Page 10 of 22:  Prev << 1 2 3 4 5 6 7 8 9 10  11 12 13 14 15 16 17 18 19 20 21 22  >> Next  (526 Items)

1.  Recent advances in IR semiconductor laser diodes and future trends
M. Razeghi; Y. Bai; N. Bandyopadhyay; B. Gokden; Q.Y. Lu; S. Slivken
Photonics Society Summer Topical Meeting Series, IEEE [6000041], pp. 55-56 (2011)-- July 18, 2011 ...[Visit Journal]
The wall plug efficiency of the mid-infrared quantum cascade laser in room temperature continuous wave (cw) operation is brought to 21%, with a maximum output power of 5.1 W. Using a surface grating distributed feedback (DFB) approach, we demonstrated 2.4 W single mode output in room temperature cw operation. With a photonic crystal distributed feedback (PCDFB) design, we achieved single mode spectrum and close to diffraction limited far field with a room temperature high peak power of 34 W. [reprint (PDF)]
 
1.  High-performance, continuous-wave quantum-cascade lasers operating up to 85° C at λ ~ 8.8 μm
J.S. Yu, S. Slivken, A. Evans, and M. Razeghi
Applied Physics A: Materials Science & Processing, Vo. 93, No. 2, p. 405-408-- November 1, 2008 ...[Visit Journal]
High-temperature, high-power, and continuous-wave (CW) operation of quantum-cascade lasers with 35 active/injector stages at λ∼8.85 μm above room temperature is achieved without using a buried heterostructure. At this long wavelength, the use of a wider ridge waveguide in an epilayer-down bonding scheme leads to a superior performance of the laser. For a high-reflectivity-coated 21 μm×3 mm laser, the output power of 237 mW and the threshold current density of 1.44 kA·cm-2 at 298 K under CW mode are obtained with a maximum wall-plug efficiency of 1.7%. Further improvements were observed by using a 4-mm-long cavity. The device exhibits 294 mW of output power at 298 K and it operates at a high temperature, even up to 358 K (85°C). The full widths at half-maximum of the laser beam in CW operation for the parallel and the perpendicular far-field patterns are 25°and 63°, respectively. [reprint (PDF)]
 
1.  Noise analysis in type-II InAs/GaSb focal plane arrays
P.Y. Delaunay and M. Razeghi
Journal of Applied Physics, Vol. 106, Issue 6, p. 063110-- September 15, 2009 ...[Visit Journal]
A long wavelength infrared focal plane array based on type-II InAs/GaSb superlattices was fabricated and characterized at 80 K. The noise equivalent temperature difference in the array was measured as low as 23 mK for an integration time of 0.129 ms. The noise behavior of the detectors was properly described by a model based on thermal, shot, read out integrated circuit, and photon noises. The noise of the imager was dominated by photon noise for photon fluxes higher than 1.8×1015 ph·s−1·cm−2. At lower irradiance, the imager was limited by the shot noise generated by the dark current or the noise of the testing system. The superlattice detector did not create 1/f noise for frequencies above 4 mHz. As a result, the focal plane array did not require frequent calibrations. [reprint (PDF)]
 
1.  High Power 0.98 μm GaInAs/GaAs/GaInP Multiple Quantum Well Laser
K. Mobarhan, M. Razeghi, G. Marquebielle and E. Vassilaki
Journal of Applied Physics 72 (9)-- November 1, 1992 ...[Visit Journal]
We report the fabrication of high quality Ga0.8In0.2As/GaAs/Ga0.51In0.49P multiple quantum well laser emitting at 0.98 μm grown by low pressure metalorganic chemical vapor deposition. Continuous wave operation with output power of 500 mW per facet was achieved at room temperature for a broad area laser with 130 μm width and 300 μm cavity length. This is an unusually high value of output power for this wavelength laser in this material system. The differential quantum efficiency exceeded 75% with excellent homogeneity and uniformity. The characteristic temperature, T0 was in the range of 120–130 K. [reprint (PDF)]
 
1.  Graphene versus oxides for transparent electrode applications
Sandana, V. E.; Rogers, D. J.; Teherani, F. Hosseini; Bove, P.; Razeghi, M.
Proc. SPIE 8626, Oxide-based Materials and Devices IV, 862603 (March 18, 2013)-- March 18, 2013 ...[Visit Journal]
Due to their combination of good electrical conductivity and optical transparency, Transparent Conducting Oxides (TCOs) are the most common choice as transparent electrodes for optoelectronics applications. In particular, devices, such as LEDs, LCDs, touch screens and solar cells typically employ indium tin oxide. However, indium has some significant drawbacks, including toxicity issues (which are hampering manufacturing), an increasing rarefication (due to a combination of relative scarcity and increasing demand [1]) and resulting price increases. Moreover, there is no satisfactory option at the moment for use as a p-type transparent contact. Thus alternative materials solutions are actively being sought. This review will compare the performance and perspectives of graphene with respect to TCOs for use in transparent conductor applications. [reprint (PDF)]
 
1.  SOLID-STATE DEEP UV EMITTERS/DETECTORS: Zinc oxide moves further into the ultraviolet
David J. Rogers; Philippe Bove; Eric V. Sandana; Ferechteh Hosseini Teherani; Ryan McClintock; Manijeh Razeghi
Laser Focus World. 2013;49(10):33-36.-- October 10, 2013 ...[Visit Journal]
Latest advancements in the alloying of zinc oxide (ZnO) with magnesium (Mg) can offer an alternative to (Al) GaN-based emitters/detectors in the deep UV with reduced lattice and efficiency issues. The emerging potential of ZnO for UV emitter and detector applications is the result of a long, concerted, and fruitful R&D effort that has led to more than 7000 publications in 2012. ZnO is considered to be a potentially superior material for use in LEDs and laser diodes due to its larger exciton binding energy, as compared with 21 meV for GaN. Wet etching is also possible for ZnO with nearly all dilute acids and alkalis, while GaN requires hydrofluoric (HF) acid or plasma etching. High-quality ZnO films can be grown more readily on mismatched substrates and bulk ZnO substrates have better availability than their GaN equivalents.
 
1.  Crack-free AlGaN for solar-blind focal plane arrays through reduced area expitaxy
E. Cicek, R. McClintock, Z. Vashaei, Y. Zhang, S. Gautier, C.Y. Cho and M. Razeghi
Applied Physics Letters, Vol. 102, No. 05, p. 051102-1-- February 4, 2013 ...[Visit Journal]
We report on crack reduction for solar-blind ultraviolet detectors via the use of a reduced area epitaxy (RAE) method to regrow on patterned AlN templates. With the RAE method, a pre-deposited AlN template is patterned into isolated mesas in order to reduce the formation of cracks in the subsequently grown high Al-content AlxGa1−xN structure. By restricting the lateral dimensions of the epitaxial growth area, the biaxial strain is relaxed by the edges of the patterned squares, which resulted in ∼97% of the pixels being crack-free. After successful implementation of RAE method, we studied the optical characteristics, the external quantum efficiency, and responsivity of average pixel-sized detectors of the patterned sample increased from 38% and 86.2 mA/W to 57% and 129.4 mA/W, respectively, as the reverse bias is increased from 0 V to 5 V. Finally, we discussed the possibility of extending this approach for focal plane array, where crack-free large area material is necessary for high quality imaging. [reprint (PDF)]
 
1.  High-performance short-wavelength infrared photodetectors based on type-II InAs/InAs1-xSbx/AlAs1-xSbx superlattices
M. Razeghi, A. Haddadi, X. V. Suo, S. Adhikary, P. Dianat, R. Chevallier, A. M. Hoang, A. Dehzangi
Proc. SPIE 9819, Infrared Technology and Applications XLII, 98190A -- May 20, 2016 ...[Visit Journal]
We present a high-performance short-wavelength infrared n-i-p photodiode, whose structure is based on type-II superlattices with InAs/InAs1-xSbx/AlAs1-xSbx on GaSb substrate. At room temperature (300K) with front-side illumination, the device shows the peak responsivity of 0.47 A/W at 1.6mm, corresponding to 37% quantum efficiency at zero bias. At 300K, the device has a 50% cut-off wavelength of ~1.8mm. For −50mV applied bias at 300 K the photodetector has dark current density of 9.6x10-5 A/cm² and RxA of 285 Ω•cm², and it revealed a detectivity of 6.45x1010 cm•Hz½/W. Dark current density reached to 1.3x10-8 A/cm² at 200 K, with 36% quantum efficiency which leads to the detectivity value of 5.66x1012 cm•Hz½/W. [reprint (PDF)]
 
1.  GaN avalanche photodiodes grown on m-plane freestanding GaN substrate
Z. Vashaei, E. Cicek, C. Bayram, R. McClintock and M. Razeghi
Applied Physics Letters, Vol. 96, No. 20, p. 201908-1-- May 17, 2010 ...[Visit Journal]
M-plane GaN avalanche p-i-n photodiodes on low dislocation density freestanding m-plane GaN substrates were realized using metal-organic chemical vapor deposition. High quality homoepitaxial m-plane GaN layers were developed; the root-mean-square surface roughness was less than 1 Å and the full-width-at-half-maximum value of the x-ray rocking curve for (1010) diffraction of m-plane GaN epilayer was 32 arcsec. High quality material led to a low reverse-bias dark current of 8.11 pA for 225 μm² mesa photodetectors prior to avalanche breakdown, with the maximum multiplication gain reaching about 8000. [reprint (PDF)]
 
1.  Semiconductor ultraviolet detectors
M. Razeghi and A. Rogalski
SPIE Photonics West '96 Photodetectors: Materials and Devices; Proceedings 2685-- January 27, 1996 ...[Visit Journal]
This paper presents an overview of semiconductor ultraviolet (UV) detectors that are currently available and associated technologies that are undergoing further development. At the beginning, the classification of UV detectors and general requirements imposed on these detectors are presented. Further consideration are restricted to modern semiconductor UV detectors, so the current state-of-the-art of different types of semiconductor UV detectors is presented. Hitherto, the semiconductor UV detectors have been mainly fabricated using Si. Industries such as the aerospace, automotive, petroleum, and others have continuously provided the impetus pushing the development of fringe technologies which are tolerant of increasingly high temperatures and hostile environments. As a result, the main effort are currently directed to a new generation of UV detectors fabricated from wide-band-gap semiconductors between them the most promising are diamond and AlGaN. The latest progress in development of AlGaN UV detectors is finally described in detail. [reprint (PDF)]
 
1.  Dark current reduction in microjunction-based double electron barrier type-II InAs/InAsSb superlattice long-wavelength infrared photodetectors
Romain Chevallier, Abbas Haddadi, & Manijeh Razeghi
Scientific Reports 7, Article number: 12617-- October 3, 2017 ...[Visit Journal]
Microjunction InAs/InAsSb type-II superlattice-based long-wavelength infrared photodetectors with reduced dark current density were demonstrated. A double electron barrier design was employed to reduce both bulk and surface dark currents. The photodetectors exhibited low surface leakage after passivation with SiO2, allowing the use of very small size features without degradation of the dark current. Fabricating microjunction photodetectors (25 × 25 µm² diodes with 10 × 10 µm² microjunctions) in combination with the double electron barrier design results in a dark current density of 6.3 × 10−6 A/cm² at 77 K. The device has an 8 µm cut-off wavelength at 77 K and exhibits a quantum efficiency of 31% for a 2 µm-thick absorption region, which results in a specific detectivity value of 1.2 × 1012 cm·Hz½/W. [reprint (PDF)]
 
1.  Review of high power frequency comb sources based on InP From MIR to THZ at CQD
Manijeh Razeghi, Quanyong Lu, Donghai Wu, Steven Slivken
Event: SPIE Optical Engineering + Applications, 2018, San Diego, California, United States-- September 14, 2018 ...[Visit Journal]
We present the recent development of high performance compact frequency comb sources based on mid-infrared quantum cascade lasers. Significant performance improvements of our frequency combs with respect to the continuous wave power output, spectral bandwidth, and beatnote linewidth are achieved by systematic optimization of the device's active region, group velocity dispersion, and waveguide design. To date, we have demonstrated the most efficient, high power frequency comb operation from a free-running room temperature continuous wave (RT CW) dispersion engineered QCL at λ~5-9 μm. In terms of bandwidth, the comb covered a broad spectral range of 120 cm−1 with a radio-frequency intermode beatnote spectral linewidth of 40 Hz and a total power output of 880 mW at 8 μm and 1 W at ~5.0 μm. The developing characteristics show the potential for fast detection of various gas molecules. Furthermore, THz comb sources based on difference frequency generation in a mid-IR QCL combs could be potentially developed. [reprint (PDF)]
 
1.  Characterization of InTlSb/InSb Grown by Low Pressure Metalorganic Chemical Vapor Deposition on GaAs Substrat
Y.H. Choi, P. Staveteig, E. Bigan, and M. Razeghi
Journal of Applied Physics 75 (6)-- March 15, 1994 ...[Visit Journal]
Optical properties of InTlSb, a new long wavelength infrared material, are investigated. InTlSb/InSb epilayers grown by low‐pressure metal‐organic chemical vapor deposition on semi‐insulating GaAs substrates were characterized using Auger electron spectroscopy and Fourier transform infrared spectroscopy. Auger electron spectra confirm the presence of thallium. Transmission measurements at 77 K indicate an absorption shift from 5.5 μm for InSb up to 8 μm for InTlSb that is confirmed by photoconductivity measurements. [reprint (PDF)]
 
1.  Dispersion compensated mid-infrared quantum cascade laser frequency comb with high power output
Q. Y. Lu, S. Manna, S. Slivken, D. H. Wu, and M. Razeghi
AIP Advances 7, 045313 -- April 26, 2017 ...[Visit Journal]
Chromatic dispersion control plays an underlying role in optoelectronics and spectroscopy owing to its enhancement to nonlinear interactions by reducing the phase mismatching. This is particularly important to optical frequency combs based on quantum cascade lasers which require negligible dispersions for efficient mode locking of the dispersed modes into equally spaced comb modes. Here, we demonstrated a dispersion compensated mid-IR quantum cascade laser frequency comb with high power output at room temperature. A low-loss dispersive mirror has been engineered to compensate the device’s dispersion residue for frequency comb generation. Narrow intermode beating linewidths of 40 Hz in the comb-working currents were identified with a high power output of 460 mW and a broad spectral coverage of 80 cm-1. This dispersion compensation technique will enable fast spectroscopy and high-resolution metrology based on QCL combs with controlled dispersion and suppressed noise. [reprint (PDF)]
 
1.  GaN-based nanostructured photodetectors
J.L. Pau, C. Bayram, P. Giedraitis, R. McClintock, and M. Razeghi
SPIE Proceedings, San Jose, CA Volume 7222-14-- January 26, 2009 ...[Visit Journal]
The use of nanostructures in semiconductor technology leads to the observation of new phenomena in device physics. Further quantum and non-quantum effects arise from the reduction of device dimension to a nanometric scale. In nanopillars, quantum confinement regime is only revealed when the lateral dimensions are lower than 50 nm. For larger mesoscopic systems, quantum effects are not observable but surface states play a key role and make the properties of nanostructured devices depart from those found in conventional devices. In this work, we present the fabrication of GaN nanostructured metal-semiconductor-metal (MSM) and p-i-n photodiodes (PIN PDs) by e-beam lithography, as well as the investigation of their photoelectrical properties at room temperature. The nanopillar height and diameter are about 520 nm and 200 nm, respectively. MSMs present dark currents densities of 0.4 A/cm2 at ±100 V. A strong increase of the optical response with bias is observed, resulting in responsivities higher than 1 A/W. The relationship between this gain mechanism and surface states is discussed. PIN PDs yield peak responsivities (Rpeak) of 35 mA/W at -4 V and show an abnormal increase of the response (Rpeak > 100 A/W) under forward biases. [reprint (PDF)]
 
1.  Advanced Monolithic Quantum Well Infrared Photodetector Focal Plane Array Integrated with Silicon Readout Integrated Circuit
J. Jiang, S. Tsao, K. Mi, M. Razeghi, G.J. Brown, C. Jelen and M.Z. Tidrow
Infrared Physics and Technology, 46 (3)-- January 1, 2005 ...[Visit Journal]
Today, most infrared focal plane arrays (FPAs) utilize a hybrid scheme. To achieve higher device reliability and lower cost, monolithic FPAs with Si based readout integrated circuits (ROICs) are the trend of the future development. In this paper, two approaches for monolithic FPAs are proposed: double sided integration and selective epitaxy integration. For comparison, the fabrication process for hybrid quantum well infrared photodetectors (QWIP) FPAs are also described. Many problems, such as the growth of QWIPs on Si substrate and processing incompatibility between Si and III–V semiconductors, need to be solved before monolithic FPAs can be realized. Experimental work on GaInAs/InP QWIP-on-Si is given in this paper. A record high detectivity of 2.3×109 jones was obtained for one QWIP-on-Si detector at 77 K. [reprint (PDF)]
 
1.  Thermal conductivity tensors of the cladding and active layers of antimonide infrared lasers and detectors
Chuanle Zhou, I. Vurgaftman, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, J. R. Meyer, A. Hoang, A. Haddadi, M. Razeghi, and M. Grayson
Optical Materials Express. 2013;3(10):1632-1640.-- October 1, 2013 ...[Visit Journal]
The in-plane and cross-plane thermal conductivities of the cladding layers and active quantum wells of interband cascade lasers and type-II superlattice infrared detector are measured by the 2-wire 3ω method. The layers investigated include InAs/AlSb superlattice cladding layers, InAs/GaInSb/InAs/AlSb W-active quantum wells, an InAs/GaSb superlattice absorber, an InAs/GaSb/AlSb M-structure, and an AlAsSb digital alloy. The in-plane thermal conductivity of the InAs/AlSb superlattice is 4-5 times higher than the cross-plane value. The isotropic thermal conductivity of the AlAsSb digital alloy matches a theoretical expectation, but it is one order of magnitude lower than the only previously-reported experimental value. [reprint (PDF)]
 
1.  Room temperature quantum cascade lasers with 27% wall plug efficiency
Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken and M. Razeghi
Applied Physics Letters, Vol. 98, No. 18, p. 181102-1-- May 3, 2011 ...[Visit Journal]
Using the recently proposed shallow-well design, we demonstrate InP based quantum cascade lasers (QCLs) emitting around 4.9 μm with 27% and 21% wall plug efficiencies in room temperature (298 K) pulsed and continuous wave (CW) operations, respectively. The laser core consists of 40 QCL-stages. The highest cw efficiency is obtained from a buried-ridge device with a ridge width of 8 μm and a cavity length of 5 mm. The front and back facets are antireflection and high-reflection coated, respectively. The maximum single facet cw power at room temperature amounts to 5.1 W. [reprint (PDF)]
 
1.  Strain-Induced Metastable Phase Stabilization in Ga2O3 Thin Films
Yaobin Xu, Ji-hyeon Park, Zhenpeng Yao, Christopher Wolverton, Manijeh Razeghi, Jinsong Wu, and Vinayak P. Dravid
ACS Appl. Mater. Interfaces-- January 10, 2019 ...[Visit Journal]
It is well known that metastable and transient structures in bulk can be stabilized in thin films via epitaxial strain (heteroepitaxy) and appropriate growth conditions that are often far from equilibrium. However, the mechanism of heteroepitaxy, particularly how the nominally unstable or metastable phase gets stabilized, remains largely unclear. This is especially intriguing for thin film Ga2O3, where multiple crystal phases may exist under varied growth conditions with spatial and dimensional constraints. Herein, the development and distribution of epitaxial strain at the Ga2O3/Al2O3 film-substrate interfaces is revealed down to the atomic resolution along different orientations, with an aberration-corrected scanning transmission electron microscope (STEM). Just a few layers of metastable α-Ga2O3 structure were found to accommodate the misfit strain in direct contact with the substrate. Following an epitaxial α-Ga2O3 structure of about couple unit cells, several layers (4~5) of transient phase appear as the intermediate structure to release the misfit strain. Subsequent to this transient crystal phase, the nominally unstable κ-Ga2O3 phase is stabilized as the major thin film phase form. We show that the epitaxial strain is gracefully accommodated by rearrangement of the oxygen polyhedra. When the structure is under large compressive strain, Ga3+ ions occupy only the oxygen octahedral sites to form a dense structure. With gradual release of the compressive strain, more and more Ga3+ ions occupy the oxygen tetrahedral sites, leading to volumetric expansion and the phase transformation. The structure of the transition phase is identified by high resolution electron microscopy (HREM) observation, complemented by the density functional theory (DFT) calculations. This study provides insights from the atomic scale and their implications for the design of functional thin film materials using epitaxial engineering.
 
1.  Gain-length scaling in quantum dot/quantum well infrared photodetectors
T. Yamanaka, B. Movaghar, S. Tsao, S. Kuboya, A. Myzaferi and M. Razeghi
Virtual Journal of Nanoscale Science & Technology-- September 14, 2009 ...[Visit Journal][reprint (PDF)]
 
1.  Gallium nitride on silicon for consumer & scalable photonics
C. Bayram, K.T. Shiu, Y. Zhu, C.W. Cheng, D.K. Sadana, Z. Vashaei, E. Cicek, R. McClintock and M. Razeghi
SPIE Proceedings, Vol. 8631, p. 863112-1, Photonics West, San Francisco, CA-- February 4, 2013 ...[Visit Journal]
Gallium Nitride (GaN) is a unique material system that has been heavily exploited for photonic devices thanks to ultraviolet-to-terahertz spectral tunability. However, without a cost effective approach, GaN technology is limited to laboratory demonstrations and niche applications. In this investigation, integration of GaN on Silicon (100) substrates is attempted to enable widespread application of GaN based optoelectronics. Controlled local epitaxy of wurtzite phase GaN on on-axis Si(100) substrates is demonstrated via metal organic chemical vapor deposition (MOCVD). CMOS-compatible fabrication scheme is used to realize [SiO2-Si{111}-Si{100}] groove structures on conventional 200-mm Si(100) substrates. MOCVD growth (surface treatment, nucleation, initiation) conditions are studied to achieve controlled GaN epitaxy on such grooved Si(100) substrates. Scanning electron microscopy and transmission electron microscopy techniques are used to determine uniformity and defectivity of the GaN. Our results show that aforementioned groove structures along with optimized MOCVD growth conditions can be used to achieve controlled local epitaxy of wurtzite phase GaN on on-axis Si(100) substrates. [reprint (PDF)]
 
1.  High-power, continuous-operation intersubband laser for wavelengths greater than 10 micron
S. Slivken, A. Evans, W. Zhang and M. Razeghi
Applied Physics Letters, Vol. 90, No. 15, p. 151115-1-- April 9, 2007 ...[Visit Journal]
In this letter, high-power continuous-wave emission (>100 mW) and high temperature operation (358 K) at a wavelength of 10.6 µm is demonstrated using an individual diode laser. This wavelength is advantageous for many medium-power applications previously reserved for the carbon dioxide laser. Improved performance was accomplished using industry-standard InP-based materials and by careful attention to design, growth, and fabrication limitations specific to long-wave infrared semiconductor lasers. The main problem areas are explored with regard to laser performance, and general steps are outlined to minimize their impact. [reprint (PDF)]
 
1.  Investigation of surface leakage reduction for small pitch shortwave infrared photodetectors
Arash Dehzangi, Quentin Durlin, Donghai Wu, Ryan McClintock, Manijeh Razeghi
Semiconductor Science and Technology, 34(6), 06LT01-- May 25, 2019 ...[Visit Journal]
Different passivation techniques are investigated for reducing leakage current in small pixel (down to 9 μm) heterostructure photodetectors designed for the short-wavelength infrared range. Process evaluation test chips were fabricated using the same process as for focal plane arrays. Arrays of small photodetectors were electrically characterized under dark conditions from 150 K to room temperature. In order to evaluate the leakage current, we studied the relation between the inverse of dynamic resistance at −20 mV and zero bias and perimeter over area P/A ratio as the pixel size is scaled down. At 150 K, leakage current arising from the perimeter dominates while bulk leakage dominates at room temperature. We find that in shortwave devices directly underfilling hybridized devices with a thermoset epoxy resin without first doing any additional passivation/protection after etching gives the lowest leakage with a surface resistance of 4.2 × 109 and 8.9 × 103 Ω· cm−1 at 150 and 300 K, for −20 mV of bias voltage, respectively. [reprint (PDF)]
 
1.  High-power, room-temperature and continuous-wave operation of distributed-feedback quantum-cascade lasers at λ = 4.8 µm
J.S. Yu, S. Slivken, S.R. Darvish, A. Evans, B. Gokden and M. Razeghi
Virtual Journal of Nanoscale Science and Technology 12 (5)-- August 1, 2005 ...[Visit Journal][reprint (PDF)]
 
1.  Gas Source Molecular Beam Epitaxy Growth and Characterization of Ga0.51In0.49P/InxGa1-xAs/GaAs Modulation-doped Field-effect Transistor Structures
C. Besikci, Y. Civan, S. Ozder, O. Sen, C. Jelen, S. Slivken, and M. Razeghi
Semiconductor Science Technology 12-- January 1, 1997 ...[Visit Journal]
Lattice-matched Ga0.51In0.49P/GaAs and strained Ga0.51In0.49P/InxGa1−xAs/GaAs (0.1 ≤ x ≤ 0.25) modulation-doped field-effect transistor structures were grown by gas source molecular beam epitaxy by using Si as dopant. Detailed electrical characterization results are presented. The Ga0.5In0.49P/In0.25Ga0.75As/GaAs sample yielded dark two-dimensional electron gas densities of 3.75 x 1012 cm-2 (300 K) and 2.3 x 1012 cm-2 (77 K) which are comparable to the highest sheet electron densities reported in AlGaAs/InGaAs/GaAs and InAlAs/InGaAs/InP modulation-doped heterostructures. Persistent photoconductivity was observed in the strained samples only. A 0.797 eV deep level has been detected in the undoped GaInP layers of the structures. Another level, with DLTS peak height dependent on the filling pulse width, has been detected at the interface of the strained samples. Based on the DLTS and Hall effect measurement results, this level, which seems to be the origin of persistent photoconductivity, can be attributed to the strain relaxation related defects. [reprint (PDF)]
 

Page 10 of 22:  Prev << 1 2 3 4 5 6 7 8 9 10  11 12 13 14 15 16 17 18 19 20 21 22  >> Next  (526 Items)