Page 10 of 12:  Prev << 1 2 3 4 5 6 7 8 9 10  11 12  >> Next  (278 Items)

1.  Optimized structure for InGaAsP/GaAs 808nm high power lasers
H. Yi, J. Diaz, L.J. Wang, I. Eliashevich, S. Kim, R. Williams, M. Erdtmann, X. He, E. Kolev and M. Razeghi
Applied Physics Letters 66 (24)-- June 12, 1995 ...[Visit Journal]
The optimized structure for the InGaAsP/GaAs quaternary material lasers (λ=0.808 μm) is investigated for the most efficient high‐power operation through an experiment and theoretical study. A comparative study is performed of threshold current density Jth and differential efficiency ηd dependence on cavity length (L) for two different laser structures with different active layer thickness (150 and 300 Å) as well as for laser structures with different multiple quantum well structures. A theoretical model with a more accurate formulation for minority leakage phenomenon provides explanation for the experimental results and sets general optimization rules for other lasers with similar restrictions on the band gap and refractive index difference between the active layer and the cladding layers. [reprint (PDF)]
 
1.  Gas Source Molecular Beam Epitaxy Growth and Characterization of Ga0.51In0.49P/InxGa1-xAs/GaAs Modulation-doped Field-effect Transistor Structures
C. Besikci, Y. Civan, S. Ozder, O. Sen, C. Jelen, S. Slivken, and M. Razeghi
Semiconductor Science Technology 12-- January 1, 1997 ...[Visit Journal]
Lattice-matched Ga0.51In0.49P/GaAs and strained Ga0.51In0.49P/InxGa1−xAs/GaAs (0.1 ≤ x ≤ 0.25) modulation-doped field-effect transistor structures were grown by gas source molecular beam epitaxy by using Si as dopant. Detailed electrical characterization results are presented. The Ga0.5In0.49P/In0.25Ga0.75As/GaAs sample yielded dark two-dimensional electron gas densities of 3.75 x 1012 cm-2 (300 K) and 2.3 x 1012 cm-2 (77 K) which are comparable to the highest sheet electron densities reported in AlGaAs/InGaAs/GaAs and InAlAs/InGaAs/InP modulation-doped heterostructures. Persistent photoconductivity was observed in the strained samples only. A 0.797 eV deep level has been detected in the undoped GaInP layers of the structures. Another level, with DLTS peak height dependent on the filling pulse width, has been detected at the interface of the strained samples. Based on the DLTS and Hall effect measurement results, this level, which seems to be the origin of persistent photoconductivity, can be attributed to the strain relaxation related defects. [reprint (PDF)]
 
1.  Ammonium Sulfide Passivation of Type-II InAs/GaSb Superlattice Photodiodes
A. Gin, Y. Wei, A. Hood, A. Bajowala, V. Yazdanpanah, M. Razeghi and M.Z. Tidrow
Applied Physics Letters, 84 (12)-- March 22, 2004 ...[Visit Journal]
We report on the surface passivation of Type-II InAs/GaSb superlattice photodetectors using various ammonium sulfide solutions. Compared to unpassivated detectors, zero-bias resistance of treated 400 µm×400 µm devices with 8 µm cutoff wavelength was improved by over an order of magnitude to ~20 kΩ at 80 K. Reverse-bias dark current density was reduced by approximately two orders of magnitude to less than 10 mA/cm2 at –2 V. Dark current modeling, which takes into account trap-assisted tunneling, indicates greater than 70 times reduction in bulk trap density for passivated detectors. [reprint (PDF)]
 
1.  Interface-induced Suppression of the Auger Recombination in Type-II InAs/GaSb Superlattices
H. Mohseni, V.I. Litvinov and M. Razeghi
Physical Review B 58 (23)-- December 15, 1998 ...[Visit Journal]
The temperature dependence of the nonequilibrium carriers lifetime has been deduced from the measurement of the photocurrent response in InAs/GaSb superlattices. Based on the temperature dependence of the responsivity and modeling of the transport parameters we have found that the carrier lifetime weakly depends on temperature in the high-temperature region. This indicates the temperature dependence of the Auger recombination rate with no threshold that differs it from that in the bulk material and can be attributed to the interface-induced suppression of the Auger recombination in thin quantum wells. [reprint (PDF)]
 
1.  Self-assembled semiconductor quantum dot infrared photodetector operating at room temperature and focal plane array
Ho-Chul Lim; Stanley Tsao; Wei Zhang; Manijen Razeghi
Proc. SPIE 6542, Infrared Technology and Applications XXXIII, 65420R (May 14, 2007)-- May 14, 2007 ...[Visit Journal]
Self-assembled semiconductor quantum dots have attracted much attention because of their novel properties and thus possible practical applications including the lasers, detectors and modulators. Especially the photodetectors which have quantum dots in their active region have been developed and show promising performances such as high operation temperature due to three dimensional confinement of the carriers and normal incidence in contrast to the case of quantum well detectors which require special optical coupling schemes. Here we report our recent results for mid-wavelength infrared quantum dot infrared photodetector grown by low-pressure metalorganic chemical vapor deposition. The material system we have investigated consists of 25 period self-assembled InAs quantum dot layers on InAlAs barriers, which are lattice-matched to InP substrates, covered with InGaAs quantum well layers and InAlAs barriers. This active region was sandwiched by highly doped InP contact layers. The device operates at 4.1 μm with a peak detectivity of 2.8×1011 cm·Hz1/2/W at 120 K and a quantum efficiency of 35 %. The photoresponse can be observed even at room temperature resulting in a peak detectivity of 6×107 cm·Hz1/2/W. A 320×256 focal plane array has been fabricated in this kind of device. Its performance will also be discussed here. [reprint (PDF)]
 
1.  A Crystallographic Model of (00*1) Aluminum Nitride Epitaxial Thin Film Growth on (00*1) Sapphire Substrate
C.J. Sun, P. Kung, A. Saxler, H. Ohsato, M. Razeghi, and K. Haritos
Journal of Applied Physics 75 (8)-- April 15, 1994 ...[Visit Journal]
A direct comparison of the physical properties of GaN thin films is made as a function of the choice of substrate orientations. Gallium nitride single crystals were grown on (0001) and (011-bar 2) sapphire substrates by metalorganic chemical vapor deposition. Better crystallinity with fine ridgelike facets is obtained on the (011-bar 2) sapphire. Also lower carrier concentration and higher mobilities indicate both lower nitrogen vacancies and less oxygen incorporation on the (011-bar 2) sapphire. The results of this study show better physical properties of GaN thin films achieved on (011-bar 2) sapphire. [reprint (PDF)]
 
1.  Reliability of strain-balanced Ga0.331In0.669As/Al0.659In0.341As/InP quantum-cascade lasers under continuous-wave room-temperature operation
A. Evans and M. Razeghi
Applied Physics Letters, 88 (26)-- June 26, 2006 ...[Visit Journal]
Constant current aging is reported for two randomly selected high-reflectivity-coated QCLs with an output power over 100 mW. QCLs are tested under continuous-wave operation at a heat sink temperature of 298 K(25 °C) corresponding to an internal temperature of 378 K (105 °C). Over 4000 h of continuous testing is reported without any decrease in output power. [reprint (PDF)]
 
1.  Widely tuned room temperature terahertz quantum cascade laser sources based on difference-frequency generation
Q.Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai and M. Razeghi
Applied Physics Letters, Vol. 101, No. 25, p. 251121-1-- December 17, 2012 ...[Visit Journal]
We demonstrate room temperature THz quantum cascade laser sources with a broad spectral coverage based on intracavity difference-frequency generation. Two mid-infrared active cores based on the single-phonon resonance scheme are designed with a THz nonlinearity specially optimized at the high operating fields that correspond to the highest mid-infrared output powers. A Čerenkov phase-matching scheme along with integrated dual-period distributed feedback gratings are used for efficient THz extraction and spectral purification. Single mode emissions from 1.0 to 4.6 THz with a side-mode suppression ratio and output power up to 40 dB and 32 μW are obtained, respectively. [reprint (PDF)]
 
1.  High quality AlN and GaN epilayers grown on (00*1) sapphire, (100) and (111) silicon substrates
P. Kung, A. Saxler, X. Zhang, D. Walker, T.C. Wang, I. Ferguson, and M. Razeghi
Applied Physics Letters 66 (22)-- May 29, 1995 ...[Visit Journal]
The growth of high quality AlN and GaN thin films on basal plane sapphire, (100), and (111) silicon substrates is reported using low pressure metalorganic chemical vapor deposition. X-ray rocking curve linewidths of about 100 and 30 arcsec were obtained for AlN and GaN on sapphire, respectively. Room‐temperature optical transmission and photoluminescence (of GaN) measurements confirmed the high quality of the films. The luminescence at 300 and 77 K of the GaN films grown on basal plane sapphire, (100), and (111) silicon was compared. [reprint (PDF)]
 
1.  Growth of In1-xTlxSb, a New Infrared Material, by Low-Pressure Metalorganic Chemical Vapor Deposition
Y.H. Choi, R. Sudharsanan, C, Besikci, and M. Razeghi
Applied Physics Letters 63 (3)-- July 19, 1993 ...[Visit Journal]
We report the growth of In1-xTlxSb, a new III-V alloy for long-wavelength infrared detector applications, by low-pressure metalorganic chemical vapor deposition. In1-xTlxSb with good surface morphology was obtained on both GaAs and InSb substrates at a growth temperature of 455 °C. X-ray diffraction measurements showed resolved peaks of In1-xTlxSb and InSb films. Infrared absorption spectrum of In1-xTlxSb showed a shift toward lower energies compared to InSb spectrum. Hall mobility data on In1-xTlxSb/InSb/GaAs structure showed enhanced mobility at low temperatures compared to InSb/GaAs structure. [reprint (PDF)]
 
1.  Optoelectronic Devices Based on III-V Compound Semiconductors Which Have Made a Major Scientific and Technological Impact in the Past 20 Years
M. Razeghi
IEEE Journal of Selected Topics in Quantum Electronics 6 (6), pp.1344 - 1354 -- November 1, 2000 ...[Visit Journal]
This paper reviews some of our pioneering contributions to the field of III–V compound semiconductor materials and low-dimensional optoelectronic devices. These contributions span from the ultraviolet (200 nm) up to the far-infrared (25 μm) portion of the electromagnetic spectrum and have had a major scientific and technological impact on the semiconductor world in the past 20 years. [reprint (PDF)]
 
1.  Growth and characterization of InAs/GaSb Type-II superlattices for long-wavelength infrared detectors
H. Mohseni, E. Michel, M. Razeghi, W. Mitchel, and G. Brown
SPIE Conference, San Jose, CA, -- January 28, 1998 ...[Visit Journal]
We report the molecular beam epitaxial growth and characterization of InAs/GaSb superlattices grown on semi- insulating GaAs substrate for long wavelength IR detectors. Photoconductive detectors fabricated from the superlattices showed 80% cut-off at 11.6 μm and peak responsivity of 6.5 V/W with Johnson noise limited detectivity of 2.36 x 109 cm·Hz½/W at 10.7 μm at 78 K. The responsivity decreases at higher temperatures with a T-2 behavior rather than exponential decay, and at room temperature the responsivity is about 660 mV/W at 11 μm. Lower Auger recombination rate in this system provides comparable detectivity to the best HgCdTe detectors at 300K. Higher uniformity over large areas, simpler growth and the possibility of having read-out circuits in the same GaAs chip are the advantages of this system over HgCdTe detectors for near room temperature operation. [reprint (PDF)]
 
1.  

-- November 30, 1999
 
1.  Avalanche multiplication in AlGaN based solar-blind photodetectors
R. McClintock, A. Yasan, K. Minder, P. Kung, and M. Razeghi
Applied Physics Letters, 87 (24)-- December 12, 2005 ...[Visit Journal]
Avalanche multiplication has been observed in solar-blind AlGaN-based p-i-n photodiodes. Upon ultraviolet illumination, the optical gain shows a soft breakdown starting at relatively low electric fields, eventually saturating without showing a Geiger mode breakdown. The devices achieve a maximum optical gain of 700 at a reverse bias of 60 V. By modeling the device, it is found that this corresponds to an electric-field strength of 1.7 MV/cm. [reprint (PDF)]
 
1.  High-Power (~9 μm) Quantum Cascade Lasers
S. Slivken, Z. Huang, A. Evans, and M. Razeghi
Virtual Journal of Nanoscale Science and Technology 5 (22)-- June 3, 2002 ...[Visit Journal][reprint (PDF)]
 
1.  Stable single mode terahertz semiconductor sources at room temperature
M. Razeghi
2011 International Semiconductor Device Research Symposium, ISDRS [6135180] (2011).-- December 7, 2011 ...[Visit Journal]
Terahertz (THz) range is an area of the electromagnetic spectra which has lots of applications but it suffers from the lack of simple working devices which can emit THz radiation, such as the high performance mid-infrared (mid-IR) quantum cascade lasers (QCLs) based on InP technology. The applications for the THz can be found in astronomy and space research, biology imaging, security, industrial inspection, etc. Unlike THz QCLs based on the fundamental oscillators, which are limited to cryogenic operations, semiconductor THz sources based on nonlinear effects of mid-IR QCLs do not suffer from operating temperature limitations, because mid-IR QCLs can operate well above room temperature. THz sources based on difference frequency generation (DFG) utilize nonlinear properties of asymmetric quantum structures, such as QCL structures. [reprint (PDF)]
 
1.  Effect of the spin split-off band on optical absorption in p-type Ga1 xInxAsyP1-y quantum-well infrared detectors
J.R. Hoff, M. Razeghi and G. Brown
Physical Review B 54 (15)-- October 15, 1996 ...[Visit Journal]
Experimental investigations of p-type Ga1-xInxAsyP1-y quantum-well intersubband photodetectors (QWIP’s) led to the discovery of unique features in photoresponse spectra of these devices. In particular, the strong 2–5 μm photoresponse of these QWIP’s was not anticipated based on previous experimental and theoretical results for p-type GaAs/AlxGa1-xAs QWIP’s. Our theoretical modeling of p-type QWIP’s based on the Ga1-xInxAsyP1-y system revealed that the intense short-wavelength photoresponse was due to a much stronger coupling to the spin-orbit split-off components in the continuum than occurs for GaAs/AlxGa1-xAs QWIP’s. Due to the strong influence of the spin split-off band, an eight-band Kane Hamiltonian was required to accurately model the measured photoresponse spectra. This theoretical model is first applied to a standard p-type GaAs/Al0.3Ga0.7As QWIP, and then to a series of GaAs/Ga0.51In0.49P, GaAs/Ga0.62In0.38As0.22P0.78, Ga0.79In0.21As0.59P0.41/Ga0.51In0.49P, and Ga0.79In0.21As0.59P0.41/Ga0.62In0.38As0.22P0.78 QWIP’s. Through this analysis, the insignificance of spin split-off absorption in GaAs/AlxGa1-xAs QWIP’s is verified, as is the dual role of light-hole extended-state and spin split-off hole-extended-state absorption on the spectral shape of Ga1-xInxAsyP1-y QWIP’s. [reprint (PDF)]
 
1.  Anomalous Hall Effect in InSb Layers Grown by MOCVD on GaAs Substrates
C. Besikci, Y.H. Choi, R. Sudharsanan, and M. Razeghi
Journal of Applied Physics 73 (10)-- May 15, 1993 ...[Visit Journal]
InSb epitaxial layers have been grown on GaAs substrates by low‐pressure metalorganic chemical vapor deposition. A 3.15 μm thick film yielded an x‐ray full width at half maximum of 171 arcsec. A Hall mobility of 76  200 cm²/V· s at 240 K and a full width at half maximum of 174 arcsec have been measured for a 4.85 μm thick epilayer. Measured Hall data have shown anomalous behavior. A decrease in Hall mobility with decreasing temperature has been observed and room‐temperature Hall mobility has increased with thickness. In order to explain the anomalous Hall data, and the thickness dependence of the measured parameters, the Hall coefficient and Hall mobility have been simulated using a three‐layer model including a surface layer, a bulklike layer, and an interface layer with a high density of defects. Theoretical analysis has shown that anomalous behavior can be attributed to donor-like defects caused by the large lattice mismatch and to a surface layer which dominates the transport in the material at low temperatures.   [reprint (PDF)]
 
1.  Broad area photonic crystal distributed feedback quantum cascade lasers emitting 34 W at λ ~ 4.36 μm
B. Gokden, Y. Bai, N. Bandyopadhyay, S. Slivken and M. Razeghi
Applied Physics Letters, Vol. 97, No. 13, p. 131112-1-- September 27, 2010 ...[Visit Journal]
We demonstrate room temperature, high power, single mode, and diffraction limited operation of a two dimensional photonic crystal distributed feedback quantum cascade laser emitting at 4.36 μm. Total peak power up to 34 W is observed from a 3 mm long laser with 400 μm cavity width at room temperature. Far-field profiles have M2 figure of merit as low as 2.5. This device represents a significant step toward realization of spatially and spectrally pure broad area high power quantum cascade lasers. [reprint (PDF)]
 
1.  Influence of Residual Impurity Background on the Non-radiative Recombination Processes in High Purity InAs/GaSb superlattice Photodiodes
E.C.F. da Silva, D. Hoffman, A. Hood, B. Nguyen, P.Y. Delaunay and M. Razeghi
Applied Physics Letters, 89 (24)-- December 11, 2006 ...[Visit Journal]
The influence of the impurity background on the recombination processes in type-II InAs/GaSb superlattice photodiodes with a cutoff wavelength of approximately 4.8 μm was investigated by electroluminescence measurements. Using an iterative fitting procedure based on the dependence of the quantum efficiency of the electroluminescence on the injection current, the Auger and Shockley-Read-Hall lifetimes were determined [reprint (PDF)]
 
1.  Responsivity and Noise Performance of InGaAs/InP Quantum Well Infrared Photodetectors
C. Jelen, S. Slivken, T. David, G. Brown, and M. Razeghi
SPIE Conference, San Jose, CA, -- January 28, 1998 ...[Visit Journal]
Dark current nose measurements were carried out between 10 and 104 Hz at T = 80K on two InGaAs/InP quantum well IR photo detectors (QWIPs) designed for 8 μm IR detection. Using the measured noise data, we have calculated the thermal generation rate, bias-dependent gain, electron trapping probability, and electron diffusion length. The calculated thermal generation rate is similar to AlGaAs/GaAs QWIPs with similar peak wavelengths, but the gain is 50X larger, indicating improved transport and carrier lifetime are obtained in the binary InP barriers. As a result, a large responsivity of 7.5 A/W at 5V bias and detectivity of 5 X 1011 cm·Hz½/W at 1.2 V bias were measured for the InGaAs/InP QWIPs at T = 80K. [reprint (PDF)]
 
1.  Type II superlattice infrared detectors and focal plane arrays
Vaidya Nathan; Manijeh Razeghi
Proc. SPIE 6542, Infrared Technology and Applications XXXIII, 654209 (May 14, 2007)-- May 14, 2007 ...[Visit Journal]
Type II superlattce photodetectors have recently experienced significant improvements in both theoretical structure design and experimental realization. Empirical Tight Binding Method is initiated and developed for Type II superlattice. Growth characteristics such as group V segregation and incorporation phenomena are taken into account in the model and shown higher precision. A new Type II structure, called M-structure, is introduced and theoretically demonstrated high R0A, high quantum efficiency. Device design is optimized to improve the performance. As a result, 55% quantum efficiency and 10 Ohm·cm² R0A are achieved for an 11.7 μm cut-off photodetector at 77K. FPA imaging at longwavelength is demonstrated with a capability of imaging up to 171K. At 81K, the noise equivalent temperature difference presented a peak at 0.33K. [reprint (PDF)]
 
1.  AlGaN-based deep UV light emitting diodes with peak emission below 255 nm
A. Yasan, R. McClintock, K. Mayes, P. Kung, and M. Razeghi
SPIE Conference, Jose, CA, Vol. 5732, pp. 197-- January 22, 2005 ...[Visit Journal]
We report on the growth and fabrication of AlGaN-based deep ultraviolet light-emitting diodes (LEDs) with peak emission of below 255 nm. In order to achieve such short wavelength UV LEDs, the Al mole fractions in the device layers should be greater than ~60%. This introdues serious challenges on the growth and doping of AlxGa1-xN epilayers. However, with the aid of a high-quality AlN template layer and refinement of the growth conditions we have been able to demonstrate UV LEDs emitting below 255 nm. [reprint (PDF)]
 
1.  Improved performance of quantum cascade lasers via manufacturable quality epitaxial side down mounting process utilizing aluminum nitride heatsinks
A. Tsekoun, R. Go, M. Pushkarsky, M. Razeghi, C.K.N. Patel
SPIE Conference, San Jose, CA, Vol. 6127, pp. 612702-- January 23, 2006 ...[Visit Journal]
We report substantially improved performance of high power quantum cascade lasers by utilizing epi-side down mounting that provides superior heat dissipation properties. We have obtained CW power output of 450 mW at 20°C from mid-IR QCLs. The improved thermal management achieved with epi-side down mounting has also permitted us to carry out initial lifetime tests on the mid-IR QCLs. No degradation of power output is seen even after over 300 hours of CW operation at 25°C with power output in excess of 300 mW. We believe these improvements should permit incorporation of mid-IR QCLs in reliable instrumentation. [reprint (PDF)]
 
1.  Development of Quantum Cascade Lasers for High Peak Output Power and Low Threshold Current Density
S. Slivken and M. Razeghi
Solid State Electronics 46-- January 1, 2002 ...[Visit Journal]
Design and material optimization are used to both decrease the threshold current density and increase the output power for quantum cascade lasers. Waveguides are designed to try and minimize free-carrier and surface-plasmon absorption. Excellent material characterization is also presented, showing excellent control over layer thickness, interface quality, and doping level. Experiments are done to both optimize the injector doping level and to maximize the output power from a single aperture. At 300 K, a threshold current density as low as 1.8 kA/cm² is reported, along with peak powers of approximately 2.5 W. Strain-balanced lasers are also demonstrated at λnot, vert, similar5 μm, exhibiting threshold current densities<300 A/cm² at 80 K. These values represent the state-of-the-art for mid-infrared lasers with λ>4 μm [reprint (PDF)]
 

Page 10 of 12:  Prev << 1 2 3 4 5 6 7 8 9 10  11 12  >> Next  (278 Items)