Publications by    
Page 1  (2 Items)

1.  Characteristics of high quality p-type AlxGa1-xN/GaN superlattices
A. Yasan, R. McClintock, S.R. Darvish, Z. Lin, K. Mi, P. Kung, and M. Razeghi
Applied Physics Letters 80 (12)-- March 18, 2002
Very-high-quality p-type AlxGa1–xN/GaN superlattices have been grown by low-pressure metalorganic vapor-phase epitaxy through optimization of Mg flow and the period of the superlattice. For the superlattice with x = 26%, the hole concentration reaches a high value of 4.2×1018 cm–3 with a resistivity as low as 0.19 Ω · cm by Hall measurement. Measurements confirm that superlattices with a larger period and higher Al composition have higher hole concentration and lower resistivity, as predicted by theory. reprint
 
2.  Second harmonic generation in hexagonal silicon carbide
P.M. Lundquist, W.P. Lin, G.K. Wong, M. Razeghi, and J.B. Ketterson
Applied Physics Letters 66 (15)-- April 10, 1995
We report optical second harmonic generation measurements in single crystal α-SiC of polytype 6H. The angular dependence of second harmonic intensity was consistent with two independent nonvanishing second order susceptibility components, as expected for a crystal with hexagonal symmetry. For the fundamental wavelength of 1.064 μm the magnitudes of the two components were determined to be χzzz(2)=±1.2×10−7 and χzxx(2)=∓1.2×10−8 esu. The corresponding linear electro‐optic coefficient computed from this value is rzzz=±100 pm/V. The wavelength dependence of the nonlinear susceptibility was examined for second harmonic wavelengths between the bandgap (400 nm) and the red (700 nm), and was found to be relatively uniform over this region. The refractory nature of this compound and its large nonlinear optical coefficients make it an attractive candidate for high power nonlinear optical waveguide applications. reprint
 

Page 1  (2 Items)