Publications by    
Page 2 of 2:  Prev << 1 2    (37 Items)

26.  
Demonstration of shortwavelength infrared photodiodes based on type-II InAs/GaSb/AlSb superlattices
Demonstration of shortwavelength infrared photodiodes based on type-II InAs/GaSb/AlSb superlattices
A.M. Hoang, G. Chen, A. Haddadi, S. Abdollahi Pour, and M. Razeghi
Applied Physics Letters, Vol. 100, No. 21, p. 211101-1-- May 21, 2012
We demonstrate the feasibility of the InAs/GaSb/AlSb type-II superlattice photodiodes operating at the short wavelength infrared regime below 3  μm. An n-i-p type-II InAs/GaSb/AlSb photodiode was grown with a designed cut-off wavelength of 2 μm on a GaSb substrate. At 150  K, the photodiode exhibited a dark current density of 5.6 × 10−8 A/cm² and a front-side-illuminated quantum efficiency of 40.3%, providing an associated shot noise detectivity of 1.0 × 1013 Jones. The uncooled photodiode showed a dark current density of 2.2 × 10−3 A/cm² and a quantum efficiency of 41.5%, resulting in a detectivity of 1.7 × 1010 Jones reprint
 
27.  
High operability 1024 x 1024 long wavelength Type-II superlattice focal plane array
High operability 1024 x 1024 long wavelength Type-II superlattice focal plane array
A. Haddadi, S.R. Darvish, G. Chen, A.M. Hoang, B.M. Nguyen and M. Razeghi
IEEE Journal of Quantum Electronics (JQE), Vol. 48, No. 2, p. 221-228-- February 10, 2012
Electrical and radiometric characterization results of a high-operability 1024 x 1024 long wavelength infrared type-II superlattice focal plane array are described. It demonstrates excellent quantum efficiency operability of 95.8% and 97.4% at operating temperatures of 81 K and 68 K, respectively. The external quantum efficiency is 81% without any antireflective coating. The dynamic range is 37 dB at 81 K and increases to 39 dB at 68 K operating temperature. The focal plane array has noise equivalent temperature difference as low as 27 mK and 19 mK at operating temperatures of 81 K and 68 K, respectively, using f/2 optics and an integration time of 0.13 ms. reprint
 
28.  
Low frequency noise in 1024 x 1024 long wavelength infrared focal plane array base on Type-II InAs/GaSb superlattice
Low frequency noise in 1024 x 1024 long wavelength infrared focal plane array base on Type-II InAs/GaSb superlattice
A. Haddadi, S.R. Darvish, G. Chen, A.M. Hoang, B.M. Nguyen and M. Razeghi
SPIE Proceedings, Vol. 8268, p. 82680X-- January 22, 2012
Recently, the type-II InAs/GaSb superlattice (T2SL) material platform is considered as a potential alternative for HgCdTe technology in long wavelength infrared (LWIR) imaging. This is due to the incredible growth in the understanding of its material properties and improvement of device processing which leads to design and fabrication of better devices. In this paper, we report electrical low frequency noise measurement on a high performance type-II InAs/GaSb superlattice 1024×1024 LWIR focal plane array. reprint
 
29.  
Suppression of surface leakage in gate controlled type-II InAs/GaSb mid-infrared photodetectors
Suppression of surface leakage in gate controlled type-II InAs/GaSb mid-infrared photodetectors
G. Chen; B.-M. Nguyen; A.M. Hoang; E.K. Huang; S.R. Darvish; M. Razeghi
Proc. SPIE 8268, Quantum Sensing and Nanophotonic Devices IX, 826811 (January 20, 2012)-- January 20, 2012
One of the biggest challenges of improving the electrical performance in Type II InAs/GaSb superlattice photodetector is suppressing the surface leakage. Surface leakage screens important bulk dark current mechanisms, and brings difficulty and uncertainty to the material optimization and bulk intrinsic parameters extraction such as carrier lifetime and mobility. Most of surface treatments were attempted beyond the mid-infrared (MWIR) regime because compared to the bulk performance, surface leakage in MWIR was generally considered to be a minor factor. In this work, we show that below 150K, surface leakage still strongly affects the electrical performance of the very high bulk performance p-π-M-n MWIR photon detectors. With gating technique, we can effectively eliminate the surface leakage in a controllable manner. At 110K, the dark current density of a 4.7 μm cut-off gated photon diode is more than 2 orders of magnitude lower than the current density in SiO2 passivated ungated diode. With a quantum efficiency of 48%, the specific detecivity of gated diodes attains 2.5 x 1014 cm·Hz1/2/W, which is 3.6 times higher than that of ungated diodes. reprint
 
30.  
High operability 1024 x 1024 long wavelength infrared focal plane array base on Type-II InAs/GaSb superlattice
High operability 1024 x 1024 long wavelength infrared focal plane array base on Type-II InAs/GaSb superlattice
A. Haddadi, S.R. Darvish, G. Chen, A.M. Hoang, B.M. Nguyen and M. Razeghi
AIP Conference Proceedings, Vol. 1416, p. 56-58_NGS15 Conf_Blacksburg, VA_Aug 1-5, 2011-- December 31, 2011
Fabrication and characterization of a high performance 1024×1024 long wavelength infrared type‐II superlattice focal plane array are described. The FPA performs imaging at a continous rate of 15.00 frames/sec. Each pixel has pitch of 18μm with a fill factor of 71.31%. It demonstrates excellent operability of 95.8% and 97.4% at 81 and 68K operation temperature. The external quantum efficiency is ∼81% without any antireflective coating. Using F∕2 optics and an integration time of 0.13ms, the FPA exhibits an NEDT as low as 27 and 19mK at operating temperatures of 81 and 68K respectively. reprint
 
31.  
Elimination of surface leakage in gate controlled Type-II InAs/GaSb mid-infrared photodetectors
Elimination of surface leakage in gate controlled Type-II InAs/GaSb mid-infrared photodetectors
G. Chen, B.-M. Nguyen, A.M. Hoang, E.K. Huang, S.R. Darvish, and M. Razeghi
Applied Physics Letters, Vol. 99, No. 18, p. 183503-1-- October 31, 2011
The electrical performance of mid-infrared type-II superlattice M-barrier photodetectors is shown to be limited by surface leakage. By applying gate bias on the mesa sidewall surface, leakage current is significantly reduced. Qualitatively IV modeling shows diffusion-dominated behavior of dark current at temperatures greater than 120 K. At 110 K, the dark current of gated device is reduced by more than 2 orders of magnitude, reaching the measurement system noise floor. With a quantum efficiency of 48% in front side illumination configuration, a 4.7μm cut-off gated device attains a specific detectivity of 2.5 × 1014 cm·Hz½·W-1 at 110 K, which is 3.6 times higher than in ungated devices. reprint
 
32.  
Effect of contact doping on superlattice-based minority carrier unipolar detectors
Effect of contact doping on superlattice-based minority carrier unipolar detectors
B.M. Nguyen, G. Chen, A.M. Hoang, S. Abdollahi Pour, S. Bogdanov, and M. Razeghi
Applied Physics Letters, Vol. 99, No. 3, p. 033501-1-- July 18, 2011
We report the influence of the contact doping profile on the performance of superlattice-based minority carrier unipolar devices for mid-wave infrared detection. Unlike in a photodiode, the space charge in the p-contact of a pMp unipolar device is formed with accumulated mobile carriers, resulting in higher dark current in the device with highly doped p-contact. By reducing the doping concentration in the contact layer, the dark current is decreased by one order of magnitude. At 150 K, 4.9 μm cut-off devices exhibit a dark current of 2 × 10−5A/cm² and a quantum efficiency of 44%. The resulting specific detectivity is 6.2 × 1011 cm·Hz1/2/W at 150 K and exceeds 1.9 × 1014 cm·Hz1/2/W at 77 K. reprint
 
33.  
Type-II superlattice dual-band LWIR imager with M-barrier and Fabry-Perot resonance
Type-II superlattice dual-band LWIR imager with M-barrier and Fabry-Perot resonance
E.K. Huang, A. Haddadi, G. Chen, B.M. Nguyen, M.A. Hoang, R. McClintock, M. Stegall, and M. Razeghi
OSA Optics Letters, Vol. 36, No. 13, p. 2560-2562-- July 1, 2011
We report a high performance long-wavelength IR dual-band imager based on type-II superlattices with 100% cutoff wavelengths at 9.5 μm (blue channel) and 13 μm (red channel). Test pixels reveal background-limited behavior with specific detectivities as high as ∼5×1011 Jones at 7.9 μm in the blue channel and ∼1×1011 Jones at 10.2 μm in the red channel at 77 K. These performances were attributed to low dark currents thanks to the M-barrier and Fabry–Perot enhanced quantum efficiencies despite using thin 2 μm absorbing regions. In the imager, the high signal-to-noise ratio contributed to median noise equivalent temperature differences of ∼20 mK for both channels with integration times on the order of 0.5 ms, making it suitable for high speed applications. reprint
 
34.  
Growth and Characterization of Long-Wavelength Infrared Type-II Superlattice Photodiodes on a 3-in GaSb Wafer
Growth and Characterization of Long-Wavelength Infrared Type-II Superlattice Photodiodes on a 3-in GaSb Wafer
B.M. Nguyen, G. Chen, M.A. Hoang, and M. Razeghi
IEEE Journal of Quantum Electronics (JQE), Vol. 47, No. 5, May 2011, p. 686-690-- May 11, 2011
We report the molecular beam epitaxial growth and characterization of high performance Type-II superlattice photodiodes on 3” GaSb substrates for long wavelength infrared detection. A 7.3 micron thick device structure shows excellent structural homogeneity via atomic force microscopy and x-ray diffraction characterization. Optical and electrical measurements of photodiodes reveal not only the uniformity of the Type-II superlattice material but also of the fabrication process. Across the wafer, at 77 K, photodiodes with a 50% cut-off wavelength of 11 micron exhibit more than 45% quantum efficiency, and a dark current density of 1.0 x 10-4 A/cm² at 50 mV, resulting in a specific detectivity of 6x1011 cm·Hz1/2/W. reprint
 
35.  
Surface leakage current reduction in long wavelength infrared type-II InAs/GaSb superlattice photodiodes
Surface leakage current reduction in long wavelength infrared type-II InAs/GaSb superlattice photodiodes
S. Bogdanov, B.M. Nguyen, A.M. Hoang, and M. Razeghi
Applied Physics Letters, Vol. 98, No. 18, p. 183501-1-- May 2, 2011
Dielectric passivation of long wavelength infrared Type-II InAs/GaSb superlattice photodetectors with different active region doping profiles has been studied. SiO2 passivation was shown to be efficient as long as it was not put in direct contact with the highly doped superlattice. A hybrid graded doping profile combined with the shallow etch technique reduced the surface leakage current in SiO2 passivated devices by up to two orders of magnitude compared to the usual design. As a result, at 77 K the SiO(2) passivated devices with 10.5 μm cutoff wavelength exhibit an R0A of 120 Ω·cm², RmaxA of 6000 Ω·cm², and a dark current level of 3.5×10−5 A·cm−2 at −50 mV bias. reprint
 
36.  
Recent advances in high performance antimonide-based superlattice FPAs
Recent advances in high performance antimonide-based superlattice FPAs
E.K. Huang, B.M. Nguyen, S.R. Darvish, S. Abdollahi Pour, G. Chen, A. Haddadi, and M.A. Hoang
SPIE Proceedings, Infrared technology and Applications XXXVII, Orlando, FL, Vol. 8012, p. 80120T-1-- April 25, 2011
Infrared detection technologies entering the third generation demand performances for higher detectivity, higher operating temperature, higher resolution and multi-color detection, all accomplished with better yield and lower manufacturing/operating costs. Type-II antimonide based superlattices (T2SL) are making firm steps toward the new era of focal plane array imaging as witnessed in the unique advantages and significant progress achieved in recent years. In this talk, we will present the four research themes towards third generation imagers based on T2SL at the Center for Quantum Devices. High performance LWIR megapixel focal plane arrays (FPAs) are demonstrated at 80K with an NEDT of 23.6 mK using f/2 optics, an integration time of 0.13 ms and a 300 K background. MWIR and LWIR FPAs on non-native GaAs substrates are demonstrated as a proof of concept for the cost reduction and mass production of this technology. In the MWIR regime, progress has been made to elevate the operating temperature of the device, in order to avoid the burden of liquid nitrogen cooling. We have demonstrated a quantum efficiency above 50%, and a specific detectivity of 1.05x1012 cm·Hz1/2/W at 150 K for 4.2 μm cut-off single element devices. Progress on LWIR/LWIR dual color FPAs as well as novel approaches for FPA fabrication will also be discussed. reprint
 
37.  
Growth and characterization of long wavelength infrared Type-II superlattice Photodiodes on a 3
Growth and characterization of long wavelength infrared Type-II superlattice Photodiodes on a 3
B.M. Nguyen, G. Chen, M.A. Hoang, and M. Razeghi
SPIE Proceedings, San Francisco, CA (January 22-27, 2011), Vol. 7945, p. 79451O-- January 23, 2011
One of the great advantages of Type-II InAs/GaSb superlattice over other competing technologies for the third generation infrared imagers is the potential to have excellent uniformity across a large area as the electronic structure of the material is controlled by the layer thicknesses, not by the composition of the materials. This can economize the material growth, reduce the fabrication cost, and especially allow the realization of large format imagers. In this talk, we report the molecular beam epitaxial growth of Type-II superlattices on a 3-inch GaSb substrate for long wavelength infrared detection. The material exhibits excellent structural, optical and electrical uniformity via AFM, Xray, quantum efficiency and I-V measurements. At 77K, 11μm cutoff photodiodes exhibit more than 45% quantum efficiency, and a dark current density of 1.0x10-4 A/cm² at 50 mV, resulting in a specific detectivity of 6 x 1011 cm·Hz1/2/W. reprint
 

Page 2 of 2:  Prev << 1 2    (37 Items)