| About the CQD | | News | | Conferences | | Publications | | Books | | Research | | People | | History | | Patents | | Contact | Channel | |
Page 16 of 20: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 >> Next (484 Items)
| 1. | Scale-up of the Chemical Lift-off of (In)GaN-based p-i-n Junctions from Sapphire Substrates Using Sacrificial ZnO Template Layers D. J. Rogers, S. Sundaram, Y. El Gmili, F. Hosseini Teherani, P. Bove, V. Sandana, P. L. Voss, A. Ougazzaden, A. Rajan, K.A. Prior, R. McClintock, & M. Razeghi Proc. SPIE 9364, Oxide-based Materials and Devices VI, 936424 -- March 24, 2015 ...[Visit Journal] (In)GaN p-i-n structures were grown by MOVPE on both GaN- and ZnO-coated c-sapphire substrates. XRD studies of the as-grown layers revealed that a strongly c-axis oriented wurtzite crystal structure was obtained on both templates and that there was a slight compressive strain in the ZnO underlayer which increased after GaN overgrowth. The InGaN
peak position gave an estimate of 13.6at% for the indium content in the active layer. SEM and AFM revealed that the top surface morphologies were similar for both substrates, with an RMS roughness (5 μm x 5 μm) of about 10 nm. Granularity appeared slightly coarser (40nm for the device grown on ZnO vs 30nm for the device grown on the GaN template) however. CL revealed a weaker GaN near band edge UV emission peak and a stronger broad defect-related
visible emission band for the structure grown on the GaN template. Only a strong ZnO NBE UV emission was observed for the sample grown on the ZnO template. Quarter-wafer chemical lift-off (CLO) of the InGaN-based p-i-n structures from the sapphire substrate was achieved by temporary-bonding the GaN surface to rigid glass support with wax and then selectively dissolving the ZnO in 0.1M HCl. XRD studies revealed that the epitaxial nature and strong preferential c-axis orientation of the layers had been maintained after lift-off. This demonstration of CLO scale-up, without compromising the crystallographic integrity of the (In)GaN p-i-n structure opens up the perspective of transferring GaN based devices off of sapphire substrates industrially. [reprint (PDF)] |
| 1. | State-of-the-art Type II Antimonide-based superlattice photodiodes for infrared detection and imaging M. Razeghi, B.M. Nguyen, P.Y. Delaunay, E.K. Huang, S. Abdollahi Pour, P. Manurkar, and S. Bogdanov SPIE Proceedings, Nanophotonics and Macrophotonics for Space Environments II, San Diego, CA, Vol. 7467, p. 74670T-1-- August 5, 2009 ...[Visit Journal] Type-II InAs/GaSb Superlattice (SL), a system of multi interacting quantum wells was first introduced by Nobel Laureate L. Esaki in the 1970s. Since then, this low dimensional system has drawn a lot of attention for its attractive quantum mechanics properties and its grand potential for the emergence into the application world, especially in infrared detection. In recent years, Type-II InAs/GaSb superlattice photo-detectors have experienced significant improvements in material quality, structural designs and imaging applications which elevated the performances of Type-II InAs/GaSb superlattice photodetectors to a comparable level to the state-of-the-art Mercury Cadmium Telluride. We will present in this talk the current status of the state-of-the-art Type II superlattice photodetectors and focal plane arrays, and the future outlook for this material system. [reprint (PDF)] |
| 1. | Thermal Conductivity of InAs/GaSb Type II Superlattice C. Zhou, B.M. Nguyen, M. Razeghi and M. Grayson Journal of Electronic Materials, Vol. 41, No. 9, p. 2322-2325-- August 1, 2012 ...[Visit Journal] The cross-plane thermal conductivity of a type II InAs/GaSb superlattice(T2SL) is measured from 13 K to 300 K using the 3x method. Thermal conductivity
is reduced by up to two orders of magnitude relative to the GaSb bulk substrate. The low thermal conductivity of around 1 W/m K to 8 W/m K may serve as an advantage for thermoelectric applications at low temperatures, while presenting a challenge for T2SL interband cascade lasers and highpower photodiodes. We describe a power-law approximation to model nonlinearities in the thermal conductivity, resulting in increased or decreased peak temperature for negative or positive exponents, respectively. [reprint (PDF)] |
| 1. | AlGaN-based deep-ultraviolet 320 x 256 focal plane array E. Cicek, Z. Vashaei, E.K. Huang, R. McClintock and M. Razeghi OSA Optics Letters, Vol. 37, No. 5, p. 896-898-- March 1, 2012 ...[Visit Journal] We report the synthesis, fabrication, and testing of a 320 × 256 focal plane array (FPA) of back-illuminated, solarblind, p-i-n, AlxGa1−xN–based detectors, fully realized within our research laboratory. We implemented a pulse
atomic layer deposition technique for the metalorganic chemical vapor deposition growth of thick, high-quality, crack-free, high Al composition AlxGa1−xN layers. The FPA is hybridized to a matching ISC 9809 readout integrated circuit and operated in a SE-IR camera system. Solar-blind operation is observed throughout the array with peak
detection occurring at wavelengths of 256 nm and lower, and falling off three orders of magnitude by ∼285 nm. By developing an opaque masking technology, the visible response of the ROIC is significantly reduced; thus the need for external filtering to achieve solar- and visible-blind operation is eliminated. This allows the FPA to achieve high external quantum efficiency (EQE); at 254 nm, average pixels showed unbiased peak responsivity of 75 mA∕W, which corresponds to an EQE of ∼37%. Finally, the uniformity of the FPA and imaging properties are investigated. [reprint (PDF)] |
| 1. | Type-II Antimonide-based Superlattices for the Third Generation Infrared Focal Plane Arrays Manijeh Razeghi, Edward Kwei-wei Huang, Binh-Minh Nguyen, Siamak Abdollahi Pour, and Pierre-Yves Delaunay SPIE Proceedings, Infrared Technology and Applications XXXVI, Vol. 7660, pp. 76601F-- May 10, 2010 ...[Visit Journal] In recent years, the Type-II superlattice (T2SL) material platform has seen incredible growth in
the understanding of its material properties which has lead to unprecedented development in the arena
of device design. Its versatility in band-structure engineering is perhaps one of the greatest hallmarks
of the T2SL that other material platforms are lacking. In this paper, we discuss advantages of the
T2SL, specifically the M-structure T2SL, which incorporates AlSb in the traditional InAs/GaSb
superlattice. Using the M-structure, we present a new unipolar minority electron detector coined as
the p-M-p, the letters which describe the composition of the device. Demonstration of this device structure with a 14 μm cutoff attained a detectivity of 4x1010 Jones (-50 mV) at 77 K. As device performance improves year after year with novel design contributions from the many researchers in this field, the natural progression in further enabling the ubiquitous use of this technology is to reduce cost and support the fabrication of large infrared imagers. In this paper, we also discuss the use of GaAs substrates as an enabling technology for third generation imaging on T2SLs. Despite the 7.8% lattice mismatch between the native GaSb and alternative GaAs substrates, T2SL photodiodes grown on GaAs at the MWIR and LWIR have been demonstrated at an operating temperature of 77 K [reprint (PDF)] |
| 1. | Cubic Phase GaN on Nano-grooved Si (100) via Maskless Selective Area Epitaxy Bayram, C., Ott, J. A., Shiu, K.-T., Cheng, C.-W., Zhu, Y., Kim, J., Razeghi, M. and Sadana, D. K. Adv. Funct. Mater. 2014-- April 1, 2014 ...[Visit Journal] A method of forming cubic phase (zinc blende) GaN (referred as c-GaN) on a CMOS-compatible on-axis Si (100) substrate is reported. Conventional GaN materials are hexagonal phase (wurtzite) (referred as h-GaN) and possess very high polarization fields (∼MV/cm) along the common growth direction of <0001>. Such large polarization fields lead to undesired shifts (e.g., wavelength and current) in the performance of photonic and vertical transport electronic devices. The cubic phase of GaN materials is polarization-free along the common growth direction of <001>, however, this phase is thermodynamically unstable, requiring low-temperature deposition conditions and unconventional substrates (e.g., GaAs). Here, novel nano-groove patterning and maskless selective area epitaxy processes are employed to integrate thermodynamically stable, stress-free, and low-defectivity c-GaN on CMOS-compatible on-axis Si. These results suggest that epitaxial growth conditions and nano-groove pattern parameters are critical to obtain such high quality c-GaN. InGaN/GaN multi-quantum-well structures grown on c-GaN/Si (100) show strong room temperature luminescence in the visible spectrum, promising visible emitter applications for this technology. [reprint (PDF)] |
| 1. | High-performance InAs quantum-dot infrared photodetectors grown on InP substrate operating at room temperature H. Lim, S. Tsao, W. Zhang, and M. Razeghi Applied Physics Letters, Vol. 90, No. 13, p. 131112-1-- March 26, 2007 ...[Visit Journal] The authors report a room temperature operating InAs quantum-dot infrared photodetector grown on InP substrate. The self-assembled InAs quantum dots and the device structure were grown by low-pressure metal-organic chemical vapor deposition. The detectivity was 2.8×1011 cm·Hz1/2/W at 120 K and a bias of −5 V with a peak detection wavelength around 4.1 μm and a quantum efficiency of 35%. Due to the low dark current and high responsivity, a clear photoresponse has been observed at room temperature, which gives a detectivity of 6.7×107 cm·Hz1/2/W. [reprint (PDF)] |
| 1. | Advanced InAs/GaSb Superlattice Photovoltaic Detectors for Very-Long Wavelength Infrared Applications Y. Wei, A. Gin, M. Razeghi, and G.J. Brown Applied Physics Letters 80 (18)-- May 6, 2002 ...[Visit Journal] We report on the temperature dependence of the photoresponse of very long wavelength infrared type-II InAs/GaSb superlattice based photovoltaic detectors grown by molecular-beam epitaxy. The detectors had a 50% cutoff wavelength of 18.8 μm and a peak current responsivity of 4 A·W-1 at 80 K. A peak detectivity of 4.5×1010 cm· Hz½·W-1 was achieved at 80 K at a reverse bias of 110 mV. The generation–recombination lifetime was 0.4 ns at 80 K. The cutoff wavelength increased very slowly with increasing temperature with a net shift from 20 to 80 K of only 1.2 μm [reprint (PDF)] |
| 1. | Quantum hall effect and hopping conduction in InxGa1−xAs-InP heterojunctions at low temperature Y. Guldner, J.P. Hirtz, A. Briggs, J.P. Vieren, M. Voos, M. Razeghi Y. Guldner, J.P. Hirtz, A. Briggs, J.P. Vieren, M. Voos, M. Razeghi, Quantum hall effect and hopping conduction in InxGa1−xAs-InP heterojunctions at low temperature, Surface Science, Volume 142, Issues 1–3, 1984, Pages 179-181,-- July 1, 1984 ...[Visit Journal] We report investigations of the temperature dependence of the quantum Hall effect in modulation doped InxGa1−xAs-InP heterojunctions. The diagonal conductivity σxx is studied at several minima of the magneto-resistance ϱxx between 50 mK and 2 K. A hopping conduction mechanism is observed when the Fermi level is in the tail of the Landau levels. [reprint (PDF)] |
| 1. | Passivation of type-II InAs/GaSb double heterostructure P.Y. Delaunay, A. Hood, B.M. Nguyen, D. Hoffman, Y. Wei, and M. Razeghi Applied Physics Letters, Vol. 91, No. 9, p. 091112-1-- August 27, 2007 ...[Visit Journal] Focal plane array fabrication requires a well passivated material that is resistant to aggressive processes. The authors report on the ability of type-II InAs/GaSb superlattice heterodiodes to be more resilient than homojunctions diodes in improving sidewall resistivity through the use of various passivation techniques. The heterostructure consisting of two wide band gap (5 µm) superlattice contacts and a low band gap active region (11 µm) exhibits an R0A averaging of 13·Ω cm2. The devices passivated with SiO2, Na2S and SiO2 or polyimide did not degrade compared to the unpassivated sample and the resistivity of the sidewalls increased to 47 kΩ·cm.
[reprint (PDF)] |
| 1. | Reliable High-Power Uncoated Al-free InGaAsP/GaAs Lasers for Cost-Sensitive Optical Communication and Processing Applications M. Razeghi SPIE Conference, Dallas, TX, -- November 4, 1997 ...[Visit Journal] Unlike InP-based systems for long-distance communication applications, GaAs-based optoelectronic systems mostly for local-area network, optical interconnection or optical computing are very cost-sensitive because often these optoelectronic devices constitute most of the cost for these applications and fewer users share the cost. Thus besides technical issues, the processing cost should be addressed in the selection of materials and fabrication methods. We discuss a number of major advantages of Al-free InGaAsP/GaAs lasers for these applications, such as not coating- requirement, low cost, high long-term reliability, high performance. We discuss recent preliminary results of Al- free lasers as a first step toward these optoelectronic applications. [reprint (PDF)] |
| 1. | Back-illuminated separate absorption and multiplication GaN avalanche photodiodes J.L. Pau, C. Bayram, R. McClintock, M. Razeghi and D. Silversmith Applied Physics Letters, Vol. 92, No. 10, p. 101120-1-- March 10, 2008 ...[Visit Journal] The performance of back-illuminated avalanche photodiodes with separate absorption and multiplication regions is presented. Devices with an active area of 225 µm2 show a maximum multiplication gain of 41,200. The calculation of the noise equivalent power yields a minimum value of 3.3×10−14 W·Hz−1/2 at a gain of 3000, increasing to 2.0×10−13 W·Hz−1/2 at a gain of 41,200. The broadening of the response edge has been analyzed as a function of bias. [reprint (PDF)] |
| 1. | Dispersion compensated mid-infrared quantum cascade laser frequency comb with high power output Q. Y. Lu, S. Manna, S. Slivken, D. H. Wu, and M. Razeghi AIP Advances 7, 045313 -- April 26, 2017 ...[Visit Journal] Chromatic dispersion control plays an underlying role in optoelectronics and spectroscopy owing to its enhancement to nonlinear interactions by reducing the phase mismatching. This is particularly important to optical frequency combs based on quantum cascade lasers which require negligible dispersions for efficient mode locking of the dispersed modes into equally spaced comb modes. Here, we demonstrated a dispersion compensated mid-IR quantum cascade laser frequency comb with high power output at room temperature. A low-loss dispersive mirror has been engineered to compensate the device’s dispersion residue for frequency comb generation. Narrow intermode beating linewidths of 40 Hz in the comb-working currents were identified with a high power output of 460 mW and a broad spectral coverage of 80 cm-1. This dispersion compensation technique will enable fast spectroscopy and high-resolution metrology based on QCL combs with controlled dispersion and suppressed noise. [reprint (PDF)] |
| 1. | GaN nanostructured p-i-n photodiodes J.L. Pau, C. Bayram, P. Giedraitis, R. McClintock, and M. Razeghi Applied Physics Letters, Vol. 93, No. 22, p. 221104-1-- December 1, 2008 ...[Visit Journal] We report the fabrication of nanostructured p-i-n photodiodes based on GaN. Each device comprises arrays of ~200 nm diameter and 520 nm tall nanopillars on a 1 µm period, fabricated by e-beam lithography. Strong rectifying behavior was obtained with an average reverse current per nanopillar of 5 fA at −5 V. In contrast to conventional GaN diodes, nanostructured devices reproducibly show ideality factors lower than 2. Enhanced tunneling through sidewall surface states is proposed as the responsible mechanism for this behavior. Under backillumination, the quantum efficiency in nanostructured devices is partly limited by the collection efficiency of holes into the nanopillars. [reprint (PDF)] |
| 1. | Demonstration of a 256x256 Middle-Wavelength Infrared Focal Plane Array based on InGaAs/InGaP Quantum Dot Infrared Photodetectors (QDIPs) J. Jiang, K. Mi, S. Tsao, W. Zhang, H. Lim, T.O'Sullivan, T. Sills, M. Razeghi, G.J. Brown, and M.Z. Tidrow Virtual Journal of Nanoscale Science and Technology 9 (13)-- April 5, 2004 ...[Visit Journal][reprint (PDF)] |
| 1. | High Performance Quantum Cascade Lasers Grown by Gas-Source Molecular Beam Epitaxy M. Razeghi, S. Slivken, A. Tahraoui and A. Matlis SPIE Conference, San Jose, CA, -- January 22, 2001 ...[Visit Journal] Recent improvements in quantum cascade laser technology have led to a number of very impressive results. This paper is a brief summary of the technological development and state-of- the-art performance of quantum cascade lasers produced at the Center for Quantum Devices. Laser design will be discussed, as well as experimental details of device fabrication. Room temperature QCL operation has been reported for lasers emitting between 5 - 11 μm, with 9 - 11 μm lasers operating up to 425 K. We also demonstrate record room temperature peak output powers at 9 and 11 μm(2.5 W and 1 W respectively) as well as record low 80 K threshold current densities (250 A/cm²) for some laser designs. Finally, some of the current limitations to laser efficiency are mentioned, as well as a means to combat them. [reprint (PDF)] |
| 1. | Growth and Characterization of Very Long Wavelength Type-II Infrared Detectors H. Mohseni, A. Tahraoui, J. Wojkowski, M. Razeghi, W. Mitchel, and A. Saxler SPIE Conference, San Jose, CA, -- January 26, 2000 ...[Visit Journal] We report on the growth and characterization of type-II IR detectors with a InAs/GaSb superlattice active layer in the 15-19 μm wavelength range. The material was grown by molecular beam epitaxy on semi-insulating GaAs substrates. The material was processed into photoconductive detectors using standard photolithography, dry etching, and metalization. The 50 percent cut-off wavelength of the detectors is about 15.5 μm with a responsivity of 90 mA/W at 80 K. The 90 percent-10 percent cut-off energy width of the responsivity is only 17 meV which is an indication of the uniformity of the superlattices. These are the best reported values for type-II superlattices grown on GaAs substrates. [reprint (PDF)] |
| 1. | Imprinting of Nanoporosity in Lithium-Doped Nickel Oxide through the use of Sacrificial Zinc Oxide Nanotemplates Vinod E. Sandana, David J. Rogers, Ferechteh H. Teheran1, Philippe Bove, Ryan McClintock and Manijeh Razeghi Proc. SPIE 10105, Oxide-based Materials and Devices VIII, 101052C-- April 3, 2017 ...[Visit Journal] Methods for simultaneously increasing the conductivity and the porosity of NiO layers grown by pulsed laser deposition (PLD) were investigated in order to develop improved photocathodes for p-DSSC applications. NiO:Li (20at%) layers grown on c-Al2O3 by PLD showed a sharp drop in conductivity with increasing substrate temperature. Layers grown at room temperature were more than two orders of magnitude more conductive than undoped NiO layers but did not show evidence of any porosity in Scanning Electron Microscope (SEM) images. A new method for imposing a nanoporosity in NiO was developed based on a sacrificial template of nanostructured ZnO. SEM images and EDX spectroscopy showed that a nanoporous morphology had been imprinted in the NiO overlayer after preferential chemical etching away of the nanostructured ZnO underlayer. Beyond p-DSSC applications, this new process could represent a new paradigm for imprinting porosity in a whole range of materials. [reprint (PDF)] |
| 1. | Molecular beam epitaxial growth of InSb p-i-n photodetectors on GaAs and Si E. Michel, R. Peters, S. Slivken, C. Jelen, P. Bove, J. Xu, I. Ferguson, and M. Razeghi Optoelectronic Integrated Circuit Materials, Physics and Devices, SPIE Conference, San Jose, CA; Proceedings, Vol. 2397-- February 6, 1995 ...[Visit Journal] High quality InSb has been grown by Molecular Beam Epitaxy and optimized using Reflection High Energy Electron Diffraction. A 4.8 micrometers InSb layer grown on GaAs at a growth temperature of 395 degree(s)C and a III/V incorporation ratio of 1:1.2 had an X-ray rocking curve FWHM of 158 arcsec and a Hall mobility of 92300 cm2V-1s-1 at 77 K, the best reported to date for InSb nucleated directly onto GaAs. InSb p-i-n structures of 5.8 micrometers grown under the same conditions demonstrated a X-ray Full Width at Half Maximum of 101 arcsec and 131 arcsec for GaAs and Si substrates, respectively, and exhibited excellent uniformity of +/- 3 arcsec over a 3' substrate. Prototype InSb p-i-n detectors on Si have been fabricated and have demonstrated photovoltaic response at 6.5 micrometers up to 200 K. These p-i-n detectors have also exhibited the highest D* for a device grown onto Si. [reprint (PDF)] |
| 1. | High-power, continuous-wave, phase-locked quantum cascade laser arrays emitting at 8 μm WENJIA ZHOU,QUAN-YONG LU,DONG-HAI WU, STEVEN SLIVKEN, AND MANIJEH RAZEGHI OPTICS EXPRESS 27, 15776-15785-- May 20, 2019 ...[Visit Journal] We report a room-temperature eight-element phase-locked quantum cascade laser
array emitting at 8 μm with a high continuous-wave power of 8.2 W and wall plug efficiency
of 9.5%. The laser array operates primarily via the in-phase supermode and has single-mode
emission with a side-mode suppression ratio of ~20 dB. The quantum cascade laser active
region is based on a high differential gain (8.7 cm/kA) and low voltage defect (90 meV)
design. A record high wall plug efficiency of 20.4% is achieved from a low loss buried ridge
type single-element Fabry-Perot laser operating in pulsed mode at 20 °C. [reprint (PDF)] |
| 1. | Type-II ‘M’ Structure Photodiodes: An Alternative Material Design for Mid-Wave to Long Wavelength Infrared Regimes B-M. Nguyen, M. Razeghi, V. Nathan, and G.J. Brown SPIE Conference, January 25-29, 2007, San Jose, CA Proceedings – Quantum Sensing and Nanophotonic Devices IV, Vol. 6479, p. 64790S-1-10-- January 29, 2007 ...[Visit Journal] In this work, an AlSb-containing Type-II InAs/GaSb superlattice, the so-called M-structure, is presented as a candidate for mid and long wavelength infrared detection devices. The effect of inserting an AlSb barrier in the GaSb layer is discussed and predicts many promising properties relevant to practical use. A good agreement between the theoretical calculation based on Empirical Tight Binding Method framework and experimental results is observed, showing the feasibility of the structure and its properties. A band gap engineering method without material stress constraint is proposed. [reprint (PDF)] |
| 1. | Superlattice sees colder objects in two colors and high resolution M. Razeghi SPIE Newsroom-- February 10, 2012 ...[Visit Journal] A special class of semiconductor material can now detect two wavebands of light with energies less than a tenth of an electron volt in high resolution using the same IR camera. [reprint (PDF)] |
| 1. | Quantum Hall effect in In0.53Ga0.47As-InP heterojunctions with two populated electric subbands Y. Guldner, J. P. Vieren, and M. Voos F. Delahaye and D. Dominguez J. P. Hirtz and M. Razeghi Phys. Rev. B 33, 3990 1986-- March 15, 1986 ...[Visit Journal] Quantum-Hall-effect and Shubnikov–de Haas measurements are presented for InxGa1−xAs?(hyInP heterojunctions with two populated electric subbands and low electron density (𝑛𝑠≤5×1011 cm−2). The Shubnikov–de Haas oscillations clearly show two different periodicities. An anomalous behavior of the quantum Hall effect is observed, in particular some plateaus are missing and other plateaus are enhanced. Precise measurements of the Hall resistance have been performed and it is shown that the resistance of the i=2 plateau is equal to its theoretical value h/2𝑒2 with an uncertainty of ∼10−8. [reprint (PDF)] |
| 1. | Research activity on Type-II InAs/GaSb superlattice for LWIR detection and imaging at the Center for Quantum Devices M. Razeghi and B.M. Nguyen American Institute of Physics Conference Proceedings Vol. 949, Issue 1, p. 35-42, 6th International Workshop on Information Optics (WIO'07), Reykjavik, Iceland, June 25-30, 2007-- October 24, 2007 ...[Visit Journal] Type-II superlattice photodetectors have recently experienced significant improvements in both theoretical structure design and experimental realization. Empirical Tight Binding Method was initiated and developed for Type-II superlattice. A new Type-II structure, called M-structure, was introduced and theoretically demonstrated high R0A, high quantum efficiency. Device design and growth condition were optimized to improve the performance. As a result, a 54% quantum efficiency, a 12 Ω·cm2 R0A were achieved for 11 µm cut-off photodetector at 77 K. Effective surface passivation techniques for MWIR and LWIR Type-II superlattice were developed. FPA imaging at MWIR and LWIR were demonstrated with a capability of imaging up to room temperature and 211 K respectively. The noise equivalent temperature difference presented a peak at 50 mK for MWIR FPA at 121 K and 26 mK for LWIR FPA at 81 K. [reprint (PDF)] |
| 1. | Quantum Sensing Using Type-II InAs/GaSb Superlattice for Infrared Detection M. Razeghi, A. Gin, Y. Wei, J. Bae, and J. Nah Microelectronics Journal, 34 (5-8)-- May 1, 2003 ...[Visit Journal] Large, regular arrays of bulk GaSb and InAs/GaSb Type-II superlattice pillars have been fabricated by electron beam lithography and dry etching. A 2.5 keV electron beam lithography system and metal evaporation are used to form the Au mask on superlattice and bulk substrates. Dry etching of these materials has been developed with BCl3:Ar, CH4:H2:Ar and cyclic CH4:H2:Ar/O2 plasmas. Etch temperatures were varied from 20 to 150 °C. The diameter of the superlattice pillars was below 50 nm with regular 200 nm spacing. Bulk GaSb pillars were etched with diameters below 20 nm. Areas of dense nanopillars as large as 500 μm×500 μm were fabricated. The best height/diameter aspect ratio was approximately 10:1. To date, these are the smallest diameter III–V superlattice pillar structures reported, and the first nanopillars in the InAs/GaSb material system. The basic theory of these devices and surface passivation with SiO2 and Si3N4 thin films has also been discussed. [reprint (PDF)] |
Page 16 of 20: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 >> Next (484 Items)
|