Page 15 of 23:  Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15  16 17 18 19 20 21 22 23  >> Next  (575 Items)

1.  Negative and positive luminescence in mid-wavelength infrared InAs/GaSb superlattice photodiodes
D. Hoffman, A. Gin, Y. Wei, A. Hood, F. Fuchs, and M. Razeghi
IEEE Journal of Quantum Electronics, 41 (12)-- December 1, 2005 ...[Visit Journal]
The quantum efficiency of negative and positive luminescence in binary type-II InAs-GaSb superlattice photodiodes has been investigated in the midinfrared spectral range around the 5-μm wavelength. The negative luminescence efficiency is nearly independent on temperature in the entire range from 220 to 325 K. For infrared diodes with a 2-μm absorbing layer, processed without anti-reflection coating, a negative luminescence efficiency of 45% is found, indicating very efficient minority carrier extraction. The temperature dependent measurements of the quantum efficiency of the positive luminescence enables for the determination of the capture cross section of the Shockley-Read-Hall centers involved in the competing nonradiative recombination. [reprint (PDF)]
 
1.  Cavity Length Effects of High-Temperature High-Power Continuous Wave Characteristics in Quantum-Cascade Lasers
J.S. Yu, A. Evans, J. David, L. Doris, S. Slivken, and M. Razeghi
Applied Physics Letters, 83 (25)-- December 22, 2003 ...[Visit Journal]
We report the cavity-length dependent high-temperature high-power cw characteristics in λ=6 µm quantum-cascade lasers with a thick electroplated Au top contact layer. For a high-reflectivity (HR) coated 15 µm wide and 3 mm long laser, the cw operation is achieved up to 313 K (40 °C) with an output power of 17 mW. At 298 K, a very high cw output power of 213 mW is obtained for a HR coated 15 µm wide and 4 mm long laser. Thermal resistance is analyzed at temperatures above 283 K for HR coated lasers with different cavities. [reprint (PDF)]
 
1.  High Power Quantum Cascade Lasers (QCLs) Grown by GasMBE
M. Razeghi and S. Slivken
SPIE Proceedings, International Conference on Solid State Crystals (ICSSC), Zakopane, Poland, -- October 14, 2002 ...[Visit Journal]
This paper is a brief summary of the technological development and state-of-the-art performance of quantum cascade lasers produced at the Centre for Quantum Devices. Laser design will be discussed, as well as experimental details of device fabrication. Recent work has focused on the development of high peak and average power QCLs emitting at room temperature and above. Scaling of the output is demonstrated by increasing the number of emitting regions in the waveguide core. At λ = 9 µm, over 7 W of peak power has been demonstrated at room temperature for a single diode, with an average power of 300 mW at 6% duty cycle. At shorter wavelengths, laser development includes the use of highly strain-balanced heterostructures in order to maintain a high conduction band offset and minimize leakage current. At λ = 6 µm, utilizing a high reflective coating and epilayer-down mounting of the laser, we have demonstrated 225 mW of average power from a single facet at room temperature. Lastly, these results are put in perspective of other reported results and possible future directions are discussed. [reprint (PDF)]
 
1.  High Performance InAs/GaSb Superlattice Photodiodes for the Very Long Wavelength Infrared Range
H. Mohseni, M. Razeghi, G.J. Brown, Y.S. Park
Applied Physics Letters 78 (15)-- April 9, 2001 ...[Visit Journal]
We report on the demonstration of high-performance p-i-n photodiodes based on type-II InAs/GaSb superlattices with 50% cut-off wavelength λc = 16 μm operating at 80 K. Material is grown by molecular beam epitaxy on GaSb substrates with excellent crystal quality as evidenced by x-ray diffraction and atomic force microscopy. The processed devices show a current responsivity of 3.5 A/W at 80 K leading to a detectivity of ∼ 1.51×1010 cm·Hz½/W. The quantum efficiency of these devices is about 35% which is comparable to HgCdTe detectors with a similar active layer thickness. [reprint (PDF)]
 
1.  Solar-blind AlGaN photodiodes with very low cutoff wavelength
D. Walker, V. Kumar, K. Mi, P. Sandvik, P. Kung, X.H. Zhang, and M. Razeghi
Applied Physics Letters 76 (4)-- January 24, 2000 ...[Visit Journal]
We report the fabrication and characterization of AlxGa1–xN photodiodes (x~0.70) grown on sapphire by low-pressure metalorganic chemical vapor deposition. The peak responsivity for –5 V bias is 0.11 A/W at 232 nm, corresponding to an internal quantum efficiency greater than 90%. The device response drops four orders of magnitude by 275 nm and remains at low response for the entire near-ultraviolet and visible spectrum. Improvements were made to the device design including a semitransparent Ni/Au contact layer and a GaN:Mg cap layer, which dramatically increased device response by enhancing the carrier collection efficiency. [reprint (PDF)]
 
1.  Responsivity and Noise Performance of InGaAs/InP Quantum Well Infrared Photodetectors
C. Jelen, S. Slivken, T. David, G. Brown, and M. Razeghi
SPIE Conference, San Jose, CA, -- January 28, 1998 ...[Visit Journal]
Dark current nose measurements were carried out between 10 and 104 Hz at T = 80K on two InGaAs/InP quantum well IR photo detectors (QWIPs) designed for 8 μm IR detection. Using the measured noise data, we have calculated the thermal generation rate, bias-dependent gain, electron trapping probability, and electron diffusion length. The calculated thermal generation rate is similar to AlGaAs/GaAs QWIPs with similar peak wavelengths, but the gain is 50X larger, indicating improved transport and carrier lifetime are obtained in the binary InP barriers. As a result, a large responsivity of 7.5 A/W at 5V bias and detectivity of 5 X 1011 cm·Hz½/W at 1.2 V bias were measured for the InGaAs/InP QWIPs at T = 80K. [reprint (PDF)]
 
1.  Optical losses of Al-free lasers for λ = 0.808 and 0.98 μm
H. Yi, J. Diaz, B. Lane, and M. Razeghi
Applied Physics Letters 69 (20)-- November 11, 1996 ...[Visit Journal]
In this work, we study the origin of the optical losses in Al‐free InGaAsP/GaAs (λ=0.808 μm) and InGaAs/GaAs/InGaP (λ=0.980 μm) lasers. Theoretical modeling and the experimental results indicate that the scattering of the laser beam by refractive index fluctuation in the alloys is the dominant loss in our lasers, and the loss due to the free‐carrier absorption and scattering by interface roughness are negligible. [reprint (PDF)]
 
1.  Kinetics of photoconductivity in n-type GaN photodetector
P. Kung, X. Zhang, D. Walker, A. Saxler, J. Piotrowski, A. Rogalski, and M. Razeghi
Applied Physics Letters 67 (25)-- December 18, 1995 ...[Visit Journal]
High-quality ultraviolet photoconductive detectors have been fabricated using GaN layers grown by low-pressure metalorganic chemical vapor deposition on (11⋅0) sapphire substrates. The spectral responsivity remained nearly constant for wavelengths from 200 to 365 nm and dropped sharply by almost three orders of magnitude for wavelengths longer than 365 nm. The kinetics of the photoconductivity have been studied by the measurements of the frequency‐dependent photoresponse and photoconductivity decay. Strongly sublinear response and excitation‐dependent response time have been observed even at relatively low excitation levels. This can be attributed to redistribution of the charge carriers with increased excitation level. [reprint (PDF)]
 
1.  Characterization of high quality GaInP/GaAs superlattices grown on GaAs and Si substrates by gas source molecular beam epitaxy
C. Jelen, S. Slivken, X.G. He, and M. Razeghi and S. Shastry
Journal of Vacuum Science and Technology B 12 (2)-- March 1, 1994 ...[Visit Journal]
We report an analysis of the heteroepitaxial interfaces in high quality GaInP–GaAs superlattices grown simultaneously on GaAs and Si substrates by gas source molecular beam epitaxy. These two superlattices have been studied using high resolution x-ray diffraction measurements. Sharp superlattice satellites, with very little broadening, are observed within a 6° range for the sample on GaAs. Photoluminescence peaks with full widths at half-maximums of 5 and 7 meV are obtained at 4 K for samples with 58 Å wells on GaAs and Si, respectively. Room temperature exciton absorption is observed in the photovoltage measurements for a superlattice grown on Si substrate. The thicknesses determined by x-ray analysis are consistent with those obtained by a Kronig–Penny model fitting of the photovoltage spectroscopy. [reprint (PDF)]
 
1.  Investigation of the Heteroepitaxial Interfaces in the GaInP/GaAs Superlattices by High Resolution X-Ray Diffraction and Dynamical Solutions
Xiaoguang He and Manijeh Razeghi
Journal of Applied Physics 73 (7)-- April 1, 1993 ...[Visit Journal]
Two GaAs/GaInP superlattices grown on GaAs substrates by low‐pressure metalorganic chemical vapor deposition have been studied using high resolution x‐ray diffraction measurements and simulations by solving Tagaki–Taupin equations. The strained layers at both interfaces of the GaAs well are identified from the simulations of the measured diffraction patterns. The purging of indium at the interface of GaInP/GaAs accounts for the strained layer at the GaInP/GaAs interface while the pressure difference in the gas lines, which results in the different traveling time to the sample surface, is attributed to the indium‐poor strained layer at the GaAs/GaInP interface. It is shown that high‐resolution x‐ray diffraction measurements combined with a dynamical simulation, are sensitive tools to study the heteroepitaxial interfaces on an atomic layer scale. In addition, the influence of a miscut of the substrate on the measurement is discussed in the article. It is shown that even though the miscut is small, the diffraction geometry is already an asymmetric one. More than 10% error in the superlattice period for a 2° miscut substrate can result when the miscut substrate is considered a symmetric geometry. [reprint (PDF)]
 
1.  Optical Investigations of GaAs-GaInP Quantum Wells and Superlattices Grown by Metalorganic Chemical Vapor Deposition
Omnes F., and Razeghi M.
Applied Physics Letters 59 (9), p. 1034-- May 28, 1991 ...[Visit Journal]
Recent experimental results on the photoluminescence and photoluminescence excitation of GaAs‐Ga0.51In0.49P lattice‐matched quantum wells and superlattices are discussed. The full width at half maximum of a 10‐period GaAs‐GaInP superlattice with Lz=90 Å and LB=100 Å is 4 meV at 4 K. The photoluminescence excitation exhibits very sharp peaks attributed to the electron to light‐hole and electron to heavy‐hole transitions. The GaInP‐GaAs interface suffers from memory effect of In, rather than P or As elements. [reprint (PDF)]
 
1.  Breakthroughs Bring THz Spectroscopy, Sensing Closer to Mainstream
MANIJEH RAZEGHI, QUANYONG LU, SANTANU MANNA, DONGHAI WU AND STEVEN SLIVKEN, NORTHWESTERN UNIVERSITY
www.photonics.com-- December 1, 2016
The terahertz (THz) electromagnet­ic spectrum (1 to 10 THz), sitting between the infrared wavelengths on the higher fre­quency side and microwaves on the lower frequency side, lies unique and important properties. THz waves can pass through a number of materials, including synthetics, textiles, paper and cardboard. Many bio­molecules, proteins, explosives or narcot­ics feature characteristic absorption I ines - so-called spectral "fingerprints" - at frequencies between 1 and 10 THz.
 
1.  Energy harvesting from millimetric ZnO single wire piezo-generators
Rogers, D. J.; Carroll, C.; Bove, P.; Sandana, V. E.; Goubert, L.; Largeteau, A.; Teherani, F. Hosseini; Demazeau, G.; McClintock, R.; Drouhin, H.-J.; Razeghi, M.
Oxide-based Materials and Devices III. Edited by Teherani, Ferechteh H.; Look, David C.; Rogers, David J. Proceedings of the SPIE, Volume 8263, article id. 82631X, 7 pp. (2012).-- February 9, 2013 ...[Visit Journal]
This work reports on investigations into the possibility of harvesting energy from the piezoelectric response of millimetric ZnO rods to movement. SEM & PL studies of hydrothermally grown ZnO rods revealed sizes ranging from 1 - 3 mm x 100 - 400 microns and suggested that each was a wurtzite monocrystal. Studies of current & voltage responses as a function of time during bending with a probe arm gave responses coherent with those reported elsewhere in the literature for ZnO nanowires or micro-rod single wire generators. The larger scale of these rods provided some advantages over such nano- and microstructures in terms of contacting ease, signal level & robustness. [reprint (PDF)]
 
1.  Photoluminescence characteristics of polar and nonpolar AlGaN/GaN superlattices
Z. Vashaei, C. Bayram, P. Lavenus, and M. Razeghi
Applied Physics Letters, Vol. 97, No. 12, p. 121918-1-- September 20, 2010 ...[Visit Journal]
High quality Al0.2Ga0.8N/GaN superlattices (SLs) with various (GaN) well widths (1.6 to 6.4 nm) have been grown on polar c-plane and nonpolar m-plane freestanding GaN substrates by metal-organic chemical vapor deposition. Atomic force microscopy, high resolution x-ray diffraction, and photoluminescence (PL) studies of SLs have been carried out to determine and correlate effects of well width and polarization field on the room-temperature PL characteristics. A theoretical model was applied to explain PL energy-dependency on well width and crystalline orientation taking into account internal electric field for polar substrate. Absence of induced-internal electric field in nonpolar SLs was confirmed by stable PL peak energy and stronger PL intensity as a function of excitation power density than polar ones. [reprint (PDF)]
 
1.  Stranski-Krastanov growth of InGaN quantum dots emitting in green spectra
C. Bayram and M. Razeghi
Applied Physics A: Materials Science and Processing, Vol. 96, No. 2, p. 403-408-- August 1, 2009 ...[Visit Journal]
Self-assembled InGaN quantum dots (QDs) were grown on GaN templates by metalorganic chemical vapor deposition. 2D–3D growth mode transition through Stranski–Krastanov mode was observed via atomic force microscopy. The critical thickness for In0.67Ga0.33N QDs was determined to be four monolayers. The effects of growth temperature, deposition thickness, and V/III ratio on QD formation were examined. The capping of InGaN QDs with GaN was analyzed. Optimized InGaN quantum dots emitted in green spectra at room temperature. [reprint (PDF)]
 
1.  Current status and potential of high power mid-infrared intersubband lasers
S. Slivken, Y. Bai, B. Gokden, S.R. Darvish and M. Razeghi
SPIE Proceedings, San Francisco, CA (January 22-28, 2010), Vol. 7608, p. 76080B-1-- January 22, 2010 ...[Visit Journal]
Some of the recent advances in high power quantum cascade laser development will be reviewed in this paper. Research areas explored include short wavelength (λ <4 µm) lasers, high performance strain-balanced heterostructures, and high power long wavelength (7< λ< 16 µm) lasers. Near λ=4.5 µm, highlights include demonstration of 18% continuous wave wallplug efficiency at room temperature, 53% pulsed wallplug efficiency at 40 K, and 120 W of peak power output from a single device at room temperature. Near λ ~10 µm, up to 0.6 W of continuous output power at room temperature has also been demonstrated, with pulsed efficiencies up to 9%. [reprint (PDF)]
 
1.  New frontiers in InP based quantum devices
Manijeh Razeghi
Indium Phosphide and Related Materials, 2008. IPRM 2008. 20th International Conference on, pp.1,4, (2008)-- May 29, 2008 ...[Visit Journal]
Recent research activities taking place at center for quantum devices (CQD) based on InP material system, especially the exploration and demonstration of the state-of-art high performance quantum cascade lasers (QCL), greatly facilitate the understanding of the underlining physical principles governing the device operation. Thanks to the endless effort putting into the semiconductor epitaxy technologies, including the Molecular Beam Epitaxy (MBE) and low pressure metal organic chemical vapor deposition (LP-MOCVD), the world has seen a close approaching to the ultimate band gap engineering. Highly sophisticated man-made heterostructure, which incorporates hundreds of alternating layers of GaInAs/AlInAs with each layer thickness and composition specifically designed, can be created within a single growth. The material quality is evidenced by the atomically abrupt interfaces. The versatility of the band gap engineering is greatly enhanced by the strain-balanced technique, which allows for growing structures with continuously tunable conduction band offset with little defects. As a result, the room temperature continuous wave (CW) wall plug efficiency (WPE) and the maximum achievable output optical power from a single device have been constantly improving. Novel waveguide incorporating the photonic crystal distributed feedback (PCDFB) mechanism is also investigated with satisfactory preliminary results. [reprint (PDF)]
 
1.  Overview of Quantum Cascade Laser Research at the Center for Quantum Devices
S. Slivken, A. Evans, J. Nguyen, Y. Bai, P. Sung, S.R. Darvish, W. Zhang and M. Razeghi
SPIE Conference, January 20-25, 2008, San Jose, CA Proceedings – Quantum Sensing and Nanophotonic Devices V, Vol. 6900, p. 69000B-1-8.-- February 1, 2008 ...[Visit Journal]
Over the past several years, our group has endeavored to develop high power quantum cascade lasers for a variety of remote and high sensitivity infrared applications. The systematic optimization of laser performance has allowed for demonstration of high power, continuous-wave quantum cascade lasers operating above room temperature. In the past year alone, the efficiency and power of our short wavelength lasers (~4.8 µm) has doubled. In continuous wave at room temperature, we have now separately demonstrated ~10% wallplug efficiency and ~700 mW of output power. Up to now, we have been able to show that room temperature continuous wave operation with > 100 mW output power in the 3.8 < λ < 11.5 µm wavelength range is possible. [reprint (PDF)]
 
1.  Type-II InAs/GaSb Superlattice Focal Plane Arrays for High-Performance Third Generation Infrared Imaging and Free-Space Communication
M. Razeghi, A. Hood and A. Evans
SPIE Conference, January 25-29, 2007, San Jose, CA Proceedings – Optoelectronic Integrated Circuits IX, Vol. 6476, p. 64760Q-1-9-- January 29, 2007 ...[Visit Journal]
Free-space optical communications has recently been touted as a solution to the "last mile" bottleneck of high speed data networks providing highly secure, short to long range, and high bandwidth connections. However, commercial near infrared systems experience atmospheric scattering losses and scintillation effects which can adversely affect a link's uptime. By moving the operating wavelength into the mid or long wavelength infrared enhanced link uptimes and increased range can be achieved due to less susceptibility atmospheric affects. The combination of room temperature, continuous wave' high power quantum cascade lasers and high operating temperature Type-II superlattice photodetectors offers the benefits of mid and long wavelength infrared systems as well as practical operating conditions. [reprint (PDF)]
 
1.  Uncooled operation of Type-II InAs/GaSb superlattice photodiodes in the mid- wavelength infrared range
Y. Wei, A. Hood, H. Yau, A. Gin, M. Razeghi, M.Z. Tidrow, V. Natha
Applied Physics Letters, 86 (23)-- June 6, 2005 ...[Visit Journal]
We report high performance uncooled midwavelength infrared photodiodes based on interface-engineered InAs/GaSb superlattice. Two distinct superlattices were designed with a cutoff wavelength around 5 µm for room temperature and 77 K. The device quantum efficiency reached more than 25% with responsivity around 1 A/W. Detectivity was measured around 109 cm·Hz½/W at room temperature and 1.5×1013 cm·Hz½/W at 77 K under zero bias. The devices were without antireflective coating. The device quantum efficiency stays at nearly the same level within this temperature range. Additionally, Wannier–Stark oscillations in the Zener tunneling current were observed up to room temperature. [reprint (PDF)]
 
1.  ZnO Thin Film Templates for GaN-based Devices
D.J. Rogers, F. Hosseini Teherani, A. Yasan, R. McClintock, K. Mayes, S.R. Darvish, P. Kung, M. Razeghi and G. Garry
SPIE Conference, Jose, CA, Vol. 5732, pp. 412-- January 22, 2005 ...[Visit Journal]
GaN-based optoelectronic devices are plagued by a tendency to non-radiative transitions linked to defects in the active layers. ZnO is promising as a substrate material for GaN because it has the same wurtzite structure and a relatively small lattice mismatch (~1.8%). In this paper, we discuss use of ZnO thin films as templates for GaN based LED. [reprint (PDF)]
 
1.  Photoluminescence Study of AlGaN-based 280 nm Ultraviolet Light-Emitting Diodes
A. Yasan, R. McClintock, K. Mayes, D.H. Kim, P. Kung, and M. Razeghi
Applied Physics Letters, 83 (20)-- November 17, 2003 ...[Visit Journal]
We investigated optical properties of single quantum well AlGaN-based UV 280 nm light-emitting diodes using temperature-dependent photoluminescence (PL) measurement. We found an "S-shaped" temperature dependence of the peak energy. From the Arrhenius plot of integrated PL intensity, we speculate that dislocations as well as thermal emission of carriers out of the quantum well are responsible for the PL quenching behavior. Also a second nonradiative channel with much lower activation energy was found, the origin of which we believe to be quenching of the bound excitons [reprint (PDF)]
 
1.  High performance quantum cascade lasers (~11 μm) operating at high temperature (T>= 425K)
A. Tahraoui, A. Matlis, S. Slivken, J. Diaz, and M. Razeghi
Applied Physics Letters 78 (4)-- January 22, 2001 ...[Visit Journal]
We report record-low threshold current density and high output power for λ ∼ 11 μm Al0.48In0.52As/Ga0.47In0.53As quantum cascade lasers operating up to 425 K. The threshold current density is 1.1, 3.83, and 7.08 kA/cm² at 80, 300, and 425 K, respectively, for 5 μs pulses at a 200 Hz repetition rate. The cavity length is 3 mm with a stripe width of 20 μm. The maximum peak output power per facet is 1 W at 80 K, 0.5 W at 300 K, and more than 75 mW at 425 K. The characteristic temperature of these lasers is 174 K between 80 and 300 K and 218 K in the range of 300–425 K. [reprint (PDF)]
 
1.  Ultraviolet Detector Materials and Devices Studied by Femtosecond Nonlinear Optical Techniques
M. Wraback, H. Shen, P. Kung, M. Razeghi, J.C. Carrano, T. Li, and J.C. Campbell
SPIE Conference, San Jose, CA, -- January 26, 2000 ...[Visit Journal]
Femtosecond nonlinear optical techniques have been employed in the study of carrier dynamics and transport in UV detector materials. Visible femtosecond pulses derived from the signal beam of a 250 kHz regenerative amplifier-pumped optical parametric amplifier were frequency doubled to obtain pulses tunable from 250 nm to 375 nm. Time-resolved reflectivity experiments indicate that the room-temperature carrier lifetime in GaN grown by double lateral epitaxial overgrowth is about 3 times longer than that of GaN grown on sapphire without benefit of this technique. The electron velocity-field characteristics and saturation velocity in GaN have been obtained form time-resolved studies of electroabsorption in a GaN p-i-n diode. The peak steady- state velocity of 1.9x107 cm/s in this device occurs at 225 kV/cm. Time-resolved transmission measurements have been used to monitor ultrafast carrier relaxation phenomena in a thin AlGaN layer with bandgap in the solar blind region of the spectrum. Excitation intensity and wavelength dependent studies of the photoinduced bleaching decays suggest that they are primarily governed by trapping in a high density of sub-bandgap defect levels. [reprint (PDF)]
 
1.  Exciton localization in group-III nitride quantum wells
V.I. Litvinov and M. Razeghi
Physical Review B 59 (15)-- May 15, 1999 ...[Visit Journal]
Exciton density of states broadened by compositional disorder in the group-III nitride quantum well is calculated. The excitonic photoluminescence linewidth is estimated and related to the material parameters of the alloy for two limiting cases of two-dimensional (2D) and three-dimensional excitons in the quantum well. It is shown that the effect of the compositional fluctuations depends on dimensionality of the exciton: the 2D excitons are more sensitive to the inhomogeneities than 3D ones. The broad near-band-gap energy states distribution for quasi-two-dimensional excitons is consistent with the experimental evidence of the spontaneous and stimulated emissions from excitonic states localized on compositional fluctuations. [reprint (PDF)]
 

Page 15 of 23:  Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15  16 17 18 19 20 21 22 23  >> Next  (575 Items)