (100). The photoluminescence at 77 K is due to the GaInAs layers. [reprint (PDF)]
 
1.  Room Temperature Operation of InTlSb Infrared Photodetectors on GaAs
J.D. Kim, E. Michel, S. Park, J. Xu, S. Javadpour and M. Razeghi
Applied Physics Letters 69 (3)-- August 15, 1996 ...[Visit Journal]
Long-wavelength InTlSb photodetectors operating at room temperature are reported. The photo- detectors were grown on (100) semi-insulating GaAs substrates by low-pressure metalorganic chemical vapor deposition. Photoresponse of InTlSb photodetectors is observed up to 11 µm at room temperature. The maximum responsivity of an In0.96Tl0.04Sb photodetector is about 6.64 V/W at 77 K, corresponding to a detectivity of about 7.64 × 108 cm·Hz½/W. The carrier lifetime in InTlSb photodetectors derived from the stationary photoconductivity is 10–50 ns at 77 K. [reprint (PDF)]
 
1.  Monolithic, steerable, mid-infrared laser realized with no moving parts
Slivken S, Wu D, Razeghi M
Scientific Reports 7, 8472 -- May 24, 2018 ...[Visit Journal]
The mid-infrared (2.5 < λ < 25 μm) spectral region is utilized for many purposes, such as chemical/biological sensing, free space communications, and illuminators/countermeasures. Compared to near-infrared optical systems, however, mid-infrared component technology is still rather crude, with isolated components exhibiting limited functionality. In this manuscript, we make a significant leap forward in mid-infrared technology by developing a platform which can combine functions of multiple mid-infrared optical elements, including an integrated light source. In a single device, we demonstrate wide wavelength tuning (240 nm) and beam steering (17.9 degrees) in the mid-infrared with a significantly reduced beam divergence (down to 0.5 degrees). The architecture is also set up to be manufacturable and testable on a wafer scale, requiring no cleaved facets or special mirror coating to function. [reprint (PDF)]
 
1.  Intermixing of GaInP/GaAs Multiple Quantum Wells
C. Francis, M.A. Bradley, P. Boucaud, F.H. Julien and M. Razeghi
Applied Physics Letters 62 (2)-- January 11, 1993 ...[Visit Journal]
The intermixing of GaInP‐GaAs superlattices induced by a heat treatment is investigated as a function of the annealing temperature and duration. Photoluminescence experiments reveal a large red shift of the effective band gap of the annealed quantum wells thus indicating a dominant self‐diffusion of the group III atoms which is confirmed by secondary ion mass spectroscopic measurements. For long enough annealing durations, the red shift saturates and even decreases due to the competing slower self‐diffusion of the group V atoms. Experiments are well understood based on a simple diffusion model. [reprint (PDF)]
 
1.  First cw operation of a Ga0.25In0.75As0.5P0.5‐InP laser on a silicon substrate
M. Razeghi; M. Defour; R. Blondeau; F. Omnes; P. Maurel; O. Acher; F. Brillouet; J. C. C‐Fan; J. Salerno
Appl. Phys. Lett. 53, 2389–2390 (1988) -- December 12, 1988 ...[Visit Journal]
We report the first successful room-temperature cw operations of a GaO. 25 1110.75 ASo. 5 po. s -InP buried ridge structure laser emitting at 1.3 f-tm grown by two-step low-pressure metalorganic chemical vapor deposition on a silicon substrate. An output power of 20 m W with an external quantum efficiency of 16% at room temperature has been obtained. A threshold current as low as 45 rnA under cw operation at room temperature has been measured. The first cw aging test at room temperature, at 2 mW during 5 h, shows a very low degradation (Ill 11,;;5%). [reprint (PDF)]
 
1.  Tl incorporation in InSb and lattice contraction of In1-xTlxSb
J.J. Lee and M. Razeghi
Applied Physics Letters 76 (3)-- January 17, 2000 ...[Visit Journal]
Ternary In1−xTlxSb thin films are grown by low pressure metalorganic chemical vapor deposition in the high In composition region. Infrared photoresponse spectra of the In1−xTlxSb epilayers show a clear shift toward a longer wavelength compared to that of InSb. Tl incorporation is confirmed by Auger electron spectroscopy. In contrast to the theoretical expectation, high resolution x-ray diffraction study reveals that the lattice of the In1−xTlxSb epilayers is contracted by the incorporation of Tl. As more Tl is incorporated, the lattice contraction is observed to increase gradually in the experimental range. A possible origin of this phenomenon is discussed. Our experimental results suggest that the Tl incorporation behavior in In1−xTlxSb differs from that of other group III impurities in III antimonides. [reprint (PDF)]
 
1.  Widely tuned room temperature terahertz quantum cascade laser sources based on difference-frequency generation
Q.Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai and M. Razeghi
Applied Physics Letters, Vol. 101, No. 25, p. 251121-1-- December 17, 2012 ...[Visit Journal]
We demonstrate room temperature THz quantum cascade laser sources with a broad spectral coverage based on intracavity difference-frequency generation. Two mid-infrared active cores based on the single-phonon resonance scheme are designed with a THz nonlinearity specially optimized at the high operating fields that correspond to the highest mid-infrared output powers. A Čerenkov phase-matching scheme along with integrated dual-period distributed feedback gratings are used for efficient THz extraction and spectral purification. Single mode emissions from 1.0 to 4.6 THz with a side-mode suppression ratio and output power up to 40 dB and 32 μW are obtained, respectively. [reprint (PDF)]
 
1.  Capacitance-voltage investigation of high purity InAs/GaSb superlattice photodiodes
A. Hood, D. Hoffman, Y. Wei, F. Fuchs, and M. Razeghi
Applied Physics Letters 88 (6)-- February 6, 2006 ...[Visit Journal]
The residual carrier backgrounds of binary type-II InAs/GaSb superlattice photodiodes with cutoff wavelengths around 5 μm have been studied in the temperature range between 20 and 200 K. By applying a capacitance-voltage measurement technique, a residual background concentration below 1015 cm–3 has been found. [reprint (PDF)]
 
1.  Ultraviolet avalanche photodiodes
Ryan McClintock ; Manijeh Razeghi
Proc. SPIE 9555, Optical Sensing, Imaging, and Photon Counting: Nanostructured Devices and Applications, 95550B -- August 28, 2015 ...[Visit Journal]
The III-Nitride material system is rapidly maturing; having proved itself as a material for LEDs and laser, and now finding use in the area of UV photodetectors. However, many UV applications are still dominated by the use of photomultiplier tubes (PMT). PMTs are capable of obtaining very high sensitivity using internal electron multiplication gain (typically ~106). It is highly desirable to develop a compact semiconductor-based photodetector capable of realizing this level of sensitivity. In principle, this can be obtained in III-Nitrides by taking advantage of avalanche multiplication under high electric fields – typically 2.7 MV/cm, which with proper design can correspond to an external reverse bias of less than 100 volts. In this talk, we review the current state-of-the-art in III-Nitride solar- and visible-blind APDs, and present our latest results on GaN APDs grown on both conventional sapphire and low dislocation density free-standing c- and m-plane GaN substrates. Leakage current, gain, and single photon detection efficiency (SPDE) of these APDs were compared. The spectral response and Geiger-mode photon counting performance of UV APDs are studied under low photon fluxes, with single photon detection capabilities as much as 30% being demonstrated in smaller devices. Geiger-mode operation conditions are optimized for enhanced SPDE. [reprint (PDF)]
 
1.  High power photonic crystal distributed feedback quantum cascade lasers emitting at 4.5 micron
B. Gokden, S. Slivken and M. Razeghi
SPIE Proceedings, San Francisco, CA (January 22-28, 2010), Vol. 7608, p. 760806-1-- January 22, 2010 ...[Visit Journal]
Quantum cascade lasers possess very small linewidth enhancement factor, which makes them very prominent candidates for realization of high power, nearly diffraction limited and single mode photonic crystal distributed feedback broad area lasers in the mid-infrared frequencies. In this paper, we present room temperature operation of a two dimensional photonic crystal distributed feedback quantum cascade laser emitting at 4.5 µm. peak power up to ~0.9 W per facet is obtained from a 2 mm long laser with 100 µm cavity width at room temperature. The observed spectrum is single mode with a very narrow linewidth. Far-field profile has nearly diffraction limited single lobe with full width at half maximum of 3.5 degree normal to the facet. The mode selection and power output relationships are experimentally established with respect to different cavity lengths for photonic crystal distributed feedback quantum cascade lasers. [reprint (PDF)]
 
1.  High‐purity GaAs layers grown by low‐pressure metalorganic chemical vapor deposition
M. Razeghi; F. Omnes; J. Nagle; M. Defour; O. Acher; P. Bove
Appl. Phys. Lett. 55, 1677–1679 (1989)-- October 16, 1989 ...[Visit Journal]
We report electrical and optical properties of very high purity GaAs epilayers grown by low‐pressure metalorganic chemical vapor deposition using AsH3 and triethylgallium as As and Ga sources. An electron mobility of 335 000 cm2/V s at 38 K has been measured for a 12‐μ‐thick layer. [reprint (PDF)]
 
1.  Uncooled operation of Type-II InAs/GaSb superlattice photodiodes in the mid- wavelength infrared range
Y. Wei, A. Hood, H. Yau, A. Gin, M. Razeghi, M.Z. Tidrow, V. Natha
Applied Physics Letters, 86 (23)-- June 6, 2005 ...[Visit Journal]
We report high performance uncooled midwavelength infrared photodiodes based on interface-engineered InAs/GaSb superlattice. Two distinct superlattices were designed with a cutoff wavelength around 5 µm for room temperature and 77 K. The device quantum efficiency reached more than 25% with responsivity around 1 A/W. Detectivity was measured around 109 cm·Hz½/W at room temperature and 1.5×1013 cm·Hz½/W at 77 K under zero bias. The devices were without antireflective coating. The device quantum efficiency stays at nearly the same level within this temperature range. Additionally, Wannier–Stark oscillations in the Zener tunneling current were observed up to room temperature. [reprint (PDF)]
 
1.  Low irradiance background limited type-II superlattice MWIR M-barrier imager
E.K. Huang, S. Abdollahi Pour, M.A. Hoang, A. Haddadi, M. Razeghi and M.Z. Tidrow
OSA Optics Letters (OL), Vol. 37, No. 11, p. 2025-2027-- June 1, 2012 ...[Visit Journal]
We report a type-II superlattice mid-wave infrared 320 × 256 imager at 81 K with the M-barrier design that achieved background limited performance (BLIP) and ∼99%operability. The 280 K blackbody’s photon irradiance was limited by an aperture and a band-pass filter from 3.6 μm to 3.8 μm resulting in a total flux of ∼5 × 1012 ph·cm−2·s−1. Under these low-light conditions, and consequently the use of a 13.5 ms integration time, the imager was observed to be BLIP thanks to a ∼5 pA dark current from the 27 μm wide pixels. The total noise was dominated by the photon flux and read-out circuit which gave the imager a noise equivalent input of ∼5 × 1010 ph·cm−2·s−1 and temperature sensitivity of 9 mK with F∕2.3 optics. Excellent imagery obtained using a 1-point correction alludes to the array’s uniform responsivity. [reprint (PDF)]
 
1.  High performance long wavelength infrared mega-pixel focal plane array based on type-II superlattices
P. Manurkar, S.R. Darvish, B.M. Nguyen, M. Razeghi and J. Hubbs
Applied Physics Letters, Vol. 97, No 19, p. 193505-1-- November 8, 2010 ...[Visit Journal]
A large format 1k × 1k focal plane array (FPA) is realized using type-II superlattice photodiodes for long wavelength infrared detection. Material growth on a 3 in. GaSb substrate exhibits a 50% cutoff wavelength of 11 μm across the entire wafer. The FPA shows excellent imaging. Noise equivalent temperature differences of 23.6 mK at 81 K and 22.5 mK at 68 K are achieved with an integration time of 0.13 ms, a 300 K background and f/4 optics. We report a dark current density of 3.3×10−4 A·cm−2 and differential resistance-area product at zero bias R0A of 166 Ω·cm² at 81 K, and 5.1×10−5 A·cm−2 and 1286 Ω·cm², respectively, at 68 K. The quantum efficiency obtained is 78%. [reprint (PDF)]
 

Page 16 of 20:  Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16  17 18 19 20  >> Next  (484 Items)