Page 14 of 16:  Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14  15 16  >> Next  (397 Items)

1.  Long Wavelength Type-II Photodiodes Operating at Room Temperature
H. Mohseni and M. Razeghi
IEEE Photonics Technology Letters 13 (5)-- May 1, 2001 ...[Visit Journal]
The operation of uncooled InAs-GaSb superlattice photodiodes with a cutoff wavelength of λc=8 μm and a peak detectivity of 1.2 × 108 cm·Hz½/W at zero bias is demonstrated. The detectivity is similar to the best uncooled HgCdTe detectors and microbolometers. However, the R0A product is more than two orders of magnitude higher than HgCdTe and the device is more than four orders of magnitude faster than microbolometers. These features combined with their low 1/f noise and high uniformity make these type-II photodiodes an excellent choice for uncooled high-speed IR imaging arrays [reprint (PDF)]
 
1.  8.5 μm Room Temperature Quantum Cascade Lasers Grown by Gas-Source Molecular Beam Epitaxy
S. Slivken and M. Razeghi
SPIE Conference, San Jose, CA, -- January 28, 1998 ...[Visit Journal]
We report room-temperature pulsed-mode operation of 8.5 μm quantum cascade lasers grown by gas-source molecular beam epitaxy. The theory necessary to understand the operation of the laser is presented and current problems are analyzed. Very good agreement is shown to exist between theoretical and experimental emission wavelengths. The high- temperature operation is achieved with 1 μs pulses at a repetition rate of 200 Hz. Peak output power in these conditions is in excess of 700 mW per 2 facets at 79 K and 25 mW at 300 K. Threshold current as a function of temperature shows an exponential dependence with T0 equals 188 K for a 1.5 mm cavity. [reprint (PDF)]
 
1.  Investigation of the factors influencing nanostructure array growth by PLD towards reproducible wafer-scale growth
Vinod E. Sandana; David. J. Rogers; Ferechteh Hosseini Teherani; Philippe Bove; Manijeh Razeghi
physica status solidi (a) Applications and Materials Science. Volume 211, Issue 2, pages 449–454, (February 2014)-- January 14, 2014 ...[Visit Journal]
The growth of catalyst-free ZnO nanostructure arrays on silicon (111) substrates by pulsed laser deposition was investigated. Without an underlayer, randomly oriented, micron-scale structures were obtained. Introduction of a c-axis oriented ZnO underlayer resulted in denser arrays of vertically oriented nanostructures with either tapering, vertical-walled or broadening forms, depending on background Ar pressure. Nanostructure pitch seemed to be determined by underlayer grain size while nanostructure widths could be narrowed from ∼100–500 to ∼10–50 nm by a 50 °C increase in growth temperature. A dimpled underlayer topography correlated with the moth-eye type arrays while a more granular surface was linked to vertically walled nanocolumns. Between-wafer reproducibility was demonstrated for both moth-eye and vertical nanocolumn arrays. Broadening nanostructures proved difficult to replicate, however. Full 2 inch wafer coverage was obtained by rastering the target with the laser beam. [reprint (PDF)]
 
1.  Toward realizing high power semiconductor terahertz laser sources at room temperature
Manijeh Razeghi
Proc. SPIE 8023, Terahertz Physics, Devices, and Systems V: Advance Applications in Industry and Defense, 802302 (May 25, 2011)-- May 25, 2011 ...[Visit Journal]
The terahertz (THz) spectral range offers promising applications in science, industry, and military. THz penetration through nonconductors (fabrics, wood, plastic) enables a more efficient way of performing security checks (for example at airports), as illegal drugs and explosives could be detected. Being a non-ionizing radiation, THz radiation is environment-friendly enabling a safer analysis environment than conventional X-ray based techniques. However, the lack of a compact room temperature THz laser source greatly hinders mass deployment of THz systems in security check points and medical centers. In the past decade, tremendous development has been made in GaAs/AlGaAs based THz Quantum Cascade Laser (QCLs), with maximum operating temperatures close to 200 K (without magnetic field). However, higher temperature operation is severely limited by a small LO-phonon energy (∼ 36 meV) in this material system. With a much larger LO-phonon energy of ∼ 90 meV, III-Nitrides are promising candidates for room temperature THz lasers. However, realizing high quality material for GaN-based intersubband devices presents a significant challenge. Advances with this approach will be presented. Alternatively, recent demonstration of InP based mid-infrared QCLs with extremely high peak power of 120 W at room temperature opens up the possibility of producing high power THz emission with difference frequency generation through two mid-infrared wavelengths. [reprint (PDF)]
 
1.  High power broad area quantum cascade lasers
Y. Bai, S. Slivken, S.R. Darvish, A. Haddadi, B. Gokden and M. Razeghi
Applied Physics Letters, Vol. 95, No. 22, p. 221104-1-- November 30, 2009 ...[Visit Journal]
Broad area quantum cascade lasers (QCLs) are studied with ridge widths up to 400 µm, in room temperature pulsed mode operation at an emission wavelength around 4.45 µm. The peak output power scales linearly with the ridge width. A maximum total peak output power of 120 W is obtained from a single 400-µm-wide device with a cavity length of 3 mm. A stable far field emission characteristic is observed with dual lobes at ±38° for all tested devices, which suggests that these broad area QCLs are highly resistant to filamentation. [reprint (PDF)]
 
1.  Very high quantum efficiency in type-II InAs/GaSb superlattice photodiode with cutoff of 12 µm
B.M. Nguyen, D. Hoffman, Y. Wei, P.Y. Delaunay, A. Hood and M. Razeghi
Applied Physics Letters, Vol. 90, No. 23, p. 231108-1-- June 4, 2007 ...[Visit Journal]
The authors report the dependence of the quantum efficiency on device thickness of Type-II InAs/GaSb superlattice photodetectors with a cutoff wavelength around 12 µm. The quantum efficiency and responsivity show a clear delineation in comparison to the device thickness. An external single-pass quantum efficiency of 54% is obtained for a 12 µm cutoff wavelength photodiodes with a -region thickness of 6.0 µm. The R0A value is kept stable for the range of structure thicknesses allowing for a specific detectivity (2.2×1011 cm·Hz½/W). [reprint (PDF)]
 
1.  Optical Coatings by ion-beam sputtering deposition for long-wave infrared quantum cascade lasers
J. Nguyen, J.S. Yu, A. Evans, S. Slivken and M. Razeghi
Applied Physics Letters, 89 (11)-- September 11, 2006 ...[Visit Journal]
The authors report on the development of high-reflection and multilayer antireflection coatings using ion-beam sputtering deposition for long-wave infrared (λ~9.4 μm) quantum cascade lasers. A metallic high-reflection coating structure using Y2O3 and Au is demonstrated to achieve a high reflectance of 96.70%, and the use of a multilayer anti-reflection coating structure using PbTe and ZnO is demonstrated to achieve a very low reflectance of 1.64%. [reprint (PDF)]
 
1.  Sb-based infrared materials and photodetectors for the near room temperature applications
J.D. Kim, E. Michel, H. Mohseni, J. Wojkowski, J.J. Lee and M. Razeghi
SPIE Conference, San Jose, CA, Vol. 2999, pp. 55-- February 12, 1997 ...[Visit Journal]
We report on the growth of InSb, InAsSb, and InTlSb alloys for infrared photodetector applications. The fabrication and characterization of photodetectors based on these materials are also reported. Both photoconductive and photovoltaic devices are investigated. The materials and detector structures were grown on (100) and (111)B semi-insulating GaAs and GaAs coated Si substrates by low pressure metalorganic chemical vapor deposition and solid source molecular beam epitaxy. Photoconductive detectors fabricated from InAsSb and InTlSb have been operated in the temperature range from 77 K to 300 K. The material parameters for photovoltaic device structures have been optimized through theoretical calculations based on fundamental mechanisms. InSb p-i-n photodiodes with 77 K peak responsivities approximately 103 V/W were grown on Si and (111) GaAs substrates. An InAsSb photovoltaic detector with a composition of x equals 0.85 showed photoresponse up to 13 micrometers at 300 K with a peak responsivity of 9.13 X 10-2 V/W at 8 micrometers . The RoA product of InAsSb detectors has been theoretically and experimentally analyzed. [reprint (PDF)]
 
1.  Growth of In1-xTlxSb, a New Infrared Material, by Low-Pressure Metalorganic Chemical Vapor Deposition
Y.H. Choi, R. Sudharsanan, C, Besikci, and M. Razeghi
Applied Physics Letters 63 (3)-- July 19, 1993 ...[Visit Journal]
We report the growth of In1-xTlxSb, a new III-V alloy for long-wavelength infrared detector applications, by low-pressure metalorganic chemical vapor deposition. In1-xTlxSb with good surface morphology was obtained on both GaAs and InSb substrates at a growth temperature of 455 °C. X-ray diffraction measurements showed resolved peaks of In1-xTlxSb and InSb films. Infrared absorption spectrum of In1-xTlxSb showed a shift toward lower energies compared to InSb spectrum. Hall mobility data on In1-xTlxSb/InSb/GaAs structure showed enhanced mobility at low temperatures compared to InSb/GaAs structure. [reprint (PDF)]
 
1.  Quantum Sensing Using Type-II InAs/GaSb Superlattice for Infrared Detection
M. Razeghi, A. Gin, Y. Wei, J. Bae, and J. Nah
Microelectronics Journal, 34 (5-8)-- May 1, 2003 ...[Visit Journal]
Large, regular arrays of bulk GaSb and InAs/GaSb Type-II superlattice pillars have been fabricated by electron beam lithography and dry etching. A 2.5 keV electron beam lithography system and metal evaporation are used to form the Au mask on superlattice and bulk substrates. Dry etching of these materials has been developed with BCl3:Ar, CH4:H2:Ar and cyclic CH4:H2:Ar/O2 plasmas. Etch temperatures were varied from 20 to 150 °C. The diameter of the superlattice pillars was below 50 nm with regular 200 nm spacing. Bulk GaSb pillars were etched with diameters below 20 nm. Areas of dense nanopillars as large as 500 μm×500 μm were fabricated. The best height/diameter aspect ratio was approximately 10:1. To date, these are the smallest diameter III–V superlattice pillar structures reported, and the first nanopillars in the InAs/GaSb material system. The basic theory of these devices and surface passivation with SiO2 and Si3N4 thin films has also been discussed. [reprint (PDF)]
 
1.  High Performance InAs/GaSb Superlattice Photodiodes for the Very Long Wavelength Infrared Range
H. Mohseni, M. Razeghi, G.J. Brown, Y.S. Park
Applied Physics Letters 78 (15)-- April 9, 2001 ...[Visit Journal]
We report on the demonstration of high-performance p-i-n photodiodes based on type-II InAs/GaSb superlattices with 50% cut-off wavelength λc = 16 μm operating at 80 K. Material is grown by molecular beam epitaxy on GaSb substrates with excellent crystal quality as evidenced by x-ray diffraction and atomic force microscopy. The processed devices show a current responsivity of 3.5 A/W at 80 K leading to a detectivity of ∼ 1.51×1010 cm·Hz½/W. The quantum efficiency of these devices is about 35% which is comparable to HgCdTe detectors with a similar active layer thickness. [reprint (PDF)]
 
1.  Temperature dependence of the dark current and activation energy at avalanche onset of GaN Avalanche Photodiodes
M.P. Ulmer, E. Cicek, R. McClintock, Z. Vashaei and M. Razeghi
SPIE Proceedings, Vol. 8460, p. 84601G-1-- August 15, 2012 ...[Visit Journal]
We report a study of the performance of an avalanche photodiode (APD) as a function of temperature from 564 K to 74 K. The dark current at avalanche onset decreases from 564 K to 74 K by approximately a factor of 125 and from 300 K to 74K the dark current at avalanche offset is reduced by a factor of about 10. The drop would have been considerably larger if the activation energy at avalanche onset (Ea) did not also decrease with decreasing temperature. These data give us insights into how to improve the single-photon counting performance of a GaN based ADP. [reprint (PDF)]
 
1.  

-- November 30, 1999
 
1.  High performance long wavelength infrared mega-pixel focal plane array based on type-II superlattices
P. Manurkar, S.R. Darvish, B.M. Nguyen, M. Razeghi and J. Hubbs
Applied Physics Letters, Vol. 97, No 19, p. 193505-1-- November 8, 2010 ...[Visit Journal]
A large format 1k × 1k focal plane array (FPA) is realized using type-II superlattice photodiodes for long wavelength infrared detection. Material growth on a 3 in. GaSb substrate exhibits a 50% cutoff wavelength of 11 μm across the entire wafer. The FPA shows excellent imaging. Noise equivalent temperature differences of 23.6 mK at 81 K and 22.5 mK at 68 K are achieved with an integration time of 0.13 ms, a 300 K background and f/4 optics. We report a dark current density of 3.3×10−4 A·cm−2 and differential resistance-area product at zero bias R0A of 166 Ω·cm² at 81 K, and 5.1×10−5 A·cm−2 and 1286 Ω·cm², respectively, at 68 K. The quantum efficiency obtained is 78%. [reprint (PDF)]
 
1.  Comparison of ZnO nanostructures grown using pulsed laser deposition, metal organic chemical vapor deposition, and physical vapor transport
V.E. Sandana, D.J. Rogers, F. Hosseini Teherani, R. McClintock, C. Bayram, M. Razeghi, H-J Drouhin, M.C. Clochard, V. Sallett, G. Garry, and F. Falyouni
Journal of Vacuum Science and Technology B, Vol. 27, No. 3, May/June, p. 1678-1683-- May 29, 2009 ...[Visit Journal]
This article compares the forms and properties of ZnO nanostructures grown on Si (111) and c-plane sapphire (c-Al2O3) substrates using three different growth processes: metal organic chemical vapor deposition (MOCVD), pulsed laser deposition (PLD), and physical vapor transport (PVT). A very wide range of ZnO nanostructures was observed, including nanorods, nanoneedles, nanocombs, and some novel structures resembelling “bevelled” nanowires. PVT gave the widest family of nanostructures. PLD gave dense regular arrays of nanorods with a preferred orientation perpendicular to the substrate plane on both Si and c-Al2O3 substrates, without the use of a catalyst. X-ray diffraction (XRD) studies confirmed that nanostructures grown by PLD were better crystallized and more highly oriented than those grown by PVT and MOCVD. Samples grown on Si showed relatively poor XRD response but lower wavelength emission and narrower linewidths in PL studies. [reprint (PDF)]
 
1.  Fabrication of nanostructured heterojunction LEDs using self-forming Moth-Eye Arrays of n-ZnO Nanocones Grown on p-Si (111) by PLD
D.J. Rogers; V.E. Sandana; F. Hosseini Teherani; M. Razeghi; H.-J. Drouhin
Proc. SPIE 7217, Zinc Oxide Materials and Devices IV, 721708 (February 17, 2009)-- February 17, 2009 ...[Visit Journal]
ZnO nanostructures were grown on Si (111) substrates using Pulsed Laser Deposition. The impact of growth temperature (Ts) and Ar pressure (PAr) on the morphology, crystal structure and photoluminescence was investigated. Various types of ZnO nanostructures were obtained. Self-forming arrays of vertically-aligned nanorods and nanocones with strong c-axis crystallographic orientation and good optical response were obtained at higher Ts. The nanocone, or "moth-eye" type structures were selected for LED development because of their graded effective refractive index, which could facilitate improved light extraction at the LED/air interface. Such moth-eye arrays were grown on p-type Si (111) substrates to form heteroj unction LEDs with the n-type ZnO nanocones acting as an active component of the device. These nanostructured LEDs gave rectifying I/V characteristics with a threshold voltage of about 6V and a blueish-white electroluminescence, which was clearly visible to the naked eye. [reprint (PDF)]
 
1.  Band edge tunability of M-structure for heterojunction design in Sb based Type-II superlattice photodiodes
B.M. Nguyen, D. Hoffman, P.Y. Delaunay, E.K. Huang, M. Razeghi, and J. Pellegrino
Applied Physics Letters, Vol. 93, No. 16, p. 163502-1-- October 20, 2008 ...[Visit Journal]
We present theoretically and experimentally the effect of the band discontinuity in Type-II misaligned InAs/GaSb superlattice heterodiodes. Calculations using the empirical tight binding method have shown the great flexibility in tuning the energy levels of the band edge in M-structure superlattice as compared to the standard InAs/GaSb superlattice. Through the experimental realization of several p-pi-M-n photodiodes, the band discontinuity alignment between the standard binary-binary superlattice and the M-structured superlattice was investigated via optical characterization. The agreement between the theoretical predictions and the experimental measurement confirms the capability of controlling the M-structure band edges and suggests a way to exploit this advantage for the realization of heterostructures containing an M-structured superlattice without bias dependent operation. [reprint (PDF)]
 
1.  MOCVD Growth of ZnO Nanostructures Using Au Droplets as Catalysts
V.E. Sandana, D.J. Rogers, F.H. Teherani, R. McClintock, M. Razeghi, H.J. Drouhin, M.C. Clochard, V. Sallett, G. Garry and F. Fayoud
SPIE Conference, January 20-25, 2008, San Jose, CA Proceedings – Zinc Oxide Materials and Devices III, Vol. 6895, p. 68950Z-1-6.-- February 1, 2008 ...[Visit Journal]
ZnO nanostructures were synthesised by Metal Organic Chemical Vapor Deposition growth on Si (100) and c-Al2O3 substrates coated with a 5nm thick layer of Au. The Au coated substrates were annealed in air prior to deposition of ZnO so as to promote formation of Au nanodroplets. The development of the nanodroplets was studied as a function of annealing duration and temperature. Under optimised conditions, a relatively homogeneous distribution of regular Au nanodroplets was obtained. Using the Au nanodroplets as a catalyst, MOCVD growth of ZnO nanostructures was studied. Scanning electron microscopy revealed nanostructures with various forms including commonly observed structures such as nanorods, nanoneedles and nanotubes. Some novel nanostructures were also observed, however, which resembled twist pastries and bevelled-multifaceted table legs. [reprint (PDF)]
 
1.  Room Temperature Operation of InTlSb Infrared Photodetectors on GaAs
J.D. Kim, E. Michel, S. Park, J. Xu, S. Javadpour and M. Razeghi
Applied Physics Letters 69 (3)-- August 15, 1996 ...[Visit Journal]
Long-wavelength InTlSb photodetectors operating at room temperature are reported. The photo- detectors were grown on (100) semi-insulating GaAs substrates by low-pressure metalorganic chemical vapor deposition. Photoresponse of InTlSb photodetectors is observed up to 11 µm at room temperature. The maximum responsivity of an In0.96Tl0.04Sb photodetector is about 6.64 V/W at 77 K, corresponding to a detectivity of about 7.64 × 108 cm·Hz½/W. The carrier lifetime in InTlSb photodetectors derived from the stationary photoconductivity is 10–50 ns at 77 K. [reprint (PDF)]
 
1.  Schottky MSM Photodetectors on GaN Films Grown on Sapphire by Lateral Epitaxial Overgrowth
P. Kung, D. Walker, P. Sandvik, M. Hamilton, J. Diaz, I.H. Lee and M. Razeghi
SPIE Conference, San Jose, CA, -- January 27, 1999 ...[Visit Journal]
We report the growth and characterization of Schottky based metal-semiconductor-metal ultraviolet photodetectors fabricated on lateral epitaxially overgrown GaN films. The lateral epitaxial overgrowth of GaN was carried out on basal plane sapphire substrates by low pressure metalorganic chemical vapor deposition and exhibited lateral growth rates more than 5 times as high as vertical growth rates. The spectral responsivity, the dependence on bias voltage, on incident optical power, and the time response of these photodetectors have been characterized. Two detector orientations were investigated: one with the interdigitated finger pattern parallel and the other perpendicular to the underlying SiOx mask stripes. [reprint (PDF)]
 
1.  Investigations on the substrate dependence of the properties in nominally-undoped β-Ga2O3 thin films grown by PLD
F. H. Teherani ; D. J. Rogers ; V. E. Sandana ; P. Bove ; C. Ton-That ; L. L. C. Lem ; E. Chikoidze ; M. Neumann-Spallart ; Y. Dumont ; T. Huynh ; M. R. Phillips ; P. Chapon ; R. McClintock ; M. Razeghi
Proc. SPIE 10105, Oxide-based Materials and Devices VIII, 101051R-OLD-- March 23, 2017 ...[Visit Journal]
Nominally-undoped Ga2O3 layers were deposited on a-, c- and r-plane sapphire substrates using pulsed laser deposition. Conventional x-ray diffraction analysis for films grown on a- and c-plane sapphire showed the layers to be in the β-Ga2O3 phase with preferential orientation of the (-201) axis along the growth direction. Pole figures revealed the film grown on r-plane sapphire to also be in the β-Ga2O3 phase but with epitaxial offsets of 29.5°, 38.5° and 64° from the growth direction for the (-201) axis. Optical transmission spectroscopy indicated that the bandgap was ~5.2eV, for all the layers and that the transparency was > 80% in the visible wavelength range. Four point collinear resistivity and Van der Pauw based Hall measurements revealed the β-Ga2O3 layer on r-plane sapphire to be 4 orders of magnitude more conducting than layers grown on a- and c-plane sapphire under similar conditions. The absolute values of conductivity, carrier mobility and carrier concentration for the β-Ga2O3 layer on r-sapphire (at 20Ω-1.cm-1, 6 cm²/Vs and 1.7 x 1019 cm-3, respectively) all exceeded values found in the literature for nominally-undoped β-Ga2O3 thin films by at least an order of magnitude. Gas discharge optical emission spectroscopy compositional depth profiling for common shallow donor impurities (Cl, F, Si and Sn) did not indicate any discernable increase in their concentrations compared to background levels in the sapphire substrate. It is proposed that the fundamentally anisotropic conductivity in β-Ga2O3 combined with the epitaxial offset of the (-201) axis observed for the layer grown on r-plane sapphire may explain the much larger carrier concentration, electrical conductivity and mobility compared with layers having the (-201) axis aligned along the growth direction. [reprint (PDF)]
 
1.  Solar-blind avalanche photodiodes
R. McClintock, K. Minder, A. Yasan, C. Bayram, F. Fuchs, P. Kung and M. Razeghi
SPIE Conference, San Jose, CA, Vol. 6127, pp. 61271D-- January 23, 2006 ...[Visit Journal]
There is a need for semiconductor based UV photodetectors to support avalanche gain in order to realize better performance and more effectively compete with existing photomultiplier tubes. However, there are numerous technical issues associated with the realization of high-quality solar-blind avalanche photodiodes (APDs). In this paper, APDs operating at 280 nm, within the solar-blind region of the ultraviolet spectrum, are investigated. [reprint (PDF)]
 
1.  Graphene versus oxides for transparent electrode applications
Sandana, V. E.; Rogers, D. J.; Teherani, F. Hosseini; Bove, P.; Razeghi, M.
Proc. SPIE 8626, Oxide-based Materials and Devices IV, 862603 (March 18, 2013)-- March 18, 2013 ...[Visit Journal]
Due to their combination of good electrical conductivity and optical transparency, Transparent Conducting Oxides (TCOs) are the most common choice as transparent electrodes for optoelectronics applications. In particular, devices, such as LEDs, LCDs, touch screens and solar cells typically employ indium tin oxide. However, indium has some significant drawbacks, including toxicity issues (which are hampering manufacturing), an increasing rarefication (due to a combination of relative scarcity and increasing demand [1]) and resulting price increases. Moreover, there is no satisfactory option at the moment for use as a p-type transparent contact. Thus alternative materials solutions are actively being sought. This review will compare the performance and perspectives of graphene with respect to TCOs for use in transparent conductor applications. [reprint (PDF)]
 
1.  Recent performance records for mid-IR quantum cascade lasers
M. Razeghi; Y. Bai; S. Slivken; S. Kuboya; S.R. Darvish
Terahertz and Mid Infrared Radiation: Basic Research and Practical Applications, 2009. TERA-MIR International Workshop [5379656], (2009) -- November 9, 2009 ...[Visit Journal]
The wall plug efficiency of the mid-infrared quantum cascade laser in room temperature continuous wave operation is brought to 17%. Peak output power from a broad area (400 μm x 3 mm) device gives 120 W output power in pulsed mode operation at room temperature. Using a single-well-injector design, specifically made for low temperature operation, a record wall plug efficiency of 53% is demonstrated at 40 K. [reprint (PDF)]
 
1.  Fabrication and characterization of novel hybrid green light emitting didoes based on substituting n-type ZnO for n-type GaN in an inverted p-n junction
C. Bayram, D. Rogers, F. H. Teherani, and M. Razeghi
Journal of Vacuum Science and Technology B, Vol. 27, No. 3, May/June, p. 1784-1788-- May 29, 2009 ...[Visit Journal]
Details of the fabrication and characterization of hybrid green light emitting diodes, composed of n-ZnO/(InGaN/GaN) multi-quantum-wells/p-GaN on AlN/sapphire, are reported. Scanning electron microscope, atomic force microscopy, high resolution x-ray diffraction, and photoluminescence were used to study the hybrid device. The effects of solvents, annealing, and etching on n-ZnO are discussed. Successful hybridization of ZnO and (In)GaN into a green light emitting diode was realized. [reprint (PDF)]
 

Page 14 of 16:  Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14  15 16  >> Next  (397 Items)