Page 11 of 11:  Prev << 1 2 3 4 5 6 7 8 9 10 11    (258 Items)

1.  Quntum Cascade Laser Breakthrough for Advanced Remote Detection
Manijeh Razeghi, Wenjia Zhou, Donghai Wu, Ryan McClintock, and Steven Slivken, Northwestern University
www.photonics.com-- November 1, 2016
The atoms in a molecule can bend, stretch and rotate with respect to one an­other, and these excitations are largely optically active. Most molecules, from simple to moderately complex, have a characteristic absorption spectrum in the 3- to 14-µrn wavelength range that can be uniquely identified and quantified in real time. Infrared spectroscopy has been used to study these absorption features and de­velop different molecular "fingerprints."
 
1.  The correlation between x-ray diffraction patterns and strain distribution inside GaInP/GaAs superlattices
X.G. He, M. Erdtmann, R. Williams, S. Kim, and M. Razeghi
Applied Physics Letters 65 (22)-- November 28, 1994 ...[Visit Journal]
Strong correlation between x‐ray diffraction characteristics and strain distribution inside GaInP/GaAs superlattices has been reported. It is found that the symmetry of (002) diffraction patterns can be used to evaluate the interface strain status. A sample with no interfacial strains has a symmetric (002) diffraction pattern and weak (004) diffraction pattern. It is also demonstrated that strain distribution in superlattices can be readily estimated qualitatively by analyzing x-ray diffraction patterns. [reprint (PDF)]
 
1.  Quantum Hall liquid-to-insulator transition in In1-xGaxAs/InP heterostructures
W. Pan, D. Shahar, D.C. Tsui, H.P. Wei, and M. Razeghi
Physical Review B 55 (23)-- June 15, 1997 ...[Visit Journal]
We report a temperature- and current-scaling study of the quantum Hall liquid-to-insulator transition in an In1-xGaxAs/InP heterostructure. When the magnetic field is at the critical field Bc, ρxx=0.86h/e². Furthermore, the transport near Bc scales as |B- Bc|T with κ=0.45±0.05, and as |B- Bc|I-b with b=0.23±0.05. The latter can be due to phonon emission in a dirty piezoelectric medium, or can be the consequence of critical behavior near Bc, within which z=1.0±0.1 and ν=2.1±0.3 are obtained from our data. [reprint (PDF)]
 
1.  Transport properties in n-type InSb films grown by metalorganic chemical vapor deposition
S.N. Song, J.B. Ketterson, Y.H. Choi, R. Sudharsanan, and M. Razeghi
Applied Physics Letters 63 (7)-- August 16, 1993 ...[Visit Journal]
We have measured the temperature and magnetic field dependence of the Hall mobility and transverse magnetoresistance in n-type InSb films epitaxially grown on GaAs substrates by metalorganic chemical vapor deposition. The films show a giant magnetoresistance: e.g., at 240 K the resistivity increases over 20 times at a magnetic field of 5 T; the low field coefficient of resistivity at 77 K is as high as 47.5 μ·Ω· cm/G. The Hall mobility decreases with magnetic field and saturates at higher fields. By taking the interface carrier transport into account, the observed field dependence of the Hall mobility and magnetoresistance may be understood based on a two-layer model. [reprint (PDF)]
 
1.  First Demonstration of ~ 10 microns FPAs in InAs/GaSb SLS
M. Razeghi, P.Y. Delaunay, B.M. Nguyen, A. Hood, D. Hoffman, R. McClintock, Y. Wei, E. Michel, V. Nathan and M. Tidrow
IEEE LEOS Newsletter 20 (5)-- October 1, 2006 ...[Visit Journal]
The concept of Type-II InAs/GaSb superlattice was first brought by Nobel Laureate L. Esaki, et al. in the 1970s. There had been few studies on this material system until two decades later when reasonable quality material growth was made possible using molecular beam epitaxy. With the addition of cracker cells for the group V sources and optimizations of material growth conditions, the superlattice quality become significantly improved and the detectors made of these superlattice materials can meet the demand in some practical field applications. Especially in the LWIR regime, it provides a very promising alternative to HgCdTe for better material stability and uniformity, etc. We have developed the empirical tight binding model (ETBM) for precise determination of the superlattice bandgap. [reprint (PDF)]
 
1.  Engineering Multi-Section Quantum Cascade Lasers for Broadband Tuning
Steven Slivken and Manijeh Razeghi
Photonics 3, 41 (2016)-- June 27, 2016 ...[Visit Journal]
In an effort to overcome current limitations to electrical tuning of quantum cascade lasers, a strategy is proposed which combines heterogeneous quantum cascade laser gain engineering with sampled grating architectures. This approach seeks to not only widen the accessible spectral range for an individual emitter, but also compensate for functional non-uniformity of reflectivity and gain lineshapes. A trial laser with a dual wavelength core is presented which exhibits electroluminescence over a 750 cm−1 range and discrete single mode laser emission over a 700 cm−1 range. Electrical tuning over 180 cm−1 is demonstrated with a simple sampled grating design. A path forward to even wider tuning is also described using more sophisticated gain and grating design principles. [reprint (PDF)]
 
1.  Continuous wave, room temperature operation of λ ~ 3μm quantum cascade laser
N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken and M. Razeghi
SPIE Proceedings, Vol. 8631, p. 86310M-1, Photonics West, San Francisco, CA-- February 3, 2013 ...[Visit Journal]
Quantum Cascade Lasers (QCLs), operating in continuous wave (CW) at room temperature(RT) in 3-3.5 μm spectral range, which overlaps the spectral fingerprint region of many hydrocarbons, is essential in spectroscopic trace gas detection, environment monitoring, and pollution control. A 3 μm QCL, operating in CW at RT is demonstrated. This initial result makes it possible, for the most popular material system (AlInAs/GaInAs on InP) used in QCLs in mid-infrared and long-infrared, to cover the entire spectral range of mid-infrared atmospheric window (3-5 μm). In0.79Ga0.21As/In0.11Al0.89As strain balanced superlattice, which has a large conduction band offset, was grown. The strain was balanced with composite barriers (In0.11Al0.89As /In0.4Al0.6As) in the injector region, to eliminate the need of extremely high compressively strained GaInAs, whose pseudomorphic growth is very difficult. [reprint (PDF)]
 
1.  High Power 0.98 μm GaInAs/GaAs/GaInP Multiple Quantum Well Laser
K. Mobarhan, M. Razeghi, G. Marquebielle and E. Vassilaki
Journal of Applied Physics 72 (9)-- November 1, 1992 ...[Visit Journal]
We report the fabrication of high quality Ga0.8In0.2As/GaAs/Ga0.51In0.49P multiple quantum well laser emitting at 0.98 μm grown by low pressure metalorganic chemical vapor deposition. Continuous wave operation with output power of 500 mW per facet was achieved at room temperature for a broad area laser with 130 μm width and 300 μm cavity length. This is an unusually high value of output power for this wavelength laser in this material system. The differential quantum efficiency exceeded 75% with excellent homogeneity and uniformity. The characteristic temperature, T0 was in the range of 120–130 K. [reprint (PDF)]
 

Page 11 of 11:  Prev << 1 2 3 4 5 6 7 8 9 10 11    (258 Items)