Page 10 of 11:  Prev << 1 2 3 4 5 6 7 8 9 10  11  >> Next  (258 Items)

1.  High-Power (~9 μm) Quantum Cascade Lasers
S. Slivken, Z. Huang, A. Evans, and M. Razeghi
Virtual Journal of Nanoscale Science and Technology 5 (22)-- June 3, 2002 ...[Visit Journal][reprint (PDF)]
 
1.  Comparison of chemical and laser lift-off for the transfer of InGaN-based p-i-n junctions from sapphire to glass substrates
D. J. Rogers ; P. Bove ; F. Hosseini Teherani ; K. Pantzas ; T. Moudakir ; G. Orsal ; G. Patriarche ; S. Gautier ; A. Ougazzaden ; V. E. Sandana ; R. McClintock ; M. Razeghi
Proc. SPIE 8626, Oxide-based Materials and Devices IV, 862611 (March 18, 2013)-- March 18, 2013 ...[Visit Journal]
InGaN-based p-i-n structures were transferred from sapphire to soda-lime glass substrates using two approaches: (1) laser-lift-off (LLO) and thermo-metallic bonding and (2) chemical lift-off (LLO) by means sacrificial ZnO templates and direct wafer bonding. Both processes were found to function at RT and allow reclaim of the expensive single crystal substrate. Both approaches have also already been demonstrated to work for the wafer-scale transfer of III/V semiconductors. Compared with the industry-standard LLO, the CLO offers the added advantages of a lattice match to InGaN with higher indium contents, no need for an interfacial adhesive layer (which facilitates electrical, optical and thermal coupling), no damaged/contaminated GaN surface layer, simplified sapphire reclaim (GaN residue after LLO may complicate reclaim) and cost savings linked to elimination of the expensive LLO process. [reprint (PDF)]
 
1.  280 nm UV LEDs Grown on HVPE GaN Substrates
A. Yasan, R. McClintock, K. Mayes, S.R. Darvish, P. Kung, M. Razeghi, and R.J. Molnar
Opto-Electronics Review, 10 (4)-- January 1, 2002 ...[Visit Journal]
We report on the enhancement of optical and electrical properties of 280 nm UV LEDs using low dislocation density HVPE-grown GaN substrate. Compared with the same structure grown on sapphire, these LEDs show ~30% reduction in current-voltage differential resistance, ~15% reduction in turn-on voltage, more than 200% increase in output power slope efficiency and saturation at higher currents. Lower density of defects due to higher material quality and better heat dissipation are believed to be the reason behind these improvements. [reprint (PDF)]
 
1.  Demonstration of a 256x256 Middle-Wavelength Infrared Focal Plane Array based on InGaAs/InGaP Quantum Dot Infrared Photodetectors (QDIPs)
J. Jiang, K. Mi, S. Tsao, W. Zhang, H. Lim, T.O'Sullivan, T. Sills, M. Razeghi, G.J. Brown, and M.Z. Tidrow
Virtual Journal of Nanoscale Science and Technology 9 (13)-- April 5, 2004 ...[Visit Journal][reprint (PDF)]
 
1.  Recent Advances in LWIR Type-II InAs/GaSb Superlattice Photodetectors and Focal Plane Arrays at the Center for Quantum Devices
M. Razeghi, D. Hoffman, B.M. Nguyen, P.Y. Delaunay, E.K. Huang, M.Z. Tidrow, and V. Nathan
IEEE Proceedings, Vol. 97, No. 6, p. 1056-1066-- June 1, 2009 ...[Visit Journal]
In recent years, Type-II InAs/GaSb superlattice photo-detectors have experienced significant improvements in material quality, structural designs, and imaging applications. They now appear to be a possible alternative to the state-of-the-art HgCdTe (MCT) technology in the long and very long wavelength infrared regimes. At the Center for Quantum Devices, we have successfully realized very high quantum efficiency, very high dynamic differential resistance R0A - product LWIR Type – II InAs/GaSb superlattice photodiodes with efficient surface passivation techniques. The demonstration of high quality LWIR Focal Plane Arrays that were 100 % fabricated in - house reaffirms the pioneer position of this university-based laboratory. [reprint (PDF)]
 
1.  High-power continuous-wave operation of distributed-feedback quantum-cascade lasers at λ ~ 7.8 µm
S.R. Darvish, W. Zhang, A. Evans, J.S. Yu, S. Slivken, and M. Razeghi
Applied Physics Letters, 89 (25)-- December 18, 2006 ...[Visit Journal]
The authors present high-power continuous-wave (cw) operation of distributed-feedback quantum-cascade lasers. Continuous-wave output powers of 56 mW at 25 °C and 15 mW at 40 °C are obtained. Single-mode emission near 7.8 μm with a side-mode suppression ratio of >=30 dB and a tuning range of 2.83 cm−1 was obtained between 15 and 40 °C. The device exhibits no beam steering with a full width at half maximum of 27.4° at 25 °C in cw mode. [reprint (PDF)]
 
1.  Research activity on Type-II InAs/GaSb superlattice for LWIR detection and imaging at the Center for Quantum Devices
M. Razeghi and B.M. Nguyen
American Institute of Physics Conference Proceedings Vol. 949, Issue 1, p. 35-42, 6th International Workshop on Information Optics (WIO'07), Reykjavik, Iceland, June 25-30, 2007-- October 24, 2007 ...[Visit Journal]
Type-II superlattice photodetectors have recently experienced significant improvements in both theoretical structure design and experimental realization. Empirical Tight Binding Method was initiated and developed for Type-II superlattice. A new Type-II structure, called M-structure, was introduced and theoretically demonstrated high R0A, high quantum efficiency. Device design and growth condition were optimized to improve the performance. As a result, a 54% quantum efficiency, a 12 Ω·cm2 R0A were achieved for 11 µm cut-off photodetector at 77 K. Effective surface passivation techniques for MWIR and LWIR Type-II superlattice were developed. FPA imaging at MWIR and LWIR were demonstrated with a capability of imaging up to room temperature and 211 K respectively. The noise equivalent temperature difference presented a peak at 50 mK for MWIR FPA at 121 K and 26 mK for LWIR FPA at 81 K. [reprint (PDF)]
 
1.  Comparison of ultraviolet light-emitting diodes with peak emission at 340 nm grown on GaN substrate and sapphire
A. Yasan, R. McClintock, K. Mayes, S.R. Darvish, H. Zhang, P. Kung, M. Razeghi, S.K. Lee and J.Y. Han
Applied Physics Letters, 81 (12)-- September 16, 2002 ...[Visit Journal]
Based on AlInGaN/AlInGaN multiquantum wells, we compare properties of ultraviolet light-emitting diodes (LED) with peak emission at 340 nm grown on free-standing hydride vapor phase epitaxially grown GaN substrate and on sapphire. For the LED grown on GaN substrate, a differential resistance as low as 13 Ω and an output power of more than one order of magnitude higher than that of the same structure grown on sapphire are achieved. Due to higher thermal conductivity of GaN, output power of the LEDs saturates at higher injection currents compared to the devices grown on sapphire. [reprint (PDF)]
 
1.  Nanoselective area growth of defect-free thick indium-rich InGaN nanostructures on sacrificial ZnO templates
Renaud Puybaret, David J Rogers, Youssef El Gmili, Suresh Sundaram, Matthew B Jordan, Xin Li, Gilles Patriarche, Ferechteh H Teherani, Eric V Sandana, Philippe Bove, Paul L Voss, Ryan McClintock, Manijeh Razeghi, Ian Ferguson, Jean-Paul Salvestrini, and Abdallah Ougazzade
Renaud Puybaret et al 2017 Nanotechnology 28 195304-- April 29, 2017 ...[Visit Journal]
Nanoselective area growth (NSAG) by metal organic vapor phase epitaxy of high-quality InGaN nanopyramids on GaN-coated ZnO/c-sapphire is reported. Nanopyramids grown on epitaxial low-temperature GaN-on-ZnO are uniform and appear to be single crystalline, as well as free of dislocations and V-pits. They are also indium-rich (with homogeneous 22% indium incorporation) and relatively thick (100 nm). These properties make them comparable to nanostructures grown on GaN and AlN/Si templates, in terms of crystallinity, quality, morphology, chemical composition and thickness. Moreover, the ability to selectively etch away the ZnO allows for the potential lift-off and transfer of the InGaN/GaN nanopyramids onto alternative substrates, e.g. cheaper and/or flexible. This technology offers an attractive alternative to NSAG on AlN/Si as a platform for the fabrication of high quality, thick and indium-rich InGaN monocrystals suitable for cheap, flexible and tunable light-emitting diodes.
 
1.  Temperature dependent characteristics of λ ~ 3.8 µm room-temperature continuous-wave quantum-cascade lasers
J.S. Yu, A. Evans, S. Slivken, S.R. Darvish and M. Razeghi
Applied Physics Letters, 88 (25)-- June 19, 2006 ...[Visit Journal]
The highest-performance device displays pulsed laser action at wavelengths between 3.4 and 3.6 μm, for temperatures up to 300 K, with a low temperature (80 K) threshold current density of approximately 2.6 kA/cm2, and a characteristic temperature of T0~130 K. The shortest wavelength QCL (λ ~ 3.05 μm) has a higher threshold current density (~12 kA/cm2 at T=20 K) and operates in pulsed mode at temperatures up to 110 K. [reprint (PDF)]
 
1.  Advances in UV sensitive visible blind GaN-based APDs
M. Ulmer, R. McClintock and M. Razeghi
SPIE Proceedings, San Francisco, CA (January 22-27, 2011), Vol. 7945, p. 79451G-- January 23, 2011 ...[Visit Journal]
In this paper, we describe our current state-of-the-art process of making visible-blind APDs based on GaN. We have grown our material on both conventional sapphire and low dislocation density free-standing c- and m-plane GaN substrates. Leakage current, gain, and single photon detection efficiency (SPDE) of these APDs are compared. The spectral response and Geiger-mode photon counting performance of UV APDs are studied under low photon fluxes. Single photon detection capabilities with over 30% are demonstrated. We show how with pulse height discrimination the Geiger-mode operation conditions can be optimized for enhanced SPDE versus dark counts. [reprint (PDF)]
 
1.  Electrically pumped photonic crystal distributed feedback quantum cascade lasers
Y. Bai, S.R. Darvish, S. Slivken, P. Sung, J. Nguyen, A. Evans, W. Zhang, and M. Razeghi
Applied Physics Letters, Vol. 91, No. 14, p. 141123-1-- October 1, 2007 ...[Visit Journal]
We demonstrate electrically pumped, room temperature, single mode operation of photonic crystal distributed feedback (PCDFB) quantum cascade lasers emitting at ~4.75 µm. Ridge waveguides of 100 µm width were fabricated with both PCDFB and Fabry-Pérot feedback mechanisms. The Fabry-Pérot device has a broad emitting spectrum and a double lobed far-field character. The PCDFB device, as expected, has primarily a single spectral mode and a diffraction limited far field characteristic with a full angular width at half maximum of 2.4°. This accomplishment represents the first step in power scaling of single mode, midinfrared laser diodes operating at room temperature. [reprint (PDF)]
 
1.  Growth and Optimization of GaInAsP/InP Material System for Quantum Well Infrared Photodetector Applications
M. Erdtmann, J. Jiang, A. Matlis, A. Tahraoui, C. Jelen, M. Razeghi, and G. Brown
SPIE Conference, San Jose, CA, -- January 26, 2000 ...[Visit Journal]
Multi-quantum well structures of GaxIn1-xAsyP1-y were grown by metalorganic chemical vapor deposition for the fabrication of quantum well IR photodetectors. The thickness and composition of the wells was determined by high-resolution x-ray diffraction and photoluminescence experiments. The intersubband absorption spectrum of the Ga0.47In0.53As/InP, Ga0.38In0.62As0.80P0.20 (1.55 μm)/InP, and Ga0.27In0.73As0.57P0.43 (1.3 μm))/InP quantum wells are found to have cutoff wavelengths of 9.3 μm, 10.7 micrometers , and 14.2 μm respectively. These wavelengths are consistent with a conduction band offset to bandgap ratio of approximately 0.32. Facet coupled illumination responsivity and detectivity are reported for each composition. [reprint (PDF)]
 
1.  Investigations of p-type signal for ZnO thin films grown on (100) GaAs substrates by pulsed laser deposition
D.J. Rogers, F. Hosseini Teherani, T. Monteiro, M. Soares, A. Neves, M. Carmo, S. Periera, M.R. Correia, A. Lusson, E. Alves, N.P. Barradas, J.K. Morrod, K.A. Prior, P. Kung, A. Yasan, and M. Razeghi
Phys. Stat. Sol. C, 3 (4)-- March 1, 2006 ...[Visit Journal]
n this work we investigated ZnO films grown on semi-insulating (100) GaAs substrates by pulsed laser deposition. Samples were studied using techniques including X-ray diffraction (XRD), scanning electron microscopy, atomic force microscopy, Raman spectroscopy, temperature dependent photoluminescence, C-V profiling and temperature dependent Hall measurements. [reprint (PDF)]
 
1.  Status of III-V semiconductor thin films and their applications to future OEICs
Manijeh Razeghi
Proc. SPIE 10267, Integrated Optics and Optoelectronics, 102670T -- June 26, 2017 ...[Visit Journal]
In the last decade, semiconductor technology has been advanced to a great extent in terms of electronic and photonic discrete devices. One of the main reasons for such a progress, is the result of advancement in the epitaxial growth techniques such as molecular beam epitaxy (MBE) and metalorganic chemical vapor deposition (MOCVD), where device quality films can be grown with great control over composition, uniformity and thickness. MOCVD has proven to be one of the best growth methods for many IH-V semiconductor thin films 1. Its flexibility and potential to yield a broad range of growth rates resulted in the layers featuring the thicknesses from tens of microns down to several nanometers. Planar structures containing quantum wells with atomically flat interfaces, superlattices, strained or graded-index layers were successfully grown by MOCVD. Furthermore, MOCVD proved its efficiency in producing a laser devices by overgrowth and epitaxy on patterned substrates. The importance of MOCVD is strongly enhanced by the possibility of large-scale production by simultaneous growth on several substrates in one process. Several III-V semiconductor films with bandgaps ranging from infrared to ultraviolet (15 to 0.2 μm) have been successfully grown by MOCVD. [reprint (PDF)]
 
1.  III-Nitride Optoelectronic Devices: From ultraviolet detectors and visible emitters towards terahertz intersubband devices
M. Razeghi, C. Bayram, Z. Vashaei, E. Cicek and R. McClintock
IEEE Photonics Society 23rd Annual Meeting, November 7-10, 2010, Denver, CO, Proceedings, p. 351-352-- January 20, 2011 ...[Visit Journal]
III-nitride optoelectronic devices are discussed. Ultraviolet detectors and visible emitters towards terahertz intersubband devices are reported. Demonstration of single photon detection efficiencies of 33% in the ultraviolet regime, intersubband energy level as low as in the mid-infrared regime, and GaN-based resonant tunneling diodes with negative resistance of 67 Ω are demonstrated. [reprint (PDF)]
 
1.  Defects in Organometallic Vapor-Phase Epitaxy-Grown GaInP Layers
Feng S.L., Bourgoin J.C., Omnes F., and Razeghi M.
Applied Physics Letters 59 (8), p. 941-- May 28, 1991 ...[Visit Journal]
Non-intentionally doped metalorganic vapor‐phase epitaxy Ga1−x InxP layers, having an alloy composition (x = 0.49) corresponding to a lattice matched to GaAs, grown by metalorganic chemical vapor deposition, have been studied by capacitance‐voltage and deep-level transient spectroscopy techniques. They are found to exhibit a free‐carrier concentration at room temperature of the order of 1015 cm−3. Two electron traps have been detected. The first one, at 75 meV below the conduction band, is in small concentration (∼1013 cm−3) while the other, at about 0.9 eV and emitting electrons above room temperature, has a concentration in the range 1014–1015 cm−3. [reprint (PDF)]
 
1.  Room-temperature continuous-wave operation of quantum-cascade lasers at λ ~ 4 µm
J.S. Yu, S.R. Darvish, A. Evans, J. Nguyen, S. Slivken, and M. Razeghi
Applied Physics Letters 88 (4)-- January 23, 2006 ...[Visit Journal]
High-power cw λ~4 μm quantum-cascade lasers (QCLs) are demonstrated. The effect of different cavity length and laser die bonding is also investigated. For a high-reflectivity-coated 11-μm-wide and 4-mm-long epilayer-down bonded QCL, cw output powers as high as 1.6 W at 80 K and 160 mW at 298 K are obtained, and the cw operation is achieved up to 313 K with 12 mW. [reprint (PDF)]
 
1.  Back-illuminated solar-blind photodetectors for imaging applications
R. McClintock, A. Yasan, K. Mayes, P. Kung, and M. Razeghi
SPIE Conference, Jose, CA, Vol. 5732, pp.175-- January 22, 2005 ...[Visit Journal]
Back-illuminated solar-blind ultraviolet p-i-n photodetectors and focal plane arrays are investigated. We initially study single-pixel devices and then discuss the hybridization to a read-out integrated circuit to form focal plane arrays for solar-blind UV imaging. [reprint (PDF)]
 
1.  Broad area photonic crystal distributed feedback quantum cascade lasers emitting 34 W at λ ~ 4.36 μm
B. Gokden, Y. Bai, N. Bandyopadhyay, S. Slivken and M. Razeghi
Applied Physics Letters, Vol. 97, No. 13, p. 131112-1-- September 27, 2010 ...[Visit Journal]
We demonstrate room temperature, high power, single mode, and diffraction limited operation of a two dimensional photonic crystal distributed feedback quantum cascade laser emitting at 4.36 μm. Total peak power up to 34 W is observed from a 3 mm long laser with 400 μm cavity width at room temperature. Far-field profiles have M2 figure of merit as low as 2.5. This device represents a significant step toward realization of spatially and spectrally pure broad area high power quantum cascade lasers. [reprint (PDF)]
 
1.  Aluminum free GaInP/GaAs Quantum Well Infrared Photodetectors for Long Wavelength Detection
C. Jelen, S. Slivken, J. Hoff, M. Razeghi, and G. Brown
Applied Physics Letters 70 (3)-- January 20, 1997 ...[Visit Journal]
We demonstrate quantum well infrared photodetectors based on a GaAs/Ga0.51In0.49P superlattice structure grown by gas-source molecular beam epitaxy. Wafers were grown with varying well widths. Wells of 40, 65, and 75 Å resulted in peak detection wavelengths of 10.4, 12.8, and 13.3 μm with a cutoff wavelength of 13.5, 15, and 15.5 μm, respectively. The measured peak and cutoff wavelengths match those predicted by eight band theoretical analysis. Measured dark currents were lower than equivalent GaAs/AlGaAs samples. [reprint (PDF)]
 
1.  Growth and characterization of InAs/GaSb photoconductors for long wavelength infrared range
H. Mohseni, E. Michel, J. Sandven, M. Razeghi, W. Mitchel, and G. Brown
Applied Physics Letters 71 (10)-- September 8, 1997 ...[Visit Journal]
In this letter we report the molecular beam epitaxial growth and characterization of InAs/GaSb superlattices grown on semi-insulating GaAs substrates for long wavelength infrared detectors. Photoconductive detectors fabricated from the superlattices showed photoresponse up to 12 µm and peak responsivity of 5.5 V/W with Johnson noise limited detectivity of 1.33 × 109 cm·Hz½/W at 10.3 µm at 78 K. [reprint (PDF)]
 
1.  Short Wavelength (λ~ 4.3 μm) High-Performance Continuous-Wave Quantum-Cascade Lasers
J.S. Yu, A. Evans, S. Slivken, S.R. Darvish, and M. Razeghi
IEEE Photonics Technology Letters, 17 (6)-- June 1, 2005 ...[Visit Journal]
We report continuous-wave (CW) operation of a 4.3-μm quantum-cascade laser from 80 K to 313 K. For a high-reflectivity-coated 11-μm-wide and 4-mm-long laser, CW output powers of 1.34 W at 80 K and 26 mW at 313 K are achieved. At 298 K, the CW threshold current density of 1.5 kA/cm2 is observed with a CW output power of 166 mW and maximum wall-plug efficiency of 1.47%. The CW emission wavelength varies from 4.15 μm at 80 K to 4.34 μm at 298 K, corresponding to a temperature-tuning rate of 0.87 nm/K. The beam full-width at half-maximum values for the parallel and the perpendicular far-field patterns are 26° and 49° in CW mode, respectively. [reprint (PDF)]
 
1.  p-doped GaAs/Ga0.51In0.49P quantum well intersub-band photodetectors
J. Hoff, X. He, M. Erdtmann, E. Bigan, M. Razeghi, and G.J. Brown
Journal of Applied Physics 78 (3)-- August 1, 1995 ...[Visit Journal]
Lattice‐matched p-doped GaAs–Ga0.51In0.49P quantum well intersub‐band photodetectors with three different well widths have been grown on GaAs substrates by metal‐organic chemical‐vapor deposition and fabricated into mesa structures. The photoresponse cutoff wavelength varies between 3.5 and 5.5 μm by decreasing the well width from 50 down to 25 Å. Dark current measurements as a function of temperature reveal activation energies for thermionic emission that closely correspond to measured cutoff wavelengths. Experimental results are in reasonable agreement with Kronig–Penney calculations. [reprint (PDF)]
 
1.  Recent advances in IR semiconductor laser diodes and future trends
M. Razeghi; Y. Bai; N. Bandyopadhyay; B. Gokden; Q.Y. Lu; S. Slivken
Photonics Society Summer Topical Meeting Series, IEEE [6000041], pp. 55-56 (2011)-- July 18, 2011 ...[Visit Journal]
The wall plug efficiency of the mid-infrared quantum cascade laser in room temperature continuous wave (cw) operation is brought to 21%, with a maximum output power of 5.1 W. Using a surface grating distributed feedback (DFB) approach, we demonstrated 2.4 W single mode output in room temperature cw operation. With a photonic crystal distributed feedback (PCDFB) design, we achieved single mode spectrum and close to diffraction limited far field with a room temperature high peak power of 34 W. [reprint (PDF)]
 

Page 10 of 11:  Prev << 1 2 3 4 5 6 7 8 9 10  11  >> Next  (258 Items)