| About the CQD | | News | | Conferences | | Publications | | Books | | Research | | People | | History | | Patents | | Contact | Channel | |
Page 1 of 19: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 >> Next (459 Items)
| 359. |
-- November 30, 1999 |
| 120. | Band-structure-engineered high-gain LWIR photodetector based on a type-II superlattice Arash Dehzangi, Jiakai Li and Manijeh Razeghi Light: Science & Applications volume 10, Article number: 17 (2021) https://doi.org/10.1038/s41377-020-00453-x ...[Visit Journal] The LWIR and longer wavelength regions are of particular interest for new developments and new approaches to realizing long-wavelength infrared (LWIR) photodetectors with high detectivity and high responsivity. These photodetectors are highly desirable for applications such as infrared earth science and astronomy, remote sensing, optical communication, and thermal and medical imaging. Here, we report the design, growth, and characterization of a high-gain band-structure-engineered LWIR heterojunction phototransistor based on type-II superlattices. The 1/e cut-off wavelength of the device is 8.0 µm. At 77 K, unity optical gain occurs at a 90 mV applied bias with a dark current density of 3.2 × 10−7 A/cm2. The optical gain of the device at 77 K saturates at a value of 276 at an applied bias of 220 mV. This saturation corresponds to a responsivity of 1284 A/W and a specific detectivity of 2.34 × 1013 cm Hz1/2/W at a peak detection wavelength of ~6.8 µm. The type-II superlattice-based high-gain LWIR device shows the possibility of designing the high-performance gain-based LWIR photodetectors by implementing the band structure engineering approach. [reprint (PDF)] |
| 118. | nBn extended short-wavelength infrared focal plane array ARASH DEHZANGI, ABBAS HADDADI, ROMAIN CHEVALLIER, YIYUN ZHANG, AND MANIJEH RAZEGHI Optics Letters Vol. 43, Issue 3, pp. 591-594-- February 1, 2018 ...[Visit Journal] An extended short-wavelength nBn InAs/GaSb/AlSb type-II superlattice-based infrared focal plane array imager was demonstrated. A newly developed InAs0.10Sb0.90∕GaSb superlattice design was used as the large-bandgap electron barrier in this photodetector. The large band gap electron-barrier design in this nBn photodetector architecture leads to the device having lower dark current densities. A new bi-layer etch-stop scheme using a combination of InAs0.91Sb0.09 bulk
and AlAs0.1Sb0.9∕GaSb superlattice layers was introduced to allow complete substrate removal and a shorter wavelength cut-on. Test pixels exhibit 100% cutoff wavelengths of ∼2.30 and ∼2.48 μm at 150 and 300 K, respectively. The devices achieve saturated quantum efficiency values of 59.7% and 63.8% at 150 and 300 K, respectively, under backside illumination and without any antireflection coating.At 150 K, photodetectors exhibit dark current density of 8.75 × 10−8 A∕cm² under −400 mV applied bias, providing
specific detectivity of 2.82 × 1012 cm · Hz1∕2∕W at 1.78 μm. At 300 K, the dark current density reaches 4.75 × 10−2 A∕cm² under −200 mV bias, providing a specific detectivity of 8.55 × 109 cm · Hz1∕2∕W 1.78 μm. [reprint (PDF)] |
| 107. | High-power, high-wall-plug-efficiency quantum cascade lasers with high-brightness in continuous wave operation at 3–300μm Manijeh Razeghi, Yanbo Bai and Feihu Wang Razeghi et al. Light: Science & Applications (2025) 14:252 ...[Visit Journal] Quantum cascade lasers (QCLs) are unipolar quantum devices based on inter-sub-band transitions. They break the electron-hole recombination mechanism in traditional semiconductor lasers, overcome the long-lasting bottleneck which is that the emission wavelength of semiconductor laser is completely dependent on the bandgap of semiconductor materials. Therefore, their emission wavelength is able to cover the mid-infrared (mid-IR) range and the “Terahertz gap” that is previously inaccessible by any other semiconductor lasers. [reprint (PDF)] |
| 48. |
-- November 30, 1999 |
| 34. | Self-Detecting Mid-Infrared Dual-Comb Spectroscopy Based on High-Speed Injection-Locked Quantum Cascade Lasers Yu Ma, Dapeng Wu, Ruixin Huang, Shichen Zhang, Binru Zhou, Zejun Ma, Yongqiang Sun, Junqi Liu, Ning Zhuo, Jinchuan Zhang, Shenqiang Zhai, Shuman Liu, Fengqi Liu, Manijeh Razeghi, and Quanyong Lu Ma, Y., Wu, D., Huang, R., Zhang, S., Zhou, B., Ma, Z., Sun, Y., Liu, J., Zhuo, N., Zhang, J., Zhai, S., Liu, S., Liu, F., Razeghi, M. and Lu, Q. (2025), Self-Detecting Mid-Infrared Dual-Comb Spectroscopy Based on High-Speed Injection-Locked Quantum Cascade Lasers. Adv. Photonics Res. 2500062. https://doi.org/10.1002/adpr.202500062 ...[Visit Journal] Dual-comb spectrometer based on quantum cascade lasers (QCLs) is gaining fast development and revolutionizing the precision measurement with high-frequency and temporal resolutions. In these measurements, high-bandwidth photodetectors are normally used for signal acquisition and processing, which complicates the measurement system. QCL is well-known for its picosecond gain-recovery time with an intrinsic bandwidth of tens of GHz. In this work, a compact self-detecting dual-comb spectroscopy (DCS) is demonstrated based on dispersion-engineered, high-speed packaged QCLs under coherent injection locking. The laser source is designed and fabricated into a hybrid-monolithic-integrated waveguide and epi-down packaged on a wideband-designed submount to fully explore the high-speed feature up to fourth-order harmonic state with a cutoff frequency of 40 GHz. The effective radio frequency (RF) injection locking diminishes the issue of optical feedback and enables high-bandwidth self-detection based on QCLs. Clear and stable multiheterodyne signal corresponding to a spectral range of 68 cm−1 and narrow comb tooth linewidth of ≈10 kHz is observed without using external detector or numerical process. The demonstrated broadband, high-power, self-detecting mid-infrared QCL DCS has a great potential for future applications of molecular sensing and spectroscopy. [reprint (PDF)] |
| 32. | High power quantum cascade lasers M. Razeghi, S. Slivken, Y. Bai, B. Gokden, and S.R. Darvish New Journal of Physics (NJP), Volume 11, p. 125017-- December 1, 2009 ...[Visit Journal] We report the most recent state-of-art quantum cascade laser results at wavelengths around 4.8 and 10 μm. At 4.8 μm, a room temperature wall plug efficiency (WPE) of 22 and 15.5% are obtained in pulsed mode and continuous wave (cw) mode, respectively. Room temperature cw output power reaches 3.4 W. The same laser design is able to reach a WPE of 36% at 120 K in pulsed mode. At 10 μm, room temperature average power of 2.2 W and cw power of 0.62 W are obtained. We also explore lasers utilizing the photonic crystal distributed feedback mechanism, and we demonstrate up to 12 W peak power operation at three different wavelengths around 4.7 μm with a waveguide width of 100 μm and diffraction limited beam quality. [reprint (PDF)] |
| 30. | Room temperature operation of Ge/SixGe1−x−ySny terahertz quantum cascade lasers predicted using extended combined resonant tunneling and rate equation model Zhou Li,, Zhichao Chen, Baiqi Zhang, Qiyun Lai, Zhanfeng Jiang, Yaoyao Liang Yulong Fan, Haoxiang Li, Qi Qin, Manijeh Razeghi∗, and Feihu Wang∗ Room temperature operation of Ge/SixGe1−x−ySny terahertz quantum cascade lasers predicted using extended combined resonant tunneling and rate equation model ...[Visit Journal] Raising operation temperature of terahertz (THz) quantum cascade lasers (QCLs) to room temperature remains a key challenge in QCL community. Group-IV semiconductors are believed to be a promising solution to this problem since the polar phonon–electron scattering is negligible at elevated temperature. Here, we develop a theoretical model for
THz QCL development. This model is established on the combined resonant tunneling and rate equation framework and is extended to be applicable for group-IV QCL design through introducing new scattering mechanisms and continuum states carrier leakage. A two-well
THz QCL based on a direct phonon extraction strategy is designed and predicted to be capable of working above 300 K. This result lays the foundation for future room temperature THz QCL devices development using group-IV semiconductors. [reprint (PDF)] |
| 19. | Ultrafast Pulse Generation from Quantum Cascade Lasers Feihu Wang, Xiaoqiong Qi, Zhichao Chen, Manijeh Razeghi, and Sukhdeep Dhillon Wang, F.; Qi, X.; Chen, Z.; Razeghi, M.; Dhillon, S. Ultrafast Pulse Generation from Quantum Cascade Lasers. Micromachines 2022, 13, 2063. https://doi.org/10.3390/ mi13122063 ...[Visit Journal] Quantum cascade lasers (QCLs) have broken the spectral barriers of semiconductor lasers and enabled a range of applications in the mid-infrared (MIR) and terahertz (THz) regimes. However, until recently, generating ultrashort and intense pulses from QCLs has been difficult. This would be useful to study ultrafast processes in MIR and THz using the targeted wavelength-by-design properties of QCLs. Since the first demonstration in 2009, mode-locking of QCLs has undergone considerable development in the past decade, which includes revealing the underlying mechanism of pulse formation, the development of an ultrafast THz detection technique, and the invention of novel pulse compression technology, etc. Here, we review the history and recent progress of ultrafast pulse generation from QCLs in both the THz and MIR regimes. [reprint (PDF)] |
| 14. | III-Nitride/Ga2O3 heterostructure for future power electronics: opportunity and challenges Nirajman Shrestha, Jun Hee Lee, F. H. Teherani, Manijeh Razeghi Proc. of SPIE Vol. 12895, Quantum Sensing and Nano Electronics and Photonics XX, 128950B (28 January - 1 February 2024, San Francisco)http://dx.doi.org/10.1117/12.3011688 ...[Visit Journal] Ga2O3 has become the new focal point of high-power semiconductor device research due to its superior capability
to handle high voltages in smaller dimensions and with higher efficiencies compared to other commercialized
semiconductors. However, the low thermal conductivity of the material is expected to limit device performance. To
compensate for the low thermal conductivity of Ga2O3 and to achieve a very high density 2-dimensional electron
gas (2DEG), an innovative idea is to combine Ga2O3 with III-Nitrides (which have higher thermal conductivity),
such as AlN. However, metal-polar AlN/β-Ga2O3 heterojunction provides type-II heterojunction which are
beneficial for optoelectronic application, because of the negative value of specific charge density. On the other
hand, N-polar AlN/β- Ga2O3 heterostructures provide higher 2DEG concentration and larger breakdown voltage
compared to conventional AlGaN/GaN devices. This advancement would allow the demonstration of RF power
transistors with a 10x increase in power density compared to today’s State of the Art (SoA) and provide a solution
to size, weight, and power-constrained applications [reprint (PDF)] |
| 13. | Solar-Blind Deep UV Avalanche Photodetectors Using Reduced Area Epitaxy Lakshay Gautam , Junhee Lee, Michael Richards, and Manijeh Razeghi , Lakshay Gautam, Manijeh Razeghi, IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 59, NO. 6, 10.1109/JQE.2023.3325254 ...[Visit Journal] We report high gain avalanche photodetectors operating in the deep UV wavelength regime. The high gain was
leveraged through reduced area epitaxy by patterning AlN on
Sapphire substrate. This helps in a substantial reduction of crack
formation due to overgrowth on individually isolated AlN mesas.
Reproducible gain on the order of 105 was reported for multiple
diodes in different areas of 320 × 256 focal plane array. [reprint (PDF)] |
| 13. | Light People: Professor Manijeh Razeghi Hui Wang, and Cun Yu Light Sci Appl 13, 164 ...[Visit Journal] Editorial
The sense of light is the first sensation the human body develops. The importance of light is self-evident.
However, we all know that the light we can see and perceive covers only a small section of the spectrum. Today,
for Light People, we feature a researcher who is committed to exploring different spectral bands of light ranging
from deep ultraviolet to terahertz waves and working on quantum semiconductor technology, Prof. Manijeh
Razeghi of the Northwestern University in the United States. Known for her quick thinking and witty remarks,
Prof. Razeghi is passionate about life and always kind to others. As a scientist, she does not limit her research to a
single focus, instead, she works on the entire process from material selection, device design, processing, and
manufacturing, all the way to product application. She has a strong passion for education, a commitment
unwavered by fame or fortune. For her students, she is both a reliable source of knowledge and a motherly
figure with a caring heart. She firmly believes that all things in nature can give her energy and inspiration. In
science, she is a true “pioneer” in research and a “miner” of scientific discoveries. She advises young scientists to
enjoy and love what they do, and turn their research into their hobby. As a female scientist, she calls on all
women to realize their true value and potential. Next, let’s hear from Professor Manijeh Razeghi, a true star who
radiates energy and light [reprint (PDF)] |
| 8. | Combined resonant tunneling and rate equation modeling of terahertz quantum cascade lasers Zhichao Chen , Andong Liu, Dong Chang , Sukhdeep Dhillon , Manijeh Razeghi , Feihu Wang Journal of Applied Physics, 135, 115703 ...[Visit Journal] Terahertz (THz) quantum cascade lasers (QCLs) are technologically important laser sources for the THz
range but are complex to model. An efficient extended rate equation model is developed here by incorporating the
resonant tunneling mechanism from the density matrix formalism, which permits to simulate THz QCLs with thick
carrier injection barriers within the semi-classical formalism. A self-consistent solution is obtained by iteratively
solving the Schrödinger-Poisson equation with this transport model. Carrier-light coupling is also included to
simulate the current behavior arising from stimulated emission. As a quasi-ab initio model, intermediate parameters
such as pure dephasing time and optical linewidth are dynamically calculated in the convergence process, and the
only fitting parameters are the interface roughness correlation length and height. Good agreement has been achieved
by comparing the simulation results of various designs with experiments, and other models such as density matrix
Monte Carlo and non-equilibrium Green’s function method that, unlike here, require important computational
resources. The accuracy, compatibility, and computational efficiency of our model enables many application
scenarios, such as design optimization and quantitative insights into THz QCLs. Finally, the source code of the model
is also provided in the supplementary material of this article for readers to repeat the results presented here,
investigate and optimize new designs.
[reprint (PDF)] |
| 8. | Quantum cascade lasers: from tool to product M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken Optics Express Vol. 23, Issue 7, pp. 8462-8475-- March 25, 2015 ...[Visit Journal] The quantum cascade laser (QCL) is an important laser source in the mid-infrared and terahertz frequency range. The past twenty years have witnessed its tremendous development in power, wall plug efficiency, frequency coverage and tunability, beam quality, as well as various applications based on QCL technology. Nowadays, QCLs can deliver high continuous wave power output up to 5.1 W at room temperature, and cover a wide frequency range from 3 to 300 μm by simply varying the material components. Broadband heterogeneous QCLs with a broad spectral range from 3 to 12 μm, wavelength agile QCLs based on monolithic sampled grating design, and on-chip beam QCL combiner are being developed for the next generation tunable mid-infrared source for spectroscopy and sensing. Terahertz sources based on nonlinear generation in QCLs further extend the accessible wavelength into the terahertz range. Room temperature continuous wave operation, high terahertz power up to 1.9 mW, and wide frequency tunability form 1 to 5 THz makes this type of device suitable for many applications in terahertz spectroscopy, imaging, and communication. [reprint (PDF)] |
| 8. | High Performance Planar Antimony-Based Superlattice Photodetectors Using Zinc Diffusion Grown by MBE Jiakai Li, R. K. Saroj, Steven Slivken, V. H. Nguyen, Gail Brown and Manijeh Razeghi Photonics 2022, 9, 664 ...[Visit Journal] In this letter, we report a mid-wavelength infrared (MWIR) planar photodetector based on
InAs/InAsSb type-II superlattices (T2SLs) that has a cut-off wavelength of 4.3 um at 77 K. The
superlattice for the device was grown by molecular beam epitaxy while the planar device structure
was achieved by Zinc diffusion process in a metal–organic chemical vapor deposition reactor. At 77 K,
the peak responsivity and the corresponding quantum efficiency had the value of 1.42 A/W and
48% respectively at 3.7 um under -20 mV for the MWIR planar photodetector. At 77 K, the MWIR
planar photodetector exhibits a dark current density of 2.0E5 A/cm^2 and the R0A value of
~3.0E2 Ohm cm^2 under -20 mV, which yielded a specific detectivity of 4.0E11 cm Hz^(1/2)/W
at 3.7 um. At 150 K, the planar device showed a dark current density of 6.4E-5 A/cm^2 and
a quantum efficiency of 49% at ~3.7 um under -20 mV, which yielded a specific detectivity of
2.0E11 cm Hz^(1/2)/W. [reprint (PDF)] |
| 7. | Mid-infrared quantum cascade lasers with high wall plug efficiency Y. Bai, B. Gokden, S. Slivken, S.R. Darvish, S.A. Pour, and M. Razeghi SPIE Proceedings, San Jose, CA Volume 7222-0O-- January 26, 2009 ...[Visit Journal] We demonstrate optimization of continuous wave (cw) operation of 4.6 µm quantum cascade lasers (QCLs). A 19.7 µm by 5 mm, double channel processed device exhibits 33% cw WPE at 80 K. Room temperature cw WPE as high as 12.5% is obtained from a 10.6 µm by 4.8 mm device, epilayer-down bonded on a diamond submount. With the semi-insulating regrowth in a buried ridge geometry, 15% WPE is obtained with 2.8 W total output power in cw mode at room temperature. This accomplishment is achieved by systematically decreasing the parasitic voltage drop, reducing the waveguide loss and improving the thermal management. [reprint (PDF)] |
| 7. | Sharp/Tuneable UVC Selectivity and Extreme Solar Blindness in Nominally Undoped Ga2O3 MSM Photodetectors Grown by Pulsed Laser Deposition D. J. Rogers, A. Courtois, F. H. Teherani, V. E. Sandana, P. Bove, X. Arrateig, L. Damé, P. Maso, M. Meftah, W. El Huni, Y. Sama, H. Bouhnane, S. Gautier, A. Ougazzaden, M. Razeghi Proc. SPIE 11687, Oxide-based Materials and Devices XII, 116872D (24 March 2021); doi: 10.1117/12.2596194 ...[Visit Journal] Ga2O3 layers were grown on c-sapphire substrates by pulsed laser deposition. Optical transmission spectra were coherent with a bandgap engineering from 4.9 to 6.2 eV controlled via the growth conditions. X-ray diffraction revealed that the films were mainly β-Ga2O3 (monoclinic) with strong (-201) orientation. Metal-Semiconductor-Metal photodetectors based on gold/nickel Inter- Digitated-Transducer structures were fabricated by single-step negative photolithography. 240 nm peak response sensors gave over 2 orders-of-magnitude of separation between dark and light signal with state-of-the-art solar and visible rejection ratios ((I240 : I290) of > 3 x 105 and (I240 : I400) of > 2 x 106) and dark signals of <50 pA (at a bias of -5V). Spectral responsivities showed an exceptionally narrow linewidth (16.5 nm) and peak values exhibited a slightly superlinear increase with applied bias up to a value of 6.5 A/W (i.e. a quantum efficiency of > 3000%) at 20V bias. [reprint (PDF)] |
| 7. | Comparison of Gain and Threshold Current Density for InGaAsP/GaAs λ = 808 nm) Lasers with Different Quantum-Well Thickness H.J. Yi, J. Diaz, I. Eliashevich, G. Lukas, S. Kim, D. Wu, M. Erdtmann, C. Jelen, S. Slivken, L.J. Wang, and M. Razeghi Journal of Applied Physics 79 (11)-- July 1, 1996 ...[Visit Journal] We investigated the quantum‐size effects of quantum well (QW) on gain and threshold current density for InGaAsP/GaAs (λ=808 nm) laser diodes. In this work, a comparison is made of lasers with different QW thickness while keeping the optical confinement factors constant. We found that the threshold current density and differential efficiency were not affected by narrowing the QW thickness. The theoretical model taking into account the mixing of the valence bands and momentum relaxation for InGaAsP/GaAs lasers with spontaneous emission (optically pumped) measurement shows that the absence of difference between these structures can be attributed to the high relaxation rate. [reprint (PDF)] |
| 7. | Mid-wavelength infrared heterojunction phototransistors based on type-II InAs/AlSb/GaSb superlattices A. Haddadi, S. Adhikary, A. Dehzangi, and M. Razeghi Applied Physics Letters 109, 021107-- July 12, 2016 ...[Visit Journal] A mid-wavelength infrared heterojunction phototransistor based on type-II InAs/AlSb/GaSb superlattices on GaSb substrate has been demonstrated. Near a wavelength of 4 μm saturated optical gains of 668 and 639 at 77 and 150 K, respectively, are demonstrated over a wide dynamic range. At 150 K, the unity optical gain collector dark current density and DC current gain are 1 × 10−3 A/cm² and 3710, respectively. This demonstrates the potential for use in high-speed applications. In addition, the phototransistor exhibits a specific detectivity value that is four times higher compared with a state-of-the-art type-II superlattice-based photodiode with a similar cut-off wavelength at 150 K. [reprint (PDF)] |
| 6. | World's first demonstration of type-II superlattice dual band 640 x 512 LWIR focal plane array E.K. Huang and M. Razeghi SPIE Proceedings, Vol. 8268, p. 82680Z-- January 22, 2012 ...[Visit Journal] High resolution multi-band infrared detection of terrestrial objects is useful in applications such as long range and high altitude surveillance. In this paper, we present a 640 x 512 type-II superlattice focal plane array (FPA) in the long-wave infrared (LWIR) suitable for such purposes, featuring 100% cutoff wavelengths at 9.5 μm (blue channel) and 13 μm (red). The dual band camera is single-bump hybridized to an Indigo 30 μm pitch ISC0905 read-out integrated circuit. Test pixels revealed background limited behavior with specific detectivities as high as ~5x1011 Jones at 7.9 μm (blue) and ~1x1011 Jones at 10.2 μm (red) at 77K. [reprint (PDF)] |
| 6. | Study of Phase Transition in MOCVD Grown Ga2O3 from κ to β Phase by Ex Situ and In Situ Annealing Junhee Lee, Honghyuk Kim, Lakshay Gautam, Kun He, Xiaobing Hu, Vinayak P. Dravid and Manijeh Razeghi Photonics 2021, 8, 17. https://doi.org/10.3390/ photonics8010017 ...[Visit Journal] We report the post-growth thermal annealing and the subsequent phase transition of Ga2O3 grown on c-plane sapphire substrates by metal organic chemical vapor deposition (MOCVD). We demonstrated the post-growth thermal annealing at temperatures higher than 900 °C under N2 ambience, by either in situ or ex situ thermal annealing, can induce phase transition from nominally metastable κ- to thermodynamically stable β-phase. This was analyzed by structural characterizations such as high-resolution scanning transmission electron microscopy and x-ray diffraction. The highly resistive as-grown Ga2O3 epitaxial layer becomes conductive after annealing at 1000 °C. Furthermore, we demonstrate that in situ annealing can lead to a crack-free β-Ga2O3. [reprint (PDF)] |
| 6. | Room temperature continuous wave operation of quantum cascade lasers with watt-level optical power Y. Bai, S.R. Darvish, S. Slivken, W. Zhang, A. Evans, J. Nguyen and M. Razeghi Applied Physics Letters, Vol. 92, No. 10, p. 101105-1-- March 10, 2008 ...[Visit Journal] We demonstrate quantum cascade lasers at an emitting wavelength of 4.6 µm, which are capable of room temperature, high power continuous wave (cw) operation. Buried ridge geometry with a width of 9.8 µm was utilized. A device with a 3 mm cavity length that was epilayer-down bonded on a diamond submount exhibited a maximum output power of 1.3 W at room temperature in cw operation. The maximum output power at 80 K was measured to be 4 W, with a wall plug efficiency of 27%. [reprint (PDF)] |
| 6. | Extended short wavelength infrared heterojunction phototransistors based on type II superlattices Arash Dehzangi , Ryan McClintock, Donghai Wu , Abbas Haddadi, Romain Chevallier , and Manijeh Razeghi Applied Physics Letters 114, 191109-- May 17, 2019 ...[Visit Journal] A two terminal extended short wavelength infrared heterojunction phototransistor based on type-II InAs/AlSb/GaSb on a GaSb substrate is designed, fabricated, and investigated. With the base thickness of 40 nm, the device exhibited a 100% cut-off wavelength of 2.3 λ at 300 K.
The saturated peak responsivity value is 320.5 A/W at 300 K, under front-side illumination without any antireflection coating. A saturated
optical gain of 245 at 300K was measured. At the same temperature, the device exhibited a collector dark current density (at unity optical
gain) and a DC current gain of 7.8 X 103 A/cm² and 1100, respectively. The device exhibited a saturated dark current shot noise limited specific detectivity of 4.9 X 1011 cm·Hz½/W at 300 K which remains constant over a broad range of wavelengths and applied biases. [reprint (PDF)] |
| 6. | Midinfrared Semiconductor Photonics – A Roadmap:Quantum Cascade Lasers MANIJEH RAZEGHI arXiv:2511.03868 [physics.optics] ...[Visit Journal] Mid-wave infrared (IR) quantum cascade lasers (QCLs) offer high output
power, excellent efficiency, broad wavelength tunability, and elevated
operating temperatures, especially when operating in the 3–12 μm
wavelength range. These characteristics make them highly promising for a
wide range of applications, including high-resolution molecular spectroscopy,
ultra-low-loss optical fiber communications using fluoride-based glasses (with
attenuation below 2.5×10⁻⁴ dB/km), trace gas detection, air pollution
monitoring (as many molecules, particularly hydrocarbons, exhibiting strong
absorption lines in this spectral region), and medical diagnostics. This article
presents a comprehensive overview of the development of QCLs, highlighting
key milestones, the current state of the technology, and future directions,
framed within the broader context of the Semiconductor Mid-Infrared
Photonics Roadmap. |
| 6. | Comparison of PLD-Grown p-NiO/n-Ga2O3 Heterojunctions on Bulk Single Crystal β-Ga2O3 and r-plane Sapphire Substrates D. J. Rogers , V. E. Sandana, F. Hosseini Teherani and M. Razeghi Proc. of SPIE Vol. 12895, Quantum Sensing and Nano Electronics and Photonics XX, 128870J (28 January - 1 February 2024 San Francisco)doi: 10.1117/12.3012511 ...[Visit Journal] p-NiO/n-Ga2O3 heterostructures were formed on single crystal (-201) β (monoclinic) Ga2O3 and r-sapphire substrates by
Pulsed Laser Deposition. Ring mesa layer stacks were created using a shadow mask during growth. X-Ray diffraction
studies were consistent with the formation of (111) oriented fcc NiO on the bulk Ga2O3 and randomly oriented fcc NiO
on (102) oriented β-Ga2O3 /r-sapphire. RT optical transmission studies revealed bandgap energy values of ~3.65 eV and
~5.28 eV for the NiO and Ga2O3 on r-sapphire. p-n junction devices were formed by depositing gold contacts on the
layer stacks using shadow masks in a thermal evaporator. Both heterojunctions showed rectifying I/V characteristics. On
bulk Ga2O, the junction showed a current density over 16mA/cm2 at +20V forward bias and a reverse bias leakage
current over 3 orders of magnitude lower at -20V (1 pA). On Ga2O3/r-sapphire the forward bias current density at +15V
was about an order of magnitude lower than for the p-NiO/bulk n-Ga2O3 heterojunction while the reverse bias leakage
current at -15V (~ 20 pA) was an order of magnitude higher. Hence the NiO/bulk Ga2O3 junction was more rectifying.
Upon illumination with a Xenon lamp a distinct increase in current was observed for the IV curves in both devices (four
orders of magnitude for -15V reverse bias in the case of the p-NiO/bulk n-Ga2O3 heterojunction). The p-NiO/n-Ga2O3/rsapphire junction gave a spectral responsivity with a FWHM value of 80nm and two distinct response peaks (with
maxima at 230 and 270nm) which were attributed to carriers being photogenerated in the Ga2O3 underlayer. For both
devices time response studies showed a 10%/90% rise and fall of the photo generated current upon shutter open and
closing which was relatively abrupt (millisecond range), and there was no evidence of significant persistent
photoconductivity. [reprint (PDF)] |
Page 1 of 19: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 >> Next (459 Items)
|