Page 1 of 10:  1  2 3 4 5 6 7 8 9 10  >> Next  (226 Items)

402.  Impact of scaling base thickness on the performance of heterojunction phototransistors
Arash Dehzangi, Abbas Haddadi, Sourav Adhikary, and Manijeh Razeghi
Nanotechnology 28, 10LT01 (2017)-- February 2, 2017 ...[Visit Journal]
In this letter we report the effect of vertical scaling on the optical and electrical performance of mid-wavelength infrared heterojunction phototransistors based on type-II InAs/GaSb/AlSb superlattices. The performance of devices with different base thickness was compared as the base was scaled from 60 down to 40 nm. The overall optical performance shows enhancement in responsively, optical gain, and specific detectivity upon scaling the base width. The saturated responsivity for devices with 40 nm bases reaches 8,845 and 9,528 A/W at 77 and 150 K, respectively, which is almost five times greater than devices with 60 nm bases. The saturated optical gain for devices with 40 nm bases is measured as 2,760 at 77 K and 3,081 at 150 K. The devices with 40 nm bases also exhibit remarkable enhancement in saturated current gain, with 17,690 at 77 K, and 19,050 at 150 K. [reprint (PDF)]
 
135.  Bias–selectable nBn dual–band long–/very long–wavelength infrared photodetectors based on InAs/InAsSb/AlAsSb type–II superlattices
Abbas Haddadi, Arash Dehzangi, Romain Chevallier, Sourav Adhikary & Manijeh Razeghi
Scientific Reports 7, Article number: 3379 (2017) -- June 13, 2017 ...[Visit Journal]
Type–II superlattices (T2SLs) are a class of artificial semiconductors that have demonstrated themselves as a viable candidate to compete with the state–of–the–art mercury–cadmium–telluride material system in the field of infrared detection and imaging. Within type–II superlattices, InAs/InAs1−xSbx T2SLs have been shown to have a significantly longer minority carrier lifetime. However, demonstration of high–performance dual–band photodetectors based on InAs/InAs1−xSbx T2SLs in the long and very long wavelength infrared (LWIR & VLWIR) regimes remains challenging. We report the demonstration of high–performance bias–selectable dual–band long–wavelength infrared photodetectors based on new InAs/InAsSb/AlAsSb type–II superlattice design. Our design uses two different bandgap absorption regions separated by an electron barrier that blocks the transport of majority carriers to reduce the dark current density of the device. As the applied bias is varied, the device exhibits well–defined cut–off wavelengths of either ∼8.7 or ∼12.5 μm at 77 K. This bias–selectable dual–band photodetector is compact, with no moving parts, and will open new opportunities for multi–spectral LWIR and VLWIR imaging and detection. [reprint (PDF)]
 
68.  Dispersion compensated mid-infrared quantum cascade laser frequency comb with high power output
Q. Y. Lu, S. Manna, S. Slivken, D. H. Wu, and M. Razeghi
AIP Publishing -- April 26, 2017 ...[Visit Journal]
Chromatic dispersion control plays an underlying role in optoelectronics and spectroscopy owing to its enhancement to nonlinear interactions by reducing the phase mismatching. This is particularly important to optical frequency combs based on quantum cascade lasers which require negligible dispersions for efficient mode locking of the dispersed modes into equally spaced comb modes. Here, we demonstrated a dispersion compensated mid-IR quantum cascade laser frequency comb with high power output at room temperature. A low-loss dispersive mirror has been engineered to compensate the device’s dispersion residue for frequency comb generation. Narrow intermode beating linewidths of 40 Hz in the comb-working currents were identified with a high power output of 460 mW and a broad spectral coverage of 80 cm-1. This dispersion compensation technique will enable fast spectroscopy and high-resolution metrology based on QCL combs with controlled dispersion and suppressed noise. [reprint (PDF)]
 
67.  Toward realization of small-size dual-band long-wavelength infrared photodetectors based on InAs/GaSb/AlSb type-II superlattices
Romain Chevallier, Abbas Haddadi, Manijeh Razeghi
Solid-State Electronics-- June 20, 2017 ...[Visit Journal]
In this study, we demonstrate 12 × 12 µm2 high-performance, dual-band, long-wavelength infrared (LWIR) photodetectors based on InAs/GaSb/AlSb type-II superlattices. The structure consists of two back-to-back heterojunction photodiodes with 2 µm-thick p-doped absorption regions. High quality dry etching combined with SiO2 passivation results in a surface resistivity value of 7.9 × 105 Ω cm for the longer (red) channel and little degradation of the electrical performance. The device reaches dark current density values of 4.5 × 10−4 A/cm2 for the longer (red) and 1.3 × 10−4 A/cm2 for the shorter (blue) LWIR channels at quantum efficiency saturation. It has 50% cut-off wavelengths of 8.3 and 11.2 µm for the blue and red channel, respectively, at 77 K in back-side illumination configuration and exhibits quantum efficiencies of 37% and 29%, respectively. This results in specific detectivity values of 2.5 × 1011 cm·Hz1/2/W and 1.3 × 1011 cm·Hz1/2/W at 77 K. [reprint (PDF)]
 
45.  Recent advances in antimonide-based gap-engineered Type-II superlattices material system for 2 and 3 colors infrared imagers
Manijeh. Razeghi, Abbas Haddadi, Arash Dehzangi, Romain Chevallier, and Thomas Yang
Proceedings of SPIE 10177, Infrared Technology and Applications XLIII, 1017705-- May 9, 2017 ...[Visit Journal]
InAs/InAs1-xSbx/AlAs1-xSbx type-II superlattices (T2SLs) is a system of multi-interacting quantum wells. Since its introduction, this material system has drawn a lot of attention especially for infrared detection. In recent years, InAs/InAs1- xSbx/AlAs1-xSbx T2SL material system has experienced incredible improvements in material quality, device structure designs and device fabrication process which elevated the performances of T2SL-based photodetectors to a comparable level to the state-of-the-art material systems for infrared detection such as Mercury Cadmium Telluride (MCT). In this paper, we will present the current status of InAs/InAs1-xSbx/AlAs1-xSbx T2SL-based photodetectors for detection in different infrared regions, from short-wavelength (SWIR) to long-wavelength (LWIR) infrared, and the future outlook of this material system. [reprint (PDF)]
 
44.  Status of III-V semiconductor thin films and their applications to future OEICs
Manijeh Razeghi
Proc. SPIE 10267, Integrated Optics and Optoelectronics, 102670T -- June 26, 2017 ...[Visit Journal]
In the last decade, semiconductor technology has been advanced to a great extent in terms of electronic and photonic discrete devices. One of the main reasons for such a progress, is the result of advancement in the epitaxial growth techniques such as molecular beam epitaxy (MBE) and metalorganic chemical vapor deposition (MOCVD), where device quality films can be grown with great control over composition, uniformity and thickness. MOCVD has proven to be one of the best growth methods for many IH-V semiconductor thin films 1. Its flexibility and potential to yield a broad range of growth rates resulted in the layers featuring the thicknesses from tens of microns down to several nanometers. Planar structures containing quantum wells with atomically flat interfaces, superlattices, strained or graded-index layers were successfully grown by MOCVD. Furthermore, MOCVD proved its efficiency in producing a laser devices by overgrowth and epitaxy on patterned substrates. The importance of MOCVD is strongly enhanced by the possibility of large-scale production by simultaneous growth on several substrates in one process. Several III-V semiconductor films with bandgaps ranging from infrared to ultraviolet (15 to 0.2 μm) have been successfully grown by MOCVD. © (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only. [reprint (PDF)]
 
35.  High efficiency quantum cascade laser frequency comb
Quanyong Lu, Donghai Wu, Steven Slivken & Manijeh Razeghi
Scientific Reports 7, Article number: 43806-- March 6, 2017 ...[Visit Journal]
An efficient mid-infrared frequency comb source is of great interest to high speed, high resolution spectroscopy and metrology. Here we demonstrate a mid-IR quantum cascade laser frequency comb with a high power output and narrow beatnote linewidth at room temperature. The active region was designed with a strong-coupling between the injector and the upper lasing level for high internal quantum efficiency and a broadband gain. The group velocity dispersion was engineered for efficient, broadband mode-locking via four wave mixing. The comb device exhibits a narrow intermode beatnote linewidth of 50.5 Hz and a maximum wall-plug efficiency of 6.5% covering a spectral coverage of 110 cm−1 at λ ~ 8 μm. The efficiency is improved by a factor of 6 compared with previous demonstrations. The high power efficiency and narrow beatnote linewidth will greatly expand the applications of quantum cascade laser frequency combs including high-precision remote sensing and spectroscopy. [reprint (PDF)]
 
33.  High power, low divergent, substrate emitting quantum cascade ring laser in continuous wave operation
D. H. Wu and M. Razeghi
APL Materials 5, 035505 (2017)-- March 21, 2017 ...[Visit Journal]
We demonstrate a surface grating coupled substrate emitting quantum cascade ring laser with high power room temperature continuous wave operation at 4.64 μm μm . A second order surface metal/semiconductor distributed-feedback grating is used for in-plane feedback and vertical out-coupling. A device with 400 μm μm radius ring cavity exhibits an output power of 202 mW in room temperature continuous wave operation. Single mode operation with a side mode suppression ratio of 25 dB is obtained along with a good linear tuning with temperature. The far field measurement exhibits a low divergent concentric ring beam pattern with a lobe separation of ∼0.34°, which indicates that the device operates in fundamental mode (n = 1). [reprint (PDF)]
 
33.  Extended short-wavelength infrared nBn photodetectors based on type-II InAs/AlSb/GaSb superlattices with an AlAsSb/GaSb superlattice barrier
A. Haddadi, R. Chevallier, A. Dehzangi, and M. Razeghi
Applied Physics Letters 110, 101104 (2017)-- March 8, 2017 ...[Visit Journal]
Extended short-wavelength infrared nBn photodetectors based on type-II InAs/AlSb/GaSb superlattices on GaSb substrate have been demonstrated. An AlAsSb/GaSb H-structure superlattice design was used as the large-bandgap electron-barrier in these photodetectors. The photodetector is designed to have a 100% cut-off wavelength of ∼2.8 μm at 300 K. The photodetector exhibited a room-temperature (300 K) peak responsivity of 0.65 A/W at 1.9 μm, corresponding to a quantum efficiency of 41% at zero bias under front-side illumination, without any anti-reflection coating. With an R × A of 78 Ω·cm² and a dark current density of 8 × 10−3 A/cm² under −400 mV applied bias at 300 K, the nBn photodetector exhibited a specific detectivity of 1.51 × 1010 Jones. At 150 K, the photodetector exhibited a dark current density of 9.5 × 10−9 A/cm² and a quantum efficiency of 50%, resulting in a detectivity of 1.12 × 1013 Jones. [reprint (PDF)]
 
28.  Background–limited long wavelength infrared InAs/InAsSb type-II superlattice-based photodetectors operating at 110 K
Abbas Haddadi, Arash Dehzangi, Sourav Adhikary, Romain Chevallier, and Manijeh Razeghi
APL Materials 5, 035502 (2016)-- February 13, 2017 ...[Visit Journal]
We report the demonstration of high-performance long-wavelength infrared (LWIR) nBn photodetectors based on InAs/InAsSb type-II superlattices. A new saw-tooth superlattice design was used to implement the electron barrier of the photodetectors. The device exhibited a cut-off wavelength of ∼10 μm at 77 K. The photodetector exhibited a peak responsivity of 2.65 A/W, corresponding to a quantum efficiency of 43%. With an R × A of 664 Ω·cm² and a dark current density of 8 × 10−5 A/cm², under −80 mV bias voltage at 77 K, the photodetector exhibited a specific detectivity of 4.72 × 1011 Jones and a background–limited operating temperature of 110 K. [reprint (PDF)]
 
24.  Monolithically, widely tunable quantum cascade lasers based on a heterogeneous active region design
Wenjia Zhou, Neelanjan Bandyopadhyay, Donghai Wu, Ryan McClintock & Manijeh Razeghi
Nature Scientific Reports 6, Article number: 25213 -- June 8, 2016 ...[Visit Journal]
Quantum cascade lasers (QCLs) have become important laser sources for accessing the mid-infrared (mid-IR) spectral range, achieving watt-level continuous wave operation in a compact package at room temperature. However, up to now, wavelength tuning, which is desirable for most applications, has relied on external cavity feedback or exhibited a limited monolithic tuning range. Here we demonstrate a widely tunable QCL source over the 6.2 to 9.1 μm wavelength range with a single emitting aperture by integrating an eight-laser sampled grating distributed feedback laser array with an on-chip beam combiner. The laser gain medium is based on a five-core heterogeneous QCL wafer. A compact tunable laser system was built to drive the individual lasers within the array and produce any desired wavelength within the available spectral range. A rapid, broadband spectral measurement (520 cm−1) of methane using the tunable laser source shows excellent agreement to a measurement made using a standard low-speed infrared spectrometer. This monolithic, widely tunable laser technology is compact, with no moving parts, and will open new opportunities for MIR spectroscopy and chemical sensing. [reprint (PDF)]
 
21.  Direct growth of thick AlN layers on nanopatterned Si substrates by cantilever epitaxy
Ilkay Demir, Yoann Robin, Ryan McClintock, Sezai Elagoz, Konstantinos Zekentes, and Manijeh Razeghi
Phys. Status Solidi A, 1–6 (2016)-- September 30, 2016 ...[Visit Journal]
AlN layers have been grown on 200 nm period of nanopatterned Si (111) substrates by cantilever epitaxy and compared with AlN layers grown by maskless lateral epitaxial overgrowth (LEO) on micropatterned Si (111) substrates. The material quality of 5–10 µm thick AlN grown by LEO is comparable to that of much thinner layers (2 µm) grown by cantilever epitaxy on the nanopatterned substrates. Indeed, the latter exhibited root mean square (RMS) roughness of 0.65 nm and X-ray diffraction full width at half-maximum (FWHM) of 710 arcsec along the (0002) reflection and 930 arcsec along the (10̅15) reflection. The corresponding room temperature photoluminescence spectra was dominated by a sharp band edge peak. Back emission ultra violet light emitting diodes (UV LEDs) were fabricated by flip chip bonding to patterned AlN heat sinks followed by complete Si (111) substrate removal demonstrating a peak pulsed power of ∼0.7 mW at 344 nm peak emission wavelength. The demonstrated UV LEDs were fabricated on a cost effective epitaxial structure grown on the nanopatterned Si substrate with a total thickness of 3.3 µm [reprint (PDF)]
 
17.  Room temperature quantum cascade lasers with 27% wall plug efficiency
Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken and M. Razeghi
Applied Physics Letters, Vol. 98, No. 18, p. 181102-1-- May 3, 2011 ...[Visit Journal]
Using the recently proposed shallow-well design, we demonstrate InP based quantum cascade lasers (QCLs) emitting around 4.9 μm with 27% and 21% wall plug efficiencies in room temperature (298 K) pulsed and continuous wave (CW) operations, respectively. The laser core consists of 40 QCL-stages. The highest cw efficiency is obtained from a buried-ridge device with a ridge width of 8 μm and a cavity length of 5 mm. The front and back facets are antireflection and high-reflection coated, respectively. The maximum single facet cw power at room temperature amounts to 5.1 W. [reprint (PDF)]
 
17.  Ultra-broadband quantum cascade laser, tunable over 760 cm−1, with balanced gain
N. Bandyopadhyay, M. Chen, S. Sengupta, S. Slivken, and M. Razeghi
Opt. Express 23, 21159-21164 -- August 10, 2015 ...[Visit Journal]
A heterogeneous quantum cascade laser, consisting of multiple stacks of discrete wavelength quantum cascade stages, emitting in 5.9-10.9 µm, wavelength range is reported. The broadband characteristics are demonstrated with a distributed-feedback laser array, emitting at fixed frequencies at room temperature, covering an emission range of ~760 cm−1, which is ~59% relative to the center frequency. By appropriate choice of a strained AlInAs/GaInAs material system, quantum cascade stage design and spatial arrangement of stages, the distributed-feedback array has been engineered to exhibit a flat threshold current density across the demonstrated range. [reprint (PDF)]
 
16.  Demonstration of type-II superlattice MWIR minority carrier unipolar imager for high operation temperature application
Guanxi Chen, Abbas Haddadi, Anh-Minh Hoang, Romain Chevallier, and Manijeh Razeghi
Optics Letters Vol. 40, Iss. 1, pp. 29–32 (2015)-- December 18, 2014 ...[Visit Journal]
An InAs/GaSb type-II superlattice-based mid-wavelength infrared (MWIR) 320×256 unipolar focal plane array (FPA) using pMp architecture exhibited excellent infrared image from 81 to 150 K and ∼98% operability, which illustrated the possibility for high operation temperature application. At 150 K and −50  mV operation bias, the 27 μm pixels exhibited dark current density to be 1.2×10−5  A/cm², with 50% cutoff wavelength of 4.9 μm, quantum efficiency of 67% at peak responsivity (4.6 μm), and specific detectivity of 1.2×1012 Jones. At 90 K and below, the 27 μm pixels exhibited system limited dark current density, which is below 1×10−9  A/cm², and specific detectivity of 1.5×1014 Jones. From 81 to 100 K, the FPA showed ∼11  mK NEDT by using F/2.3 optics and a 9.69 ms integration time. [reprint (PDF)]
 
16.  Quantum cascade lasers: from tool to product
M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken
Optics Express Vol. 23, Issue 7, pp. 8462-8475-- March 25, 2015 ...[Visit Journal]
The quantum cascade laser (QCL) is an important laser source in the mid-infrared and terahertz frequency range. The past twenty years have witnessed its tremendous development in power, wall plug efficiency, frequency coverage and tunability, beam quality, as well as various applications based on QCL technology. Nowadays, QCLs can deliver high continuous wave power output up to 5.1 W at room temperature, and cover a wide frequency range from 3 to 300 μm by simply varying the material components. Broadband heterogeneous QCLs with a broad spectral range from 3 to 12 μm, wavelength agile QCLs based on monolithic sampled grating design, and on-chip beam QCL combiner are being developed for the next generation tunable mid-infrared source for spectroscopy and sensing. Terahertz sources based on nonlinear generation in QCLs further extend the accessible wavelength into the terahertz range. Room temperature continuous wave operation, high terahertz power up to 1.9 mW, and wide frequency tunability form 1 to 5 THz makes this type of device suitable for many applications in terahertz spectroscopy, imaging, and communication. [reprint (PDF)]
 
16.  InAs/InAs1-xSbx type-II superlattices for high performance long wavelength infrared detection
M. Razeghi, A. Haddadi, A. M. Hoang, R. Chevallier, S. Adhikary, A. Dehzangi
Proc. SPIE 9819, Infrared Technology and Applications XLII, 981909-- May 20, 2016 ...[Visit Journal]
We report InAs/InAs1-xSbx type-II superlattice base photodetector as high performance long-wavelength infrared nBn device grown on GaSb substrate. The device has 6 μm-thick absorption region, and shows optical performance with a peak responsivity of 4.47 A/W at 7.9 μm, which is corresponding to the quantum efficiency of 54% at a bias voltage of negative 90 mV, where no anti-reflection coating was used for front-side illumination. At 77K, the photodetector’s 50% cut-off wavelength was ~10 μm. The device shows the detectivity of 2.8x1011 cm•Hz½/W at 77 K, where RxA and dark current density were 119 Ω•cm² and 4.4x10-4 A/cm² , respectively, under -90 mV applied bias voltage [reprint (PDF)]
 
15.  Geiger-mode operation of ultraviolet avalanche photodiodes grown on sapphire and free-standing GaN substrates
E. Cicek, Z. Vashaei, R. McClintock, C. Bayram, and M. Razeghi
Applied Physics Letters, Vol. 96, No. 26, p. 261107 (2010);-- June 28, 2010 ...[Visit Journal]
GaN avalanche photodiodes (APDs) were grown on both conventional sapphire and low dislocation density free-standing (FS) c-plane GaN substrates. Leakage current, gain, and single photon detection efficiency (SPDE) of these APDs were compared. At a reverse-bias of 70 V, APDs grown on sapphire substrates exhibited a dark current density of 2.7×10−4 A/cm² whereas APDs grown on FS-GaN substrates had a significantly lower dark current density of 2.1×10−6 A/cm². Under linear-mode operation, APDs grown on FS-GaN achieved avalanche gain as high as 14 000. Geiger-mode operation conditions were studied for enhanced SPDE. Under front-illumination the 625 μm² area APD yielded a SPDE of 13% when grown on sapphire substrates compared to more than 24% when grown on FS-GaN. The SPDE of the same APD on sapphire substrate increased to 30% under back-illumination—the FS-GaN APDs were only tested under front illumination due to the thick absorbing GaN substrate. [reprint (PDF)]
 
15.  High performance bias-selectable three-color Short-wave/Mid-wave/Long-wave Infrared Photodetectors based on Type-II InAs/GaSb/AlSb superlattices
Anh Minh Hoang, Arash Dehzangi, Sourav Adhikary, & Manijeh Razeghi
Nature Scientific Reports 6, Article number: 24144 (2016)-- April 7, 2016 ...[Visit Journal]
We propose a new approach in device architecture to realize bias-selectable three-color shortwave-midwave-longwave infrared photodetectors based on InAs/GaSb/AlSb type-II superlattices. The effect of conduction band off-set and different doping levels between two absorption layers are employed to control the turn-on voltage for individual channels. The optimization of these parameters leads to a successful separation of operation regimes; we demonstrate experimentally three-color photodiodes without using additional terminal contacts. As the applied bias voltage varies, the photodiodes exhibit sequentially the behavior of three different colors, corresponding to the bandgap of three absorbers. Well defined cut-offs and high quantum efficiency in each channel are achieved. Such all-in-one devices also provide the versatility of working as single or dual-band photodetectors at high operating temperature. With this design, by retaining the simplicity in device fabrication, this demonstration opens the prospect for three-color infrared imaging. [reprint (PDF)]
 
14.  Direct growth of thick AlN layers on nanopatterned Si substrates by cantilever epitaxy
Ilkay Demir, Yoann Robin, Ryan McClintock, Sezai Elagoz, Konstantinos Zekentes, and Manijeh Razeghi
Phys. Status Solidi-- April 4, 2017 ...[Visit Journal]
The growth of thick, high quality, and low stress AlN films on Si substrates is highly desired for a number of applications like the development of micro and nano electromechanical system (MEMS and NEMS) technologies [1] and particularly for fabricating AlGaNbased UV LEDs [2–5]. UV LEDs are attractive as they are applied in many areas, such as biomedical instrumentations and dermatology, curing of industrial resins and inks, air purification, water sterilization, and many others [2, 3]. UV LEDs have been generally fabricated on AlN, GaN, Al2O3, or SiC substrates because of better lattice mismatching to AlGaN material systems. [reprint (PDF)]
 
14.  Room temperature continuous wave, monolithic tunable THz sources based on highly efficient mid-infrared quantum cascade lasers
Quanyong Lu, Donghai Wu, Saumya Sengupta, Steven Slivken, Manijeh Razeghi
Nature Scientific Reports 6, Article number: 23595 (2016)-- March 24, 2016 ...[Visit Journal]
A compact, high power, room temperature continuous wave terahertz source emitting in a wide frequency range (ν ~ 1–5 THz) is of great importance to terahertz system development for applications in spectroscopy, communication, sensing, and imaging. Here, we present a strong-coupled strain-balanced quantum cascade laser design for efficient THz generation based on intracavity difference frequency generation. Room temperature continuous wave emission at 3.41 THz with a side-mode suppression ratio of 30 dB and output power up to 14 μW is achieved with a wall-plug efficiency about one order of magnitude higher than previous demonstrations. With this highly efficient design, continuous wave, single mode THz emissions with a wide frequency tuning range of 2.06–4.35 THz and an output power up to 4.2 μW are demonstrated at room temperature from two monolithic three-section sampled grating distributed feedback-distributed Bragg reflector lasers. [reprint (PDF)]
 
13.  III-nitride based avalanche photo detectors
R. McClintock, E. Cicek, Z. Vashaei, C. Bayram, M. Razeghi and M. Ulmer
Proceedings, Vol. 7780, p. 77801B, SPIE Optics and Photonics Symposium, Conference on Detectors and Imaging Devices: Infrared, Focal Plane and Single Photon, San Diego, CA -- August 4, 2010 ...[Visit Journal]
Research into III-Nitride based avalanche photodiodes (APDs) is motivated by the need for high sensitivity ultraviolet (UV) detectors in numerous civilian and military applications. By designing III-Nitride photodetectors that utilize low-noise impact ionization high internal gain can be realized-GaN APDs operating in Geiger mode can achieve gains exceeding 1×107. Thus with careful design, it becomes possible to count photons at the single photon level. In this paper we review the current state of the art in III-Nitride visible-blind APDs and discuss the critical design choices necessary to achieve high performance Geiger mode devices. Other major technical issues associated with the realization of visible-blind Geiger mode APDs are also discussed in detail and future prospects for improving upon the performance of these devices are outlined. The photon detection efficiency, dark count rate, and spectral response of or most recent Geiger-mode GaN APDs on free-standing GaN substrates are studied under low photon fluxes, with single photon detection capabilities being demonstrated. We also present our latest results regarding linear mode gain uniformity: the study of gain uniformity helps reveal the spatial origins of gain so that we can better understand the role of defects. [reprint (PDF)]
 
12.  Recent advances in mid infrared (3-5 μm) quantum cascade lasers
Manijeh Razeghi; Neelanjan Bandyopadhyay; Yanbo Bai; Quanyong Lu; Steven Slivken
Optical Materials Express, Vol. 3, Issue 11, pp. 1872-1884 (2013)-- November 2, 2013 ...[Visit Journal]
Quantum cascade laser (QCL) is an important source of electromagnetic radiation in mid infrared region. Recent research in mid-IR QCLs has resulted in record high wallplug efficiency (WPE), high continuous wave (CW) output power, single mode operation and wide tunability. CW output power of 5.1 W with 21% WPE has been achieved at room temperature (RT). A record high WPE of 53% at 40K has been demonstrated. Operation wavelength of QCL in CW at RT has been extended to as short as 3μm. Very high peak power of 190 W has been obtained from a broad area QCL of ridge width 400μm. 2.4W RT, CW power output has been achieved from a distributed feedback (DFB) QCL. Wide tuning based on dual section sample grating DFB QCLs has resulted in individual tuning of 50cm-1 and 24 dB side mode suppression ratio with continuous wave power greater than 100 mW. [reprint (PDF)]
 
12.  A lifetime of contributions to the world of semiconductors using the Czochralski invention
M. Razeghi
Vacuum (2017)-- February 8, 2017 ...[Visit Journal]
Over the course of my career, I have made numerous contributions related to semiconductor crystal growth and high performance optoelectronics over a vast region of the electromagnetic spectrum (ultraviolet to terahertz). In 2016 this cumulated in my receiving the Jan Czochralski Gold Medal award from the European Materials Research Society. This article is designed to provide a historical perspective and general overview of these scientific achievements, on the occasion of being honored by this award. These achievements would not have been possible without high quality crystalline substrates, and this article is written in honor of Jan Czochralski on the 100th anniversary of his important discovery. [reprint (PDF)]
 
11.  Electroluminescence at 375 nm from a Zn0/GaN:Mg/c-Al2O3 heterojunction light emitting diodes
D.J. Rogers, F.Hosseini Teherani, A. Yasan, K. Minder, P. Kung, and M. Razeghi
Applied Physics Letters, 88 (14)-- April 13, 2006 ...[Visit Journal]
n-ZnO/p-GaN:Mg heterojunction light emitting diode (LED) mesas were fabricated on c-Al2O3 substrates using pulsed laser deposition for the ZnO and metal organic chemical vapor deposition for the GaN:Mg. Room temperature (RT) photoluminescence (PL) showed an intense main peak at 375 nm and a negligibly low green emission indicative of a near band edge excitonic emission from a ZnO layer with low dislocation/defect density. The LEDs showed I-V characteristics confirming a rectifying diode behavior and a RT electroluminescence (EL) peaked at about 375 nm. [reprint (PDF)]
 

Page 1 of 10:  1  2 3 4 5 6 7 8 9 10  >> Next  (226 Items)