Page 1 of 10:  1  2 3 4 5 6 7 8 9 10  >> Next  (242 Items)

149.  Background–limited long wavelength infrared InAs/InAsSb type-II superlattice-based photodetectors operating at 110 K
Abbas Haddadi, Arash Dehzangi, Sourav Adhikary, Romain Chevallier, and Manijeh Razeghi
APL Materials 5, 035502 (2016)-- February 13, 2017 ...[Visit Journal]
We report the demonstration of high-performance long-wavelength infrared (LWIR) nBn photodetectors based on InAs/InAsSb type-II superlattices. A new saw-tooth superlattice design was used to implement the electron barrier of the photodetectors. The device exhibited a cut-off wavelength of ∼10 μm at 77 K. The photodetector exhibited a peak responsivity of 2.65 A/W, corresponding to a quantum efficiency of 43%. With an R × A of 664 Ω·cm² and a dark current density of 8 × 10−5 A/cm², under −80 mV bias voltage at 77 K, the photodetector exhibited a specific detectivity of 4.72 × 1011 Jones and a background–limited operating temperature of 110 K. [reprint (PDF)]
 
131.  Extended short-wavelength infrared nBn photodetectors based on type-II InAs/AlSb/GaSb superlattices with an AlAsSb/GaSb superlattice barrier
A. Haddadi, R. Chevallier, A. Dehzangi, and M. Razeghi
Applied Physics Letters 110, 101104 (2017)-- March 8, 2017 ...[Visit Journal]
Extended short-wavelength infrared nBn photodetectors based on type-II InAs/AlSb/GaSb superlattices on GaSb substrate have been demonstrated. An AlAsSb/GaSb H-structure superlattice design was used as the large-bandgap electron-barrier in these photodetectors. The photodetector is designed to have a 100% cut-off wavelength of ∼2.8 μm at 300 K. The photodetector exhibited a room-temperature (300 K) peak responsivity of 0.65 A/W at 1.9 μm, corresponding to a quantum efficiency of 41% at zero bias under front-side illumination, without any anti-reflection coating. With an R × A of 78 Ω·cm² and a dark current density of 8 × 10−3 A/cm² under −400 mV applied bias at 300 K, the nBn photodetector exhibited a specific detectivity of 1.51 × 1010 Jones. At 150 K, the photodetector exhibited a dark current density of 9.5 × 10−9 A/cm² and a quantum efficiency of 50%, resulting in a detectivity of 1.12 × 1013 Jones. [reprint (PDF)]
 
107.  Impact of scaling base thickness on the performance of heterojunction phototransistors
Arash Dehzangi, Abbas Haddadi, Sourav Adhikary, and Manijeh Razeghi
Nanotechnology 28, 10LT01 (2017)-- February 2, 2017 ...[Visit Journal]
In this letter we report the effect of vertical scaling on the optical and electrical performance of mid-wavelength infrared heterojunction phototransistors based on type-II InAs/GaSb/AlSb superlattices. The performance of devices with different base thickness was compared as the base was scaled from 60 down to 40 nm. The overall optical performance shows enhancement in responsively, optical gain, and specific detectivity upon scaling the base width. The saturated responsivity for devices with 40 nm bases reaches 8,845 and 9,528 A/W at 77 and 150 K, respectively, which is almost five times greater than devices with 60 nm bases. The saturated optical gain for devices with 40 nm bases is measured as 2,760 at 77 K and 3,081 at 150 K. The devices with 40 nm bases also exhibit remarkable enhancement in saturated current gain, with 17,690 at 77 K, and 19,050 at 150 K. [reprint (PDF)]
 
73.  A lifetime of contributions to the world of semiconductors using the Czochralski invention
M. Razeghi
Vacuum (2017)-- February 8, 2017 ...[Visit Journal]
Over the course of my career, I have made numerous contributions related to semiconductor crystal growth and high performance optoelectronics over a vast region of the electromagnetic spectrum (ultraviolet to terahertz). In 2016 this cumulated in my receiving the Jan Czochralski Gold Medal award from the European Materials Research Society. This article is designed to provide a historical perspective and general overview of these scientific achievements, on the occasion of being honored by this award. These achievements would not have been possible without high quality crystalline substrates, and this article is written in honor of Jan Czochralski on the 100th anniversary of his important discovery. [reprint (PDF)]
 
71.  Direct growth of thick AlN layers on nanopatterned Si substrates by cantilever epitaxy
Ilkay Demir, Yoann Robin, Ryan McClintock, Sezai Elagoz, Konstantinos Zekentes, and Manijeh Razeghi
Phys. Status Solidi A, 1–6 (2016)-- September 30, 2016 ...[Visit Journal]
AlN layers have been grown on 200 nm period of nanopatterned Si (111) substrates by cantilever epitaxy and compared with AlN layers grown by maskless lateral epitaxial overgrowth (LEO) on micropatterned Si (111) substrates. The material quality of 5–10 µm thick AlN grown by LEO is comparable to that of much thinner layers (2 µm) grown by cantilever epitaxy on the nanopatterned substrates. Indeed, the latter exhibited root mean square (RMS) roughness of 0.65 nm and X-ray diffraction full width at half-maximum (FWHM) of 710 arcsec along the (0002) reflection and 930 arcsec along the (10̅15) reflection. The corresponding room temperature photoluminescence spectra was dominated by a sharp band edge peak. Back emission ultra violet light emitting diodes (UV LEDs) were fabricated by flip chip bonding to patterned AlN heat sinks followed by complete Si (111) substrate removal demonstrating a peak pulsed power of ∼0.7 mW at 344 nm peak emission wavelength. The demonstrated UV LEDs were fabricated on a cost effective epitaxial structure grown on the nanopatterned Si substrate with a total thickness of 3.3 µm [reprint (PDF)]
 
37.  Mid-wavelength infrared heterojunction phototransistors based on type-II InAs/AlSb/GaSb superlattices
A. Haddadi, S. Adhikary, A. Dehzangi, and M. Razeghi
Applied Physics Letters 109, 021107 (2016)-- July 12, 2016 ...[Visit Journal]
A mid-wavelength infrared heterojunction phototransistor based on type-II InAs/AlSb/GaSb superlattices on GaSb substrate has been demonstrated. Near a wavelength of 4 μm saturated optical gains of 668 and 639 at 77 and 150 K, respectively, are demonstrated over a wide dynamic range. At 150 K, the unity optical gain collector dark current density and DC current gain are 1 × 10−3 A/cm² and 3710, respectively. This demonstrates the potential for use in high-speed applications. In addition, the phototransistor exhibits a specific detectivity value that is four times higher compared with a state-of-the-art type-II superlattice-based photodiode with a similar cut-off wavelength at 150 K. [reprint (PDF)]
 
32.  Direct growth of thick AlN layers on nanopatterned Si substrates by cantilever epitaxy
Ilkay Demir, Yoann Robin, Ryan McClintock, Sezai Elagoz, Konstantinos Zekentes, and Manijeh Razeghi
Phys. Status Solidi-- April 4, 2017 ...[Visit Journal]
The growth of thick, high quality, and low stress AlN films on Si substrates is highly desired for a number of applications like the development of micro and nano electromechanical system (MEMS and NEMS) technologies [1] and particularly for fabricating AlGaNbased UV LEDs [2–5]. UV LEDs are attractive as they are applied in many areas, such as biomedical instrumentations and dermatology, curing of industrial resins and inks, air purification, water sterilization, and many others [2, 3]. UV LEDs have been generally fabricated on AlN, GaN, Al2O3, or SiC substrates because of better lattice mismatching to AlGaN material systems. [reprint (PDF)]
 
31.  Monolithically, widely tunable quantum cascade lasers based on a heterogeneous active region design
Wenjia Zhou, Neelanjan Bandyopadhyay, Donghai Wu, Ryan McClintock & Manijeh Razeghi
Nature Scientific Reports 6, Article number: 25213 -- June 8, 2016 ...[Visit Journal]
Quantum cascade lasers (QCLs) have become important laser sources for accessing the mid-infrared (mid-IR) spectral range, achieving watt-level continuous wave operation in a compact package at room temperature. However, up to now, wavelength tuning, which is desirable for most applications, has relied on external cavity feedback or exhibited a limited monolithic tuning range. Here we demonstrate a widely tunable QCL source over the 6.2 to 9.1 μm wavelength range with a single emitting aperture by integrating an eight-laser sampled grating distributed feedback laser array with an on-chip beam combiner. The laser gain medium is based on a five-core heterogeneous QCL wafer. A compact tunable laser system was built to drive the individual lasers within the array and produce any desired wavelength within the available spectral range. A rapid, broadband spectral measurement (520 cm−1) of methane using the tunable laser source shows excellent agreement to a measurement made using a standard low-speed infrared spectrometer. This monolithic, widely tunable laser technology is compact, with no moving parts, and will open new opportunities for MIR spectroscopy and chemical sensing. [reprint (PDF)]
 
30.  High efficiency quantum cascade laser frequency comb
Quanyong Lu, Donghai Wu, Steven Slivken & Manijeh Razeghi
Scientific Reports 7, Article number: 43806-- March 6, 2017 ...[Visit Journal]
An efficient mid-infrared frequency comb source is of great interest to high speed, high resolution spectroscopy and metrology. Here we demonstrate a mid-IR quantum cascade laser frequency comb with a high power output and narrow beatnote linewidth at room temperature. The active region was designed with a strong-coupling between the injector and the upper lasing level for high internal quantum efficiency and a broadband gain. The group velocity dispersion was engineered for efficient, broadband mode-locking via four wave mixing. The comb device exhibits a narrow intermode beatnote linewidth of 50.5 Hz and a maximum wall-plug efficiency of 6.5% covering a spectral coverage of 110 cm−1 at λ ~ 8 μm. The efficiency is improved by a factor of 6 compared with previous demonstrations. The high power efficiency and narrow beatnote linewidth will greatly expand the applications of quantum cascade laser frequency combs including high-precision remote sensing and spectroscopy. [reprint (PDF)]
 
26.  High-performance short-wavelength infrared photodetectors based on type-II InAs/InAs1-xSbx/AlAs1-xSbx superlattices
M. Razeghi, A. Haddadi, X. V. Suo, S. Adhikary, P. Dianat, R. Chevallier, A. M. Hoang, A. Dehzangi
Proc. SPIE 9819, Infrared Technology and Applications XLII, 98190A -- May 20, 2016 ...[Visit Journal]
We present a high-performance short-wavelength infrared n-i-p photodiode, whose structure is based on type-II superlattices with InAs/InAs1-xSbx/AlAs1-xSbx on GaSb substrate. At room temperature (300K) with front-side illumination, the device shows the peak responsivity of 0.47 A/W at 1.6mm, corresponding to 37% quantum efficiency at zero bias. At 300K, the device has a 50% cut-off wavelength of ~1.8mm. For −50mV applied bias at 300 K the photodetector has dark current density of 9.6x10-5 A/cm² and RxA of 285 Ω•cm², and it revealed a detectivity of 6.45x1010 cm•Hz½/W. Dark current density reached to 1.3x10-8 A/cm² at 200 K, with 36% quantum efficiency which leads to the detectivity value of 5.66x1012 cm•Hz½/W. [reprint (PDF)]
 
25.  High performance bias-selectable three-color Short-wave/Mid-wave/Long-wave Infrared Photodetectors based on Type-II InAs/GaSb/AlSb superlattices
Anh Minh Hoang, Arash Dehzangi, Sourav Adhikary, & Manijeh Razeghi
Nature Scientific Reports 6, Article number: 24144 (2016)-- April 7, 2016 ...[Visit Journal]
We propose a new approach in device architecture to realize bias-selectable three-color shortwave-midwave-longwave infrared photodetectors based on InAs/GaSb/AlSb type-II superlattices. The effect of conduction band off-set and different doping levels between two absorption layers are employed to control the turn-on voltage for individual channels. The optimization of these parameters leads to a successful separation of operation regimes; we demonstrate experimentally three-color photodiodes without using additional terminal contacts. As the applied bias voltage varies, the photodiodes exhibit sequentially the behavior of three different colors, corresponding to the bandgap of three absorbers. Well defined cut-offs and high quantum efficiency in each channel are achieved. Such all-in-one devices also provide the versatility of working as single or dual-band photodetectors at high operating temperature. With this design, by retaining the simplicity in device fabrication, this demonstration opens the prospect for three-color infrared imaging. [reprint (PDF)]
 
24.  Recent Advances in Room Temperature, High-Power Terahertz Quantum Cascade Laser Sources Based on Difference-Frequency Generation
Quanyong Lu and Manijeh Razeghi
Photonics 2016, 3, 42-- July 7, 2016 ...[Visit Journal]
We present the current status of high-performance, compact, THz sources based on intracavity nonlinear frequency generation in mid-infrared quantum cascade lasers. Significant performance improvements of our THz sources in the power and wall plug efficiency are achieved by systematic optimizing the device’s active region, waveguide, and chip bonding strategy. High THz power up to 1.9 mW and 0.014 mW for pulsed mode and continuous wave operations at room temperature are demonstrated, respectively. Even higher power and efficiency are envisioned based on enhancements in outcoupling efficiency and mid-IR performance. Our compact THz device with high power and wide tuning range is highly suitable for imaging, sensing, spectroscopy, medical diagnosis, and many other applications. [reprint (PDF)]
 
23.  InAs/InAs1-xSbx type-II superlattices for high performance long wavelength infrared detection
M. Razeghi, A. Haddadi, A. M. Hoang, R. Chevallier, S. Adhikary, A. Dehzangi
Proc. SPIE 9819, Infrared Technology and Applications XLII, 981909-- May 20, 2016 ...[Visit Journal]
We report InAs/InAs1-xSbx type-II superlattice base photodetector as high performance long-wavelength infrared nBn device grown on GaSb substrate. The device has 6 μm-thick absorption region, and shows optical performance with a peak responsivity of 4.47 A/W at 7.9 μm, which is corresponding to the quantum efficiency of 54% at a bias voltage of negative 90 mV, where no anti-reflection coating was used for front-side illumination. At 77K, the photodetector’s 50% cut-off wavelength was ~10 μm. The device shows the detectivity of 2.8x1011 cm•Hz½/W at 77 K, where RxA and dark current density were 119 Ω•cm² and 4.4x10-4 A/cm² , respectively, under -90 mV applied bias voltage [reprint (PDF)]
 
22.  Investigations on the substrate dependence of the properties in nominally-undoped β-Ga2O3 thin films grown by PLD
F. H. Teherani ; D. J. Rogers ; V. E. Sandana ; P. Bove ; C. Ton-That ; L. L. C. Lem ; E. Chikoidze ; M. Neumann-Spallart ; Y. Dumont ; T. Huynh ; M. R. Phillips ; P. Chapon ; R. McClintock ; M. Razeghi
Proc. SPIE 10105, Oxide-based Materials and Devices VIII, 101051R (March 23, 2017)-- March 23, 2017 ...[Visit Journal]
Nominally-undoped Ga2O3 layers were deposited on a-, c- and r-plane sapphire substrates using pulsed laser deposition. Conventional x-ray diffraction analysis for films grown on a- and c-plane sapphire showed the layers to be in the β-Ga2O3 phase with preferential orientation of the (-201) axis along the growth direction. Pole figures revealed the film grown on r-plane sapphire to also be in theβ-Ga2O3 phase but with epitaxial offsets of 29.5°, 38.5° and 64° from the growth direction for the (-201) axis. Optical transmission spectroscopy indicated that the bandgap was ~5.2eV, for all the layers and that the transparency was > 80% in the visible wavelength range. Four point collinear resistivity and Van der Pauw based Hall measurements revealed the β-Ga2O3 layer on r-plane sapphire to be 4 orders of magnitude more conducting than layers grown on a- and c-plane sapphire under similar conditions. The absolute values of conductivity, carrier mobility and carrier concentration for the β-Ga2O3 layer on r-sapphire (at 20Ω-1.cm-1, 6 cm2/Vs and 1.7 x 1019 cm-3, respectively) all exceeded values found in the literature for nominally-undoped β-Ga2O3 thin films by at least an order of magnitude. Gas discharge optical emission spectroscopy compositional depth profiling for common shallow donor impurities (Cl, F, Si and Sn) did not indicate any discernable increase in their concentrations compared to background levels in the sapphire substrate. It is proposed that the fundamentally anisotropic conductivity in β-Ga2O3 combined with the epitaxial offset of the (-201) axis observed for the layer grown on r-plane sapphire may explain the much larger carrier concentration, electrical conductivity and mobility compared with layers having the (-201) axis aligned along the growth direction. © (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only. [reprint (PDF)]
 
17.  Demonstration of type-II superlattice MWIR minority carrier unipolar imager for high operation temperature application
Guanxi Chen, Abbas Haddadi, Anh-Minh Hoang, Romain Chevallier, and Manijeh Razeghi
Optics Letters Vol. 40, Iss. 1, pp. 29–32 (2015)-- December 18, 2014 ...[Visit Journal]
An InAs/GaSb type-II superlattice-based mid-wavelength infrared (MWIR) 320×256 unipolar focal plane array (FPA) using pMp architecture exhibited excellent infrared image from 81 to 150 K and ∼98% operability, which illustrated the possibility for high operation temperature application. At 150 K and −50  mV operation bias, the 27 μm pixels exhibited dark current density to be 1.2×10−5  A/cm², with 50% cutoff wavelength of 4.9 μm, quantum efficiency of 67% at peak responsivity (4.6 μm), and specific detectivity of 1.2×1012 Jones. At 90 K and below, the 27 μm pixels exhibited system limited dark current density, which is below 1×10−9  A/cm², and specific detectivity of 1.5×1014 Jones. From 81 to 100 K, the FPA showed ∼11  mK NEDT by using F/2.3 optics and a 9.69 ms integration time. [reprint (PDF)]
 
15.  Room temperature continuous wave, monolithic tunable THz sources based on highly efficient mid-infrared quantum cascade lasers
Quanyong Lu, Donghai Wu, Saumya Sengupta, Steven Slivken, Manijeh Razeghi
Nature Scientific Reports 6, Article number: 23595 (2016)-- March 24, 2016 ...[Visit Journal]
A compact, high power, room temperature continuous wave terahertz source emitting in a wide frequency range (ν ~ 1–5 THz) is of great importance to terahertz system development for applications in spectroscopy, communication, sensing, and imaging. Here, we present a strong-coupled strain-balanced quantum cascade laser design for efficient THz generation based on intracavity difference frequency generation. Room temperature continuous wave emission at 3.41 THz with a side-mode suppression ratio of 30 dB and output power up to 14 μW is achieved with a wall-plug efficiency about one order of magnitude higher than previous demonstrations. With this highly efficient design, continuous wave, single mode THz emissions with a wide frequency tuning range of 2.06–4.35 THz and an output power up to 4.2 μW are demonstrated at room temperature from two monolithic three-section sampled grating distributed feedback-distributed Bragg reflector lasers. [reprint (PDF)]
 
14.  Quantum cascade lasers: from tool to product
M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken
Optics Express Vol. 23, Issue 7, pp. 8462-8475-- March 25, 2015 ...[Visit Journal]
The quantum cascade laser (QCL) is an important laser source in the mid-infrared and terahertz frequency range. The past twenty years have witnessed its tremendous development in power, wall plug efficiency, frequency coverage and tunability, beam quality, as well as various applications based on QCL technology. Nowadays, QCLs can deliver high continuous wave power output up to 5.1 W at room temperature, and cover a wide frequency range from 3 to 300 μm by simply varying the material components. Broadband heterogeneous QCLs with a broad spectral range from 3 to 12 μm, wavelength agile QCLs based on monolithic sampled grating design, and on-chip beam QCL combiner are being developed for the next generation tunable mid-infrared source for spectroscopy and sensing. Terahertz sources based on nonlinear generation in QCLs further extend the accessible wavelength into the terahertz range. Room temperature continuous wave operation, high terahertz power up to 1.9 mW, and wide frequency tunability form 1 to 5 THz makes this type of device suitable for many applications in terahertz spectroscopy, imaging, and communication. [reprint (PDF)]
 
14.  High power continuous operation of a widely tunable quantum cascade laser with an integrated amplifier
S. Slivken, S. Sengupta, and M. Razeghi
Applied Physics Letters 107, 251101 (2015);-- December 21, 2015 ...[Visit Journal]
Wide electrical tuning and high continuous output power is demonstrated from a single mode quantum cascade laser emitting at a wavelength near 4.8 μm. This is achieved in a space efficient manner by integrating an asymmetric sampled grating distributed feedback tunable laser with an optical amplifier. An initial demonstration of high peak power operation in pulsed mode is demonstrated first, with >5 W output over a 270 nm (113 cm−1) spectral range. Refinement of the geometry leads to continuous operation with a single mode spectral coverage of 300 nm (120 cm−1) and a maximum continuous power of 1.25 W. The output beam is shown to be nearly diffraction-limited, even at high amplifier current. [reprint (PDF)]
 
13.  High-performance short-wavelength infrared photodetectors based on type-II InAs/InAs1-xSbx/AlAs1-xSbx superlattices
A. Haddadi, X.V. Suo, S. Adhikary, P. Dianat, R. Chevallier, A.M. Hoang, and M. Razeghi
Applied Physics Letters 107 , 141104 (2015)-- October 5, 2015 ...[Visit Journal]
A high-performance short-wavelength infrared n-i-p photodiode based on InAs/InAs1-xSbx/AlAs1-xSbx type-II superlattices on GaSb substrate has been demonstrated. The device is designed to have a 50% cut-off wavelength of ~1.8μm at 300K. The photodetector exhibited a room-temperature (300 K) peak responsivity of 0.47 A/W at 1.6μm, corresponding to a quantum efficiency of 37% at zero bias under front-side illumination, without any anti-reflection coating. With an R×A of 285 Ω·cm² and a dark current density of 9.6×10-5 A/cm² under −50mV applied bias at 300 K, the photodiode exhibited a specific detectivity of 6.45×1010 cm·Hz½/W. At 200 K, the photodiode exhibited a dark current density of 1.3×10-8 A/cm² and a quantum efficiency of 36%, resulting in a detectivity of 5.66×1012 cm·Hz½/W. [reprint (PDF)]
 
12.  High brightness angled cavity quantum cascade lasers
D. Heydari, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi
Applied Physics Letters 106, 091105 (2015)-- March 6, 2015 ...[Visit Journal]
A quantum cascade laser (QCL) with an output power of 203 W is demonstrated in pulsed mode at 283 K with an angled cavity. The device has a ridge width of 300 μm, a cavity length of 5.8 mm, and a tilt angle of 12°. The back facet is high reflection coated, and the front facet is anti-reflection coated. The emitting wavelength is around 4.8 μm. In distinct contrast to a straight cavity broad area QCL, the lateral far field is single lobed with a divergence angle of only 3°. An ultrahigh brightness value of 156 MW cm²·sr-1 is obtained, which marks the brightest QCL to date. [reprint (PDF)]
 
12.  

-- November 30, 1999
 
11.  Bias-selectable dual-band mid-/long-wavelength infrared photodetectors based on InAs/InAs1−xSbx type-II superlattices
A. Haddadi, R. Chevallier, G. Chen, A. M. Hoang, and M. Razeghi
Applied Physics Letters 106 , 011104 (2015)-- January 8, 2015 ...[Visit Journal]
A high performance bias-selectable mid-/long-wavelength infrared photodetector based on InAs/InAs1−xSbx type-II superlattices on GaSb substrate has been demonstrated. The mid- and long-wavelength channels' 50% cut-off wavelengths were ∼5.1 and ∼9.5 μm at 77 K. The mid-wavelength channel exhibited a quantum efficiency of 45% at 100 mV bias voltage under front-side illumination and without any anti-reflection coating. With a dark current density of 1 × 10−7 A/cm² under 100 mV applied bias, the mid-wavelength channel exhibited a specific detectivity of 8.2 × 1012 cm·Hz½·W-1 at 77 K. The long-wavelength channel exhibited a quantum efficiency of 40%, a dark current density of 5.7 × 10−4 A/cm² under −150 mV applied bias at 77 K, providing a specific detectivity value of 1.64 × 1011 cm·Hz½·W-1. [reprint (PDF)]
 
10.  Breakthroughs Bring THz Spectroscopy, Sensing Closer to Mainstream
MANIJEH RAZEGHI, QUANYONG LU, SANTANU MANNA, DONGHAI WU AND STEVEN SLIVKEN, NORTHWESTERN UNIVERSITY
www.photonics.com-- December 1, 2016
The terahertz (THz) electromagnet­ic spectrum (1 to 10 THz), sitting between the infrared wavelengths on the higher fre­quency side and microwaves on the lower frequency side, lies unique and important properties. THz waves can pass through a number of materials, including synthetics, textiles, paper and cardboard. Many bio­molecules, proteins, explosives or narcot­ics feature characteristic absorption I ines - so-called spectral "fingerprints" - at frequencies between 1 and 10 THz.
 
10.  Chemical lift-off and direct wafer bonding of GaN/InGaN P-I-N structures grown on ZnO
K. Pantzas, D.J. Rogers, P. Bove, V.E. Sandana, F.H. Teherani, Y. El Gmili, M. Molinari, G. Patriarche, L. Largeau, O. Mauguin, S. Suresh, P.L. Voss, M. Razeghi, A. Ougazzaden
Journal of Crystal Growth -- November 7, 2015 ...[Visit Journal]
p-GaN/i-InGaN/n-GaN (PIN) structures were grown epitaxially on ZnO-buffered c-sapphire substrates by metal organic vapor phase epitaxy using the industry standard ammonia precursor for nitrogen. Scanning electron microscopy revealed continuous layers with a smooth interface between GaN and ZnO and no evidence of ZnO back-etching. Energy Dispersive X-ray Spectroscopy revealed a peak indium content of just under 5at% in the active layers. The PIN structure was lifted off the sapphire by selectively etching away the ZnO buffer in an acid and then direct bonded onto a glass substrate. Detailed high resolution transmission electron microscopy and grazing incidence X-ray diffraction studies revealed that the structural quality of the PIN structures was preserved during the transfer process. [reprint (PDF)]
 
9.  Antimonide-Based Type II Superlattices: A Superior Candidate for the Third Generation of Infrared Imaging Systems
M. Razeghi, A. Haddadi, A.M. Hoang, G. Chen, S. Bogdanov, S.R. Darvish, F. Callewaert, P.R. Bijjam, and R. McClintock
Journal of ELECTRONIC MATERIALS, Vol. 43, No. 8, 2014-- August 1, 2014 ...[Visit Journal]
Type II superlattices (T2SLs), a system of interacting multiquantum wells,were introduced by Nobel Laureate L. Esaki in the 1970s. Since then, this material system has drawn a lot of attention, especially for infrared detection and imaging. In recent years, the T2SL material system has experienced incredible improvements in material growth quality, device structure design, and device fabrication techniques that have elevated the performance of T2SL-based photodetectors and focal-plane arrays (FPAs) to a level comparable to state-of-the-art material systems for infrared detection and imaging, such as mercury cadmium telluride compounds. We present the current status of T2SL-based photodetectors and FPAs for imaging in different infrared regimes, from short wavelength to very long wavelength, and dual-band infrared detection and imaging, as well as the future outlook for this material system. [reprint (PDF)]
 

Page 1 of 10:  1  2 3 4 5 6 7 8 9 10  >> Next  (242 Items)